Disintegration of quarkonia in QGP due to time dependent potential

Size: px
Start display at page:

Download "Disintegration of quarkonia in QGP due to time dependent potential"

Transcription

1 Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati, India

2 Outline of talk

3 Outline of talk Review of Conventional Mechanism of quarkonia suppression

4 Outline of talk Review of Conventional Mechanism of quarkonia suppression New Mechanisms of Quarkonia Suppression Quarkonia Suppression Due to Rapid Thermalisation With Ajit M. Srivastava Quarkonia Suppression Due to Scattering With Z(3) interfaces With Abhishek Atreya and Ajit M. Srivastava

5 Outline of talk Review of Conventional Mechanism of quarkonia suppression New Mechanisms of Quarkonia Suppression Quarkonia Suppression Due to Rapid Thermalisation With Ajit M. Srivastava Quarkonia Suppression Due to Scattering With Z(3) interfaces With Abhishek Atreya and Ajit M. Srivastava Conclusion

6 Conventional mechanism for quarkonia suppression Quantum chromodynamics predicts that at extreme high conditions of baryon density and /or temperature there should be a deconfinement of quarks and gluons, and hadrons should undergo a phase transition to quark-gluon plasma (QGP). We cannot prob QGP directly. Observing quarkonia suppression is one of several indirect method to prob QGP.

7 Conventional mechanism for quarkonia suppression Continued... Matsui and Satz 1 proposed J/ψ suppression as a signal for QGP due to Debye screening of the potential between q q If at a temperature T D, the Debye screening length of the medium becomes less than the radius of quarkonia, then q q may not form bound states In the above picture, suppression of quarkonia occurs when the temperature of QGP achieves a value higher than T D 1 T. Matsui and H. Satz, PRL B178,416 (1986)

8 Important points about the conventional mechanism for quarkonia suppression If the QGP temperature remains below T D, no quarkonia suppression is expected in the conventional mechanism. This type of picture is consistent with the adiabatic evolution of a quantum state under changing potential. As the q q potential changes from zero temperature (V(T=0)) to the finite temperature one (V(T)), initial quarkonium state evolves to the state corresponding to V(T) which is also a bound state for T < T D, hence no quarkonium suppression for T < T D. We question this assumption of adiabatic evolution for ultra-relativistic heavy-ion collisions, such as at RHIC, and especially at LHC.

9 Important points...continued... At such energies, thermalization is achieved in time scale less than 1 fm (from elliptic flow measurements) and may be as short as 0.25 fm for RHIC and about 0.1 fm for LHC 2 For J/ψ and even for Υ, typical time scale of q q dynamics will be at least 1-2 fm from the size of the bound state (as can be seen from the extent of the wave function) and the fact that q, q have non-relativistic velocities Also, E between J/ψ and its next excited state (χ) is about 300 MeV (400 MeV for Υ states), leading to transition time scale 0.7 fm (0.5 fm for Υ). Thus, the time scale of change in potential from V (T = 0) to V (T ) is at most the same as the time scale of the dynamics of q q in quarkonium, or the transition time scale between relevant states. 2 D.M. Elliott and D.H. Rischke, Nucl. Phys. A 671, 583 (2000)

10 Quarkonia wave functions J/ψ ϒ ψ(z) z(fm) Figure : Wave function for J/ψ and Υ at T= 0.

11 Time dependent potential for studying quarkonia wave function evolution The evolution of the wave function, thus, cannot be taken to be adiabatic and it should be treated in terms of a time dependent perturbation theory Survival probability of quarkonia should be calculated under this perturbation Adiabatic assumption has been questioned earlier by Dutta and Borghini 3, but only for the cooling part, they discuss only the case when T 0 > T D. Whereas, we discuss violation of adiabaticity for heating part, and especially consider the case when T 0 < T D. 3 Nirupam Dutta, Nicolas Borghini arxiv:

12 Time dependent potential for studying quarkonia wave function evolution Continued... It is clear that even if the final temperature remains less than T D (above which Debye screening can melt quarkonia), if the change in potential is fast enough invalidating the adiabatic assumption then transition of initial quarkonium state to other excited states, or unbound state, will occur These excited states will have larger profile and will easily melt in medium. Thus: Quarkonia melting can occur even when QGP temperature remains below T D.

13 Quarkonia Suppression Due to Rapid Thermalisation of QGP As Thermalisation may happen in very short time, about 0.25 fm for RHIC and 0.1 fm for LHC, it seems reasonable to use the sudden perturbation approximation instead of adiabatic approximation. The initial wave function of the quarkonium cannot change under this sudden perturbation. Thus, as soon as thermalization is achieved the initial quarkonium wave function is no longer an energy eigen state of the new Hamiltonian with the q q potential corresponding to temperature T 0 of QGP.

14 Results we calculate wave functions for J/ψ and Υ at different temperatures V (r) = α s r exp( ω Dr) + σ ω D r(1 exp( ω D r)) ω D = T 6πα s, α s = π 12 σ = 0.16GeV 2 ψ(z) J/ψ(T = 0 MeV) J/ψ(T = 200 MeV) ψ(z) ϒ(T = 0 MeV) ϒ(T = 200 MeV) ϒ(T = 400 MeV) ϒ(T = 500 MeV) z(fm) z(fm) Figure : Wave functions for J/ψ and Υ at different temperatures.

15 Results: Continued... As a result, one can find overlap with the new eigen states, giving us the survival probability of the quarkonium as well as the probability of its transition to other excited states. p 1 J/ψ 0.9 ϒ T (GeV) Figure : Survival Probability p of J/ψ and Υ vs. temperature of medium. Plots are given upto the temperature T D for J/ψ and Υ.

16 Summery for this part It does not seems reasonable to use the adiabatic approximation for quarkonia wave function evolution in medium in the case of rapid thermalization We have used sudden perturbation approximation instead of adiabatic approximation. Quarkonia melting can occur even when QGP temperature remains below T D. More detailed calculations can be done by modeling initial thermalization in terms of time dependent temperature and using time dependent perturbation theory.

17 Quarkonia suppression due to scattering with Z(3) wall

18 Quarkonia suppression due to scattering with Z(3) wall There are Z(3) interfaces in the QGP phase arising from spontaneous breaking of the center symmetry of QCD. Scattering of quarkonia with these interfaces can lead to disintegration of quarkonia Again, quarkonia disintegration can occur even if temperature of QGP remains less than T D

19 Order Parameter for QCD Phase Transition Z(3) interfaces arises due to spontaneous breaking of Z(3) symmetry in QGP during Confinement-deconfinement (C-D) phase transition Order parameter for C-D phase transition is Polyakov loop, which is defined as, L(x) = 1 ( β )] [Pexp N Tr ig A 0 ( x, τ)dτ 0

20 Effective Potential for l(x) Effective Potential 4 ( V (L) = b 2 2 L 2 b 3 (L 3 + (L ) 3) + 1 ) 6 4 ( L 2 ) 2 b 4 T 4 For T > T c, second term leads to the three degenerate vacua corresponding to the three L(x) values. Z(3) interfaces correspond to interpolating L(x) profile between these vacua. 4 R.D. Pisarski, PRD 62, (2000) 5 Dimitru and Pisarski, Phys, Lett. B 504, (2001); PRD 66, (2000); Nucl. Phys. A 698 (2002)

21 Effective Potential for l(x) Effective Potential 4 ( V (L) = b 2 2 L 2 b 3 (L 3 + (L ) 3) + 1 ) 6 4 ( L 2 ) 2 b 4 T 4 For T > T c, second term leads to the three degenerate vacua corresponding to the three L(x) values. Z(3) interfaces correspond to interpolating L(x) profile between these vacua. Parameters fixed from lattice results. 5 b 3 = 2.0 and b 4 = /16 b 2 = (1 1.11/x) ( /x) 2 ( /x) ; where x = T /T c with T c 182 MeV 4 R.D. Pisarski, PRD 62, (2000) 5 Dimitru and Pisarski, Phys, Lett. B 504, (2001); PRD 66, (2000); Nucl. Phys. A 698 (2002)

22 Plot of effective potential V(L) Figure : Surface plot of potential in the complex L(x) plane for T=400 MeV.

23 Profile for L(x) for a Z(3) interface Profile for L(x) by energy minimization. 6 l(z) MeV MeV z(fm) 6 Layek, Mishra, Srivastava, PRD 71, (2005)

24 Quarkonia scattering from Z(3) wall 7 B. Layek, A. P. Mishra, A. M. Srivastava, and V. K. Tiwari, Phys. Rev. D73, (2006), hep-ph/

25 Quarkonia scattering from Z(3) wall As L(x) is order parameter for C-D transition, effective quark mass may depend on L(x) (constituent quark mass) We propose 7 m(x) = m q + m 0 (l 0 l(x) ) m 0 = 300 MeV characterizes the constituent mass contribution for the quark. m q is the current quark mass of the quark as appropriate for the QGP phase with l(x) = l 0 x dependent mass acts as nontrivial potential in Dirac equation for quark propagation A quarkonia propagating through the wall can get excited to higher states, due to the interaction, which easily melts in QGP (or directly to unbound states) 7 B. Layek, A. P. Mishra, A. M. Srivastava, and V. K. Tiwari, Phys. Rev. D73, (2006), hep-ph/

26 Results we have calculated transition probability to several excited states for prompt charmonium. For Thermal charmonium (T = 200) MeV, other states are not bound due to Debye screening. we have also calculated transition probability to several excited states for prompt bottomonium and only to n = 2, l = 0 for tharmal bottomonium. For Thermal bottomonium (T = 200) MeV, other states are not bound due to Debye screening.

27 Results (Continuation..) p Total To (n=2, l=0) To (n=1, l=2) To (n=3, l=0) To (n=2, l=2) v Figure : Above figure shows probability of transition from J/ψ to other excited states.

28 Results (Continuation...) p Total To (n=2, l=0) To (n=1, l=2) To (n=3, l=0) p Prompt Thermal v v Figure : Above figure shows probability of transition from Υ to other excited states. Left one for transi to different excited states for prompt Υ. And right one to compare transition to n = 2, l = 0 for prompt bottomonium and thermal bottomonium at T = 200 MeV.

29 Quarkonia scattering due Z(3) wall Scattering due to A 0 profile (2012) 8 A. Atreya, A. M. Srivastava, and A. Sarkar Phys. Rev. D 85,

30 Quarkonia scattering due Z(3) wall Scattering due to A 0 profile From the definition of L(x) we note that presence of nontrivial profile of l(x) may lead to a nontrivial profile of A 0 8 L(x) = 1 ( β )] [Pexp N Tr ig A 0 ( x, τ)dτ 0 This leads to nontrivial color electric field which interacts with q and q differently leading to spontaneous CP violation This leads to excitation of quarkonia to excited states which easily melt in QGP, it can also lead to direct transition to unbound states. (2012) 8 A. Atreya, A. M. Srivastava, and A. Sarkar Phys. Rev. D 85,

31 Results p v Figure : Probability p of transition of J/ψ to color octet χ states vs. its velocity v. Note that the probability rapidly rises with v.

32 Summery and Conclusion We have proposed several mechanisms due to which quarkonia can dissociate in QGP even when its temperature T remains less than T D so that conventional mechanism of quarkonia melting is not effective. These new mechanisms are: Time dependent change in potential due to initial rapid thermalization of QGP leading to dissociation of initial quarkonia Nontrivial scattering with Z(3) wall leading to dissociation of quarkonia This dissociation will happen either by direct transition to unbound states, or by transition to excited states which easily melt in QGP due to Debye screening.

33 Thank You!

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 3-78 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8//9 Υ suppression in PbPb collisions at the

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement statistical hadronization model comparison to RHIC data (also SPS) predictions for LHC comments

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Bottomonia physics at RHIC and LHC energies

Bottomonia physics at RHIC and LHC energies Bottomonia physics at RHIC and LHC energies Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg ISMD_2017_Tlaxcala Topics 1. Introduction: ϒ suppression

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Heavy-ion collisions in a fixed target mode at the LHC beams

Heavy-ion collisions in a fixed target mode at the LHC beams Heavy-ion collisions in a fixed target mode at the LHC beams Alexey Kurepin 1, and Nataliya Topilskaya 1, 1 Institute for Nuclear Research, RAS, Moscow, Russia Abstract. The interaction of high-energy

More information

annihilation of charm quarks in the plasma

annihilation of charm quarks in the plasma Quarkonia Production suppression vs enhancement quarkonia suppression ingredients and assumptions quarkonia in the QGP confrontation with data quarkonia enhancement ingredients and assumptions annihilation

More information

J/ suppression in relativistic heavy-ion collisions

J/ suppression in relativistic heavy-ion collisions J/ suppression in relativistic heavy-ion collisions Partha Pratim Bhaduri VECC, Kolkata 61st DAE-BRNS SYMPOSIUM ON NUCLEAR PHYSICS SAHA INSTITUTE OF NUCLEAR PHYSICS Kolkata, India Challenge: find the good

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

arxiv:hep-ph/ v1 26 Sep 1999

arxiv:hep-ph/ v1 26 Sep 1999 The Evolution of Dynamical Screening in the Parton Cascade Model Helmut Satz 1 and Dinesh Kumar Srivastava 1,2 arxiv:hep-ph/9909510v1 26 Sep 1999 1: Fakultät für Physik, Universität Bielefeld, D-33501

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland CMS CR - he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8/5/6 Charmonium production measured in and pp collisions by CMS arxiv:7.5v [nucl-ex]

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Lizardo Valencia Palomo Institut de Physique Nucléaire d Orsay (CNRS-IN2P3, Université Paris-Sud

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

CHARMONIUM WITH AN EFFECTIVE MORSE MOLECULAR POTENTIAL

CHARMONIUM WITH AN EFFECTIVE MORSE MOLECULAR POTENTIAL Modern Physics Letters A c World Scientific Publishing Company CHARMONIUM WITH AN EFFECTIVE MORSE MOLECULAR POTENTIAL MARIO EVERALDO DE SOUZA Universidade Federal de Sergipe, Departamento de Fsica Av.

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

8.882 LHC Physics. Experimental Methods and Measurements. Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009]

8.882 LHC Physics. Experimental Methods and Measurements. Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009] 8.882 LHC Physics Experimental Methods and Measurements Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009] Lecture Outline Onia as Probes in Heavy Ion Physics what are onia? and bit of history

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

Latest results on Quarkonium production in nuclear matter at the LHC

Latest results on Quarkonium production in nuclear matter at the LHC Latest results on Quarkonium production in nuclear matter at the LHC Nicolas Filipovic ELTE Particle Physics Seminar April 27th, 2016 Outline A Quarkonium in the QGP Charmonium results in Run 1 Bottomonium

More information

arxiv:hep-ph/ v1 9 Jul 1997

arxiv:hep-ph/ v1 9 Jul 1997 The p T Distribution of J/ψ in QGP Xiao-Fei Zhang a, Han-Wen Huang b, Xue-Qian Li c,d, and Wei-Qin Chao a,c arxiv:hep-ph/9707288v1 9 Jul 1997 a Institute of High Energy Physics, Academia Sinica, P.O.Box

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3 Color screening in Quark Gluon Plasma (QGP): An experiment to measure c c suppression in PbPb collisions at the CERN SPS CHIC: Charm in Heavy Ion Collisions F. Fleuret 1, F. Arleo 2, E. G. Ferreiro 3,

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

arxiv:hep-ph/ v3 10 Sep 2002

arxiv:hep-ph/ v3 10 Sep 2002 Formation and Collapse of False Vacuum Bubbles in Relativistic Heavy-Ion Collisions Rajarshi Ray, Soma Sanyal, and Ajit M. Srivastava Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India arxiv:hep-ph/0105272v3

More information

STAR heavy-ion highlights

STAR heavy-ion highlights STAR heavy-ion highlights Olga Rusnakova (for the STAR Collaboration) 1,a 1 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, Praha 1 Abstract. Parton

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

J/ψ-Φ interaction and Y(4140) on the lattice QCD

J/ψ-Φ interaction and Y(4140) on the lattice QCD J/ψ-Φ interaction and Y(4140) on the lattice QCD Sho Ozaki (Univ. of Tokyo) in collaboration with Shoichi Sasaki (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo & Riken) Contents Introduction Charmonium(J/ψ)-Φ

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Results on heavy ion collisions at LHCb

Results on heavy ion collisions at LHCb Results on heavy ion collisions at LHCb Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow 28th Rencontres de Blois 29.05-03.06 2016 Outline LHCb - general purpose forward experiment Physics

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda What do we see? 1/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance

More information

ATLAS studies of spectroscopy and B-decays

ATLAS studies of spectroscopy and B-decays ATLAS studies of spectroscopy and B-decays Zdeněk Doležal on behalf of the ATLAS Collaboration Charles University in Prague 53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Outline

More information

Formation Time of Hadronic Resonances

Formation Time of Hadronic Resonances Formation Time of Hadronic Resonances, Theoretical Division, T-, LANL Hadronic resonance production in heavy ion and elementary collisions UT Austin, Austin, TX, 01 Outline of the Talk Motivation Particle

More information

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3 Color screening in Quark Gluon Plasma (QGP): A new experiment to measure charm production in PbPb collisions at the CERN SPS CHIC: Charm in Heavy Ion Collisions F. Fleuret 1, F. Arleo 2, E. G. Ferreiro

More information

Heavy hadron spectroscopy at Belle. Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD Mar.

Heavy hadron spectroscopy at Belle. Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD Mar. Heavy hadron spectroscopy at Belle Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD 2015 2015 Mar. 2 nd 1 Outline Advantage with heavy flavors in hadron spectroscopy

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration Preparations for the ATLAS Heavy Ion Physics Program at the LHC Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration 1 QCD Hadronic phase: Bound states of quark and gluon pp collisions Heavy

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

Charm production in AA collisions

Charm production in AA collisions Charm production in AA collisions François Gelis and CEA/Saclay François Gelis 2008 Initial conditions in Heavy Ion Collisions, Goa, September 2008 - p. 1 François Gelis 2008 Initial conditions in Heavy

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

colliding ultra-relativistic nuclei at the LHC results and perspectives

colliding ultra-relativistic nuclei at the LHC results and perspectives colliding ultra-relativistic nuclei at the LHC results and perspectives and comments on some EIC relevant topics intro selected results from LHC Run1 and LHC Run2 plans and projections until 2030 brief

More information

Interpretation of Positive Parity, J/Ψ- φ Resonances at LHCb

Interpretation of Positive Parity, J/Ψ- φ Resonances at LHCb Interpretation of Positive Parity, J/Ψ- φ Resonances at LHCb Luciano Maiani, Roma University and INFN Roma LHCb Workshop, CERN, Oct. 13, 2016 Jiao Tong University, Shanghai, Nov. 4, 2016 1 1. Old and new

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Joan Soto Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos Universitat de Barcelona Plan Effective

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland CMS CR CMS Quarkonia Measurements he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland /8/6 arxiv:8.577v [hep-ex] 5 Aug Quarkonia Measurements by the

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model Spectra and elliptic flow of charmed hadrons in HYJE++ model ab, I.P. Lokhtin a, A. Belyaev a, G. Ponimatkin c and E. Pronina a a Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University,

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Bottomonium and transport in the QGP

Bottomonium and transport in the QGP Bottomonium and transport in the QGP Gert Aarts (FASTSUM collaboration) Kyoto, December 201 p. 1 Introduction QCD thermodynamics euclidean formulation lattice QCD pressure, entropy, fluctuations,... this

More information

arxiv: v1 [nucl-th] 4 Nov 2018

arxiv: v1 [nucl-th] 4 Nov 2018 arxiv:1811.0139v1 [nucl-th] 4 Nov 018 * Department of physics and astronomy, Wayne State University, Detroit, MI, USA E-mail: kumar.amit@wayne.edu Abhijit Majumder Department of physics and astronomy,

More information

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point Experimental Approach to the QCD Phase Diagram & Search for the Critical Point / LBNL, Berkeley The John Cramer Symposium University of Washington, Seattle, September 10-11, 2009 Outline : QCD phase diagram

More information

Proof of NRQCD Color Octet Factorization of P-Wave Heavy Quarkonium Production In Non-Equilibrium QCD at RHIC and LHC. Abstract

Proof of NRQCD Color Octet Factorization of P-Wave Heavy Quarkonium Production In Non-Equilibrium QCD at RHIC and LHC. Abstract Proof of NRQCD Color Octet Factorization of P-Wave Heavy Quarkonium Production In Non-Equilibrium QCD at RHIC and LHC Gouranga C Nayak, (Dated: August 7, 2018) arxiv:1808.01937v1 [hep-ph] 30 Jul 2018 Abstract

More information

Hard probes to diagnose the QGP at the LHC

Hard probes to diagnose the QGP at the LHC Hard probes to diagnose the QGP at the LHC LHC vis a vis fixed target program and RHIC expectations initial condition diagnozing properties of the QGP with quarkonia jets heavy quarks (from ALICE point

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Olaf Kaczmarek Felix Zantow Universität Bielefeld April 5, 26 Exploration of Hadron Structure and Spectroscopy,

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information