Lattice calculation of static quark correlators at finite temperature

Size: px
Start display at page:

Download "Lattice calculation of static quark correlators at finite temperature"

Transcription

1 Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität München, Garching, 2 University of Iowa, 3 Brookhaven National Lab 33rd International Symposium on Lattice Field Theory, 7/7/25 Kobe

2 Overview & introduction Static quark free energy Onset of thermal effects Screening mass Summary & outlook

3 Introduction Commonly known facts Asymptotic freedom: QCD in thermal medium at short distances vacuum-like with weak coupling Hard thermal loop approximation: QCD in thermal medium for large distances and weak coupling: Debye screening of colour charges For weak coupling: description of heavy quarkonia in NREFTs Transition between vacuum-like and screening regions Quarkonium suppression indicates temperature in heavy-ion collisions Distance of the transition between regions? Q Q free energies are observables sensitive to the regions Determine screening mass in screening region Our lattice setup HISQ 2+ flavours: N τ = 4, 6, 8,, 2, aspect ratio 4 Temperature range 5 MeV T.4 GeV, M π 6 MeV

4 Vacuum-like and screening regime Effective coupling α qq αqq(r, T ) [MeV] T Nt = 6 αqq(r, T ) [MeV] T Nt = r [fm] r [fm] Effective coupling α qq = 3/4r 2 E(r), E(r) = {F r (T, r), V (r)} max α qq.5 for T 3 MeV indicates strongly coupled plasma Regions separated by max α qq: vacuum physics or Debye screening

5 Static Q Q free energy Wilson lines represent static Q, Q: ψ(τ, r) = W (, τ; r)ψ(, r),... Polyakov loop correlator gives exponentiated free energy P c =e (F Q Q F )/T = TrW (/T, ; r) TrW (, /T ; r2) N 2 c P c formally splits into singlet and octet contributions [ Tr W ( T P c =, ; r)w (, ; r2)] [ T Tr W ( +, ; r)t a W (, ; r2)t a] T T Nc 3 T F Nc 2 = exp [ F /T ] + N2 c exp [ F 8/T ] Nc 2 Nc 2

6 Singlet and octet free energies exp [ F /T ] and exp [ F 8/T ] undergo mixing, gauge-dependent For lattice QCD, singlet (octet) free energy from Cyclic Wilson loop - loop closed by spatial Wilson lines (gauge invariant) - path dependence leads to extra divergences 2 Coulomb gauge Wilson line correlator (aka singlet free energy correlator) - no spatial lines required - gauge dependence leaves physical interpretation questionable Both correlators agree with static energy only at leading order

7 Cyclic Wilson loop Cyclic Wilson loop.2 T h = 5 MeV log( L C s )/Nt P W W W 2 W rt Logarithm of ratios over Coulomb gauge Wilson line correlator C s Different iterations of spatial HYP smearing for cyclic Wilson loops W N Singlet fraction in C s and W N decreases for larger rt (cf. P c)

8 Cyclic Wilson loop Perturbative predictions HTL at one loop for rt > F (T, r) = N2 c α sm D N2 c exp ( m D r) α s 2N c 2N c r F 8(T, r) = N2 c α sm D + exp ( m D r) α s 2N c 2N c r F Q Q(T, r) = N2 c α sm D α 2 exp ( 2m D r) 2N c Nc 2 s r 2 T Magnetic mass contributes at even larger distances in EQCD: F Q Q(T, r) 2F Q Q(T, r ) exp ( m A r) exp ( m M r) # + # 2 T r r [ m A < m M despite power counting ma 2m D gt, m M g 2 T ]

9 Single quark free energy Bare single quark free energy F Q FQ T N t β 8.5 Quark free energy from Polyakov loop: F bare Q /T = N τ log Tr W (, T )

10 Single quark free energy Single quark free energy F Q FQ ren [MeV] Std. ren. τ = 8 τ = 6 N ref N ref T [MeV] Combine three renormalisation schemes & extend F Q to T 7 MeV

11 Single quark free energy Single quark free energy F Q Squares Bazavov et al. Circles Borsanyi et al. Diamonds our data Combine three renormalisation schemes & extend F Q to T 7 MeV Bazavov and Petreczky, Phys. Rev. D 87 (23) 9 : consistent

12 Single quark free energy Single quark free energy F Q 8 6 2FQ ren T log 9 [MeV] Bands Borsanyi et al. Points our data T [MeV] 35 4 Combine three renormalisation schemes & extend F Q to T 7 MeV Bazavov and Petreczky, Phys. Rev. D 87 (23) 9 : consistent Borsanyi et al., JHEP 54 (25) 38 : for T = 2 MeV set to zero

13 Single quark free energy Single quark free energy F Q with gradient flow 6 FQ ren [MeV] Our res T [MeV] 4 F Q w. gradient flow (finite N τ ) from H.-P. Schadler (Wed. 5th, 7:5) Constant flow time in physical units, same for all temperatures

14 Quark-Antiquark free energy Quark-Antiquark free energy F Q Q.6.3 F Q Q T log(9) [GeV] T [MeV] r [fm].7 Short distance & low temperature: reproduce static energy (T = )

15 Quark-Antiquark free energy Quark-Antiquark free energy F Q Q.4.2 F Q Q T log(9) [GeV] Bands Borsanyi et al. Points our data r [fm].8 Short distance & low temperature: reproduce static energy (T = ) Borsanyi et al., JHEP 54 (25) 38 : for T = 2 MeV set to zero

16 Singlet free energy Singlet free energy F F [GeV] T [MeV] r [fm] Reproduce static energy (T = ): larger distances & higher T

17 Singlet free energy Singlet free energy F F [GeV] T [MeV] r [fm] Reproduce static energy (T = ): larger distances & higher T Kaczmarek, PoS CPOD 7 (27) 43, N τ = 4, 6, M π 22MeV Our N τ = 6 and continuum results are higher: chiral or cutoff effects?

18 Lattice calculation Onset of thermal effects: V (r) F (T, r) 8 V(r) F(T, r) [MeV] N t = 4 N t = 6 N t = 8 N t = N t = 2 T=399 T=49 T=4 T=47 C.L r [fm].2.3 Static (T = ) and singlet free energies: v(t, r) = V (r) F (T, r) Large cutoff effects, minimum visible only for N τ Continuum extrapolation with only N τ = 8,, 2

19 Lattice calculation Onset of thermal effects: V (r) F (T, r) 5 V(r) F(T, r) [MeV] r [fm].2.3 Static (T = ) and singlet free energies: v(t, r) = V (r) F (T, r) T independent falling slope at rt.5, minimum at rt.25

20 Lattice calculation Onset of thermal effects: V (r) F (T, r) V(r) F(T, r) [MeV] T=47 T=488 T=6 T=84 T= rt.6.8 Static (T = ) and singlet free energies: v(t, r) = V (r) F (T, r) Estimate cutoff effects as -2 MeV from data at T 4 MeV For rt.3 almost constant, for rt >.3 rapid rise

21 Screening mass Screening mass At large distance & weak coupling F (T, ) = F Q Q(T, ) = 2F Q (T ) Subtract asymptotic constant to define screening functions S (T, rt ) = rt F(T, r) 2F Q(T ) T S avg(t, rt ) = (rt ) 2 F Q Q(T, r) 2F Q (T ) T HTL N2 c α s exp ( m D r), 2N c HTL N 2 c α 2 s exp ( 2m D r) Theoretically ideal: extract m D from F Q Q, but data is too noisy Singlet free energy: extra rt dependendence due to Z ren Cyclic Wilson loop extra linear divergence due to self-energy 2 Coulomb gauge correlator: gauge dependence, but cleanest probe

22 Screening mass Screening mass: extraction T 333 MeV N t log S rt rt 2 rt, weak coupling: log S (T, r) = A M T rt HTL log (C F α s) m D T rt

23 Screening mass Screening mass: extraction M T M T rt plateau data derivative candidates T = 334 MeV rt -2-3 rt, weak coupling: log S (T, r) = A M HTL rt log (C T F α s) m D T rt Estimate systematical uncertainty with derivative ( M )/ (rt ) T

24 Screening mass Screening mass: extraction M T full errors T [MeV] Largest rt before signal loss, increase errors w. systematic effects Jackknife estimate of extraction method dependence w. 8 4 methods

25 Screening mass Screening mass: comparison with other lattice results M T PoS CPOD 7 N τ = 6 m D /T T [MeV] 8 Kaczmarek, PoS CPOD 7 (27) 43: lower due to heavier M π Borsanyi et al., JHEP 54 (25) 38: magnetic mass m M (T )

26 Summary Extend numerical results for static quark free energy to T 7 MeV and Q Q free energy to T 6 MeV Study the onset of screening with new observable V (r) F (T, r), field-theoretically cleaner than α qq(t, r) Extract screening mass in screening region Outlook Comparison of V (r) F (T, r) with weak coupling (pnrqcd) Need finer zero temperature lattices [a.25,.3,.35 fm] Extract spectral function from static correlators, extract imaginary part of potentialwith 3 dynamical flavours

27 Cyclic Wilson loop.5 T h = 5 MeV log( L C s )/Nt exp [+3rT ] P W W W 2 W rt Boost w. factor exp (3rT ), log P c/c s w. error reduced by factor /2 Small rt : negative values indicate larger octet fraction than C s (cf. P c) Unsmeared Wilson loop on top of Polyakov loop correlator for rt

28 Scale r and renormalisation constant 8 r 4 via r via r polynomial spline β Use T = data from Bazavov et al., Phys. Rev. D 9 (24) 9 Scale setting with r (r ) for fine (coarse) lattices

29 Scale r and renormalisation constant Zren via r via r polynomial spline β Use T = data from Bazavov et al., Phys. Rev. D 9 (24) 9 Scale setting with r (r ) for fine (coarse) lattices Renormalisation constant Z ren (β) from T = static energy

30 Renormalisation schemes for F Q FQ ren [MeV] N t, Z ren 2, std. ren., std. ren. 8, std. ren. 6, std. ren. 2, Nτ ref = 8, Nτ ref = 8 8, Nτ ref = 8 6, Nτ ref = T [MeV] Old (standard) scheme: use Z ren (β) (rescaled with N τ ) for each N τ

31 Renormalisation schemes for F Q FQ ren [MeV] N t, Z ren 2, std. ren., std. ren. 8, std. ren. 6, std. ren. 2, Nτ ref = 8, Nτ ref = 8 8, Nτ ref = 8 6, Nτ ref = T [MeV] Old (standard) scheme: use Z ren (β) (rescaled with N τ ) for each N τ New scheme: avoid extrapolated Z ren (β) assuming small cutoff effects: Z ren (T, N τ ) = Z ren (T, Nτ ref ) + 2 ( FQ bare (T, N τ ) FQ bare (T, Nτ ref ) )

32 Screening functions S(rT, T) T=49 MeV Interpolation S(rT, T) T=4 MeV Interpolation rt rt Savg(rT, T).2 Savg(rT, T) T=49 MeV Interpolation rt T=4 MeV Interpolation rt.6.7.8

33 rt dependence of screening mass rt m/t T [ MeV ]

34 Screening mass: comparison with weak coupling calculations M T A =.85, µ = 2.4πT A =.85, µ = 2.πT.85.6πT A =.85, µ =.3πT A =.85, µ =.πt A =.5, µ = πt full errors T [MeV] Braaten and Nieto, Phys. Rev. D 53 (996) 342: electric screening mass ( mel 2 = 4πα st 2 Nc 3 + N ) f + O(αs 2 ) 6 Plot A m 2 el [T, µ, g(µ)]/t w. m el at one or two-loop, α s(µ) at two-loop 8

35 Short distance cutoff effects Data with equal temperature and neighbouring N τ at short distance Estimate systematic uncertainties by studying rt -dependence of cutoff effect Compute difference of correlators C S C L and subtract interval average Absolute maximum of remainder is considered as systematical uncertainty and applied to all distances up to largest rt of interval Quadratically added to statistical errors Significant only for V (r) F (T, r)

36 Cutoff effects in V (r) F (T, r) δ[v (r) F (T, r)]/t T = 45 MeV N t =, N t = δ(v S ) δ(v L ) (v S v L ) v S v L (v S v L ) max (v S v L ).75.2 rt.225

37 Cutoff effects in S (T, rt ).8.6 δs (T, r) T = 45 MeV N t =, N t = δ(s S ) δ(s L ) (S S S L ) S S S L (S S S L ) max (S S S L ).75.2 rt.225

38 Cutoff effects in S avg (T, rt ).8.6 δs avg (T, r) T = 45 MeV N t =, N t = δ(s S ) δ(s L ) (S S S L ) S S S L (S S S L ) max (S S S L ).75.2 rt.225

39 Scaling behaviour: V (r) F (T, r) (V F) [MeV] T = 3 MeV (V F) [MeV] T = 33 MeV χ 2 =.536 χ 2 =.25 χ 2 =.39 χ 2 =.56 rt =.3 rt =.25 rt =.2 rt =.5-4 χ 2 =.74 χ 2 =.25 χ 2 =.54 χ 2 =.6 rt =.3 rt =.25 rt =.2 rt = (V F) [MeV] T = 35 MeV (V F) [MeV] T = 4 MeV χ 2 =.88 χ 2 =.52 χ 2 =.99 χ 2 =.2 rt =.3 rt =.25 rt =.2 rt =.5-4 χ 2 =.962 χ 2 =.9 χ 2 =.58 χ 2 =.62 rt =.3 rt =.25 rt =.2 rt =

40 Scaling behaviour: S (T, rt ) 8 S [MeV] T = 3 MeV 8 S [MeV] T = 35 MeV χ 2 =.3 χ 2 =.52 χ 2 =.424 χ 2 =.39 χ 2 =.7 χ 2 =.22 χ 2 =.86 χ 2 =.9 rt =.5 rt =.2 rt =.25 rt =.3 rt =.4 rt =.5 rt =.6 rt =.7 Nt χ 2 =.56 χ 2 =.39 χ 2 =.25 χ 2 =.536 χ 2 =.56 χ 2 =.39 χ 2 =.25 χ 2 =.536 rt =.5 rt =.2 rt =.25 rt =.3 rt =.4 rt =.5 rt =.6 rt =.7 Nt S [MeV] T = 4 MeV 8 S [MeV] T = 5 MeV χ 2 =.38 χ 2 =.2 χ 2 =.67 χ 2 =.29 χ 2 =. χ 2 =.53 χ 2 =.84 χ 2 =.33 rt =.5 rt =.2 rt =.25 rt =.3 rt =.4 rt =.5 rt =.6 rt =.7 Nt χ 2 =.6 χ 2 =.67 χ 2 =.69 χ 2 =.8 χ 2 =.34 χ 2 =.6 χ 2 =.64 χ 2 =.9 rt =.5 rt =.2 rt =.25 rt =.3 rt =.4 rt =.5 rt =.6 rt =.7 Nt 2 4 2

41 Scaling behaviour: S avg (T, rt ) 8 8 Savg [MeV] T = 3 MeV Savg [MeV] T = 35 MeV χ 2 =.53 χ 2 =.47 χ 2 =.59 χ 2 =.246 χ 2 =.4 rt =.5 rt =.2 rt =.25 rt =.3 rt = χ 2 =.9 χ 2 =.32 χ 2 =.29 χ 2 =.85 χ 2 =.25 rt =.5 rt =.2 rt =.25 rt =.3 rt = N 2 t N 2 t Savg [MeV] T = 4 MeV Savg [MeV] T = 5 MeV χ 2 =.5 χ 2 =.23 χ 2 =.97 χ 2 =.29 χ 2 =. rt =.5 rt =.2 rt =.25 rt =.3 rt = χ 2 =.26 χ 2 =. χ 2 =.8 χ 2 =.2 χ 2 =.8 rt=.5 rt=.2 rt=.25 rt=.3 rt= N 2 t N 2 t

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Lattice calculation of the Polyakov loop and Polyakov loop correlators

Lattice calculation of the Polyakov loop and Polyakov loop correlators Lattice calculation of the Polyakov loop and Polyakov loop correlators Johannes Heinrich Weber 1,a (on behalf of TUMQCD collaboration) 1 Technische Universität München, Physik Department Tf, James-Franck-Str.

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma Miguel A. Escobedo Physik-Department T30f. Technische Universität München 19th of September

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

arxiv: v1 [hep-ph] 5 Aug 2018

arxiv: v1 [hep-ph] 5 Aug 2018 KYUSHU HET 186, KEK CP 367, TU-1069 Determination of α s from static QCD potential with renormalon subtraction H. Takaura a, T. Kaneko b, Y. Kiyo c and Y. Sumino d a Department of Physics, Kyushu University,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Pushing dimensional reduction of QCD to lower temperatures

Pushing dimensional reduction of QCD to lower temperatures Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100,

More information

Thermal dilepton production from hot QCD

Thermal dilepton production from hot QCD Institute for Theoretical Physics, AEC, University of Bern, Sidlerstrasse 5, 301 Bern, Switzerland E-mail: laine@itp.unibe.ch NLO and LPM-resummed computations of thermal dilepton production from a hot

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Spatial string tension revisited

Spatial string tension revisited Spatial string tension revisited (dimensional reduction at work) York Schröder work together with: M. Laine 1 Motivation RHIC QCD at T > (a few) 100 MeV asymptotic freedom weak coupling expansion slow

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Quarkonium dissociation in perturbative QCD Juhee Hong and Su Houng Lee Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 37, Korea (Dated: November, 18) arxiv:1811.767v1

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

arxiv: v1 [nucl-th] 4 Nov 2018

arxiv: v1 [nucl-th] 4 Nov 2018 arxiv:1811.0139v1 [nucl-th] 4 Nov 018 * Department of physics and astronomy, Wayne State University, Detroit, MI, USA E-mail: kumar.amit@wayne.edu Abhijit Majumder Department of physics and astronomy,

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Nonperturbative QCD thermodynamics in the external magnetic field

Nonperturbative QCD thermodynamics in the external magnetic field arxiv:72.02925v3 [hep-ph] 20 Dec 207 Nonperturbative QCD thermodynamics in the external magnetic field M.A.Andreichikov and Yu.A.Simonov State Research Center Institute of Theoretical and Experimental

More information

News on Hadrons in a Hot Medium

News on Hadrons in a Hot Medium News on Hadrons in a Hot Medium Mikko Laine (University of Bielefeld, Germany) 1 How to interpret the title? Hot Medium : 50 MeV T 1000 MeV; µ πt. Hadrons : In this talk only those which maintain their

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

QCD Equation of state in perturbation theory (and beyond... )

QCD Equation of state in perturbation theory (and beyond... ) QCD Equation of state in perturbation theory (and beyond... ) Kari Rummukainen CERN Theory & University of Oulu, Finland Physics of high baryon density K. Rummukainen (Oulu & CERN) EoS in pqcd Trento 06

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Quark Number Susceptibilities & The Wróblewski Parameter

Quark Number Susceptibilities & The Wróblewski Parameter Quark Number Susceptibilities & The Wróblewski Parameter Rajiv V. Gavai T. I. F. R., Mumbai, India In collaboration with Sourendu Gupta, TIFR, Mumbai Hard Probes 2004, Ericeira, Portugal, November 9, 2004

More information

Effective Field Theories for Quarkonium

Effective Field Theories for Quarkonium Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universität München Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 23 Nov 2018 B c spectroscopy using highly improved staggered quarks arxiv:1811.09448v1 [hep-lat] 23 Nov 2018 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy E-mail: andrew.lytle@roma2.infn.it

More information

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

Determination of Λ MS from the static QQ potential in momentum space

Determination of Λ MS from the static QQ potential in momentum space Determination of Λ MS from the static QQ potential in momentum space Antje Peters Goethe Universität Frankfurt January 16, 2014 Overview 1 Introductory notes and motivation 2 My investigations 3 Preliminary

More information

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof.

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof. 2nd Hadron Spanish Network Days Universidad Complutense de Madrid (Spain) September 8-9, 20016 Rubén Oncala In collaboration with Prof. Joan Soto Heavy Quarkonium is a heavy quark-antiquark pair in a colour

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

arxiv: v1 [hep-lat] 5 Nov 2013

arxiv: v1 [hep-lat] 5 Nov 2013 Heavy quarkonium potential from Bethe-Salpeter wave function on the lattice Taichi Kawanai 1,2 and Shoichi Sasaki 1,3 1 Theoretical Research Division, Nishina Center, RIKEN, Wako 351-198, Japan 2 Department

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

arxiv: v1 [hep-lat] 15 Nov 2013

arxiv: v1 [hep-lat] 15 Nov 2013 Investigation of the U A (1) in high temperature QCD on the lattice arxiv:1311.3943v1 [hep-lat] 1 Nov 213 Fakultät für Physik, Universität Bielefeld, D 3361, Germany E-mail: sayantan@physik.uni-bielefeld.de

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Miguel A. Escobedo 1,2,a 1 Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191, Gif-sur-Yvette,

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Thermal transition temperature from twisted mass QCD

Thermal transition temperature from twisted mass QCD Thermal transition temperature from twisted mass QCD tmft collaboration: Florian Burger, Malik Kirchner, Michael Müller-Preussker Humboldt-Universität zu Berlin, Institut für Physik, 12489 Berlin, Germany

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information