Heavy quark bindings at high temperature

Size: px
Start display at page:

Download "Heavy quark bindings at high temperature"

Transcription

1 Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25

2 Machines for lattice QCD - used by RBC-Bielefeld apenext QCDOC APEmille Installation in Bielefeld 1999/ Gflops APEmille (2 crates) 25/26 5 Tflops apenext (6 racks) apenext workshop, Firenze, February 9, 27 p.2/25

3 Motivation - Heavy quark bound states above deconfinement Quarkonium suppression as a probe for thermal properties of hot and dense matter [Matsui and Satz] - heavy quark potential gets screened - screening radius related to parton density r D 1 g n/t - at high T screening radius smaller than size of a quarkonium state Typical length scales of heavy quark bound states: 1/Λ QCD 1 fm - screening has to be strong enough to modify short distance behaviour - detailed analysis of heavy quark potentials - temperature and r dependence - screening properties above deconfinement - What is the correct effective potential at finite temperature? F 1 (r,t) = U 1 (r,t) T S 1 (r,t) apenext workshop, Firenze, February 9, 27 p.3/25

4 Heavy quark bound states above deconfinement Strong interactions in the deconfined phase T> T c Possibility of heavy quark bound states? Charmonium (χ c,j/ψ) as thermometer above T c Suppression patterns of charmonium/bottomonium = Potential models heavy quark potential (T =) V 1 (r) = 4 3 α(r) r + σ r heavy quark free energies (T > T c ) F 1 (r,t) 4 3 α(r,t) r e m(t)r heavy quark internal energies (T ) F 1 (r,t) = U 1 (r,t) T S 1 (r,t) = Charmonium correlation functions/spectral functions apenext workshop, Firenze, February 9, 27 p.4/25

5 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (1981) Z Q Q Z (T) 1 Z (T) Z D A... L(x) L (y) exp ( Z 1/T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q = 1, 8, av Lattice data used in our analysis: N f = : ,8,16-lattices ( Symanzik ) HB-OR O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow (22, 24) N f = 2: lattices ( Symanzik, p4-stagg. ) hybrid-r m π /m ρ.7 (m/t =.4) O. Kaczmarek, F. Zantow (25), O. Kaczmarek et al. (23) N f = 3: lattices ( stagg., Asqtad ) hybrid-r m π /m ρ.4 P. Petreczky, K. Petrov (24) N f = 2+1: lattices ( Symanzik, p4fat3 ) RHMC m π 22 MeV, phys. m s OK, RBC-Bielefeld preliminary apenext workshop, Firenze, February 9, 27 p.5/25

6 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (1981) Z Q Q Z (T) 1 Z (T) Z D A... L(x) L (y) exp ( Z 1/T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q = 1, 8, av a 1/3 V =N σ a ln 1/T =N τ a O. Philipsen (22) O. Jahn, O. Philipsen (24) ( ln TrL(x) TrL ) (y) ( ln TrL(x)L ) (y) ( 9 8 TrL(x) TrL (y) 1 8 TrL(x)L (y) GF GF ) = F qq(r,t) T = F 1(r,T) T = F 8(r,T) T apenext workshop, Firenze, February 9, 27 p.5/25

7 Heavy quark free energy F 1 [MeV] (a) r [fm].81t c.9t c.96t c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c 4.1T c Renormalization of F(r, T) by matching with T = potential e F 1(r,T)/T = ( Z r (g 2 ) ) 2N τ Tr (L x L y) apenext workshop, Firenze, February 9, 27 p.6/25

8 Heavy quark free energy F 1 [MeV] (a) r [fm].81t c.9t c.96t c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c 4.1T c F 1 [MeV] Renormalization of F(r, T) by matching with T = potential e F 1(r,T)/T = ( Z r (g 2 ) ) 2N τ Tr (L x L y) T -independent r 1/ σ F(r,T) g 2 (r)/r -2 r [fm] apenext workshop, Firenze, February 9, 27 p.6/25

9 Heavy quark free energy 1 F 1 [MeV] (a) String breaking T < T c F(r σ 1,T) < 5-5 r [fm].81t c.9t c.96t c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c 4.1T c F [MeV] N f = N f =2 N f =3 T -independent r 1/ σ F(r,T) g 2 (r)/r T/T c 4 apenext workshop, Firenze, February 9, 27 p.6/25

10 Heavy quark free energy 1 F 1 [MeV] (a) String breaking T < T c F(r σ 1,T) < 5-5 r [fm].81t c.9t c.96t c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c 4.1T c high-t physics rt 1 ; screening µ(t) g(t)t F(,T) T F [MeV] N f = N f =2 N f =3 T -independent r 1/ σ F(r,T) g 2 (r)/r T/T c 4 apenext workshop, Firenze, February 9, 27 p.6/25

11 Heavy quark free energy 1 F 1 [MeV] (a) String breaking T < T c F(r σ 1,T) < 5-5 N f = 2 r [fm].81t c.9t c.96t c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T 1 c 4.1T c F(r,T) [MeV] high-t physics rt 1 ; screening µ(t) g(t)t F(,T) T T -independent r 1/ σ F(r,T) g 2 (r)/r -5-1 N f = 2+1 T/T c r [fm] apenext workshop, Firenze, February 9, 27 p.6/25

12 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c F 1 (r,t) V(r) 4 α(r) 3 r F 1 (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD 1 for rt 1 QCD running coupling in the qq-scheme.1.5 r [fm] 1 non-perturbative confining part for r>.4 fm α qq (r,t) = 3 4 r2 df 1(r,T) dr α qq (r) 3/4r 2 σ present below and just above T c remnants of confinement at T> T c temperature effects set in at smaller r with increasing T maximum due to screening = At which distance do T -effects set in? = definition of the screening radius/mass = definition of the T -dependent coupling apenext workshop, Firenze, February 9, 27 p.7/25

13 Temperature depending running coupling ~ define α qq (T) by maximum of α qq (r,t): α qq (T) 2-flavor QCD ւ quenched α qq (T) α qq (r max,t) perturbative behaviour at high T : ( ) µt g 2 2-loop (T) = 2β ln + β ( ( )) 1 µt ln 2ln, Λ MS β Λ MS T/T c 2.5 Using T c /Λ MS =.77(21) we find µ= 1.14(2)π non-perturbative large values near T c not a large Coulombic coupling remnants of confinement at T> T c string breaking and screening difficult to separate = At which distance do T -effects set in? = calculation of the screening mass/radius slope at high T well described by perturbation theory apenext workshop, Firenze, February 9, 27 p.8/25

14 Screening mass - perturbative vs. non-perturbative effects m D /T N f = N f =2 Screening masses obtained from fits to: F 1 (r,t) F 1 (r =,T) = 4α(T) e m D(T)r 3r at large distances rt > 1 leading order perturbation theory: 1 T/T c m D (T) T ( = A 1+ N f 6 ) 1/2 g(t) apenext workshop, Firenze, February 9, 27 p.9/25

15 Screening mass - perturbative vs. non-perturbative effects m D /T A Nf =2+1 = 1.89(2) A Nf =2 = 1.42(2) A Nf = = 1.52(2) N f = N f =2 N f =2+1 T/T c Screening masses obtained from fits to: F 1 (r,t) F 1 (r =,T) = 4α(T) e m D(T)r 3r at large distances rt > 1 leading order perturbation theory: m D (T) T ( = A 1+ N f 6 ) 1/2 g(t) perturbative limit reached very slowly T depencence qualitatively described by perturbation theory 3 m D /T A Nf = = 1.39(2) But A = non-perturbative effects 2 A 1 in the (very) high temperature limit Difference between N f =,2 disappears when converting to physical units T/T c apenext workshop, Firenze, February 9, 27 p.9/25

16 Screening mass - density dependence [M.Döring et al.] leading order perturbation theory: m D (T,µ q ) = g(t) 1+ N f T 6 + N ( f µq 2π 2 T ) 2 Taylor expansion: m D (T) = m (T)+m 2 (T) ( µq T ) 2 +O (µ 4 q ) m 1 /T 2 m 1 2 /T 1/2 m av 2 /T T/T c T/T c m 2 (T) agrees with perturbation theory for T> 1.5T c non-perturbative effects dominated by gluonic sector apenext workshop, Firenze, February 9, 27 p.1/25

17 Heavy quark bound states above T c? 1.5 r [fm] r med bound states above deconfinement? first estimate: 1 ψ mean charge radii of charmonium states compared to screening radius χ c.5 J/ψ thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement T/T c 4 r med : V(r med ) F 1 (r,t) 1 r D [fm] <r> r med r entropy 2/m D (a) r (b) 2r cloud (c).1.1 T/T c apenext workshop, Firenze, February 9, 27 p.11/25

18 Heavy quark bound states above T c? 1.5 r [fm] r med bound states above deconfinement? first estimate: 1.5 ψ χ c J/ψ mean charge radii of charmonium states compared to screening radius thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement T/T c 4 Better estimates: Better estimates: effective potentials in Schrödinger Equation Potential models, effective potential V e f f (r,t) But: Free energies vs. internal energies F(r,T) = U(r,T) TS(r,T) direct calculation using correlation functions Maximum entropy method spectral function apenext workshop, Firenze, February 9, 27 p.11/25

19 Free energy vs. Entropy at large separations 15 F [MeV] N f = N f =2 N f =3 Free energies not only determined by potential energy 1 F = U T S 5 Entropy contributions play a role at finite T S = F T T/T c 4 apenext workshop, Firenze, February 9, 27 p.12/25

20 Free energy vs. Entropy at large separations 4 U [MeV] High temperatures: U = T 2 F /T T F (T) 4 3 m D(T)α(T) O (g 3 T) TS (T) 4 3 m D(T)α(T) U (T) 4m D (T)α(T) β(g) g O (g 5 T) (a) T/T c 4 r (b) (c) 2r cloud 4 3 TS [MeV] N f = N f =2 N f =3 The large distance behavior of the finite temperature energies is rather related to screening than to t he temperature dependence of masses of corresponding heavylight mesons! 2 1 S = F T T/T c apenext workshop, Firenze, February 9, 27 p.12/25

21 r-dependence of internal energies TS 1 [MeV] 1 (b) 5 F 1 (r,t) = U 1 (r,t) TS 1 (r,t) S 1 (r,t) = F 1(r,T) T U 1 (r,t) = T 2 F 1(r,T)/T T Entropy contributions vanish in the limit r F 1 (r 1,T) = U 1 (r 1,T) V 1 (r) r [fm] important at intermediate/large distances apenext workshop, Firenze, February 9, 27 p.13/25

22 r-dependence of internal energies U 1 [MeV] r [fm].88t c.93t c.98t c U 1 [MeV] 15 F 1 (r,t) = U 1 (r,t) TS 1 (r,t) S 1 (r,t) = F 1(r,T) T U 1 (r,t) = T 2 F 1(r,T)/T T Entropy contributions vanish in the limit r F 1 (r 1,T) = U 1 (r 1,T) V 1 (r) important at intermediate/large distances 1 = Implications on heavy quark bound states? 5 r [fm] 1.9T c 1.13T c 1.19T c 1.29T c 1.43T c 1.57T c 1.89T c = What is the correct V e f f (r,t)? apenext workshop, Firenze, February 9, 27 p.13/25

23 Heavy quark bound states 1 V eff (r,t) [MeV] V( ) E J/ψ (T=) r [fm] steeper slope of V e f f (r,t) = U 1 (r,t) = J/ψ stronger bound using V e f f = U 1 (r,t) = dissociation at higher temperatures compared to V e f f (r,t) = F 1 (r,t) apenext workshop, Firenze, February 9, 27 p.14/25

24 Estimates on bound states from Schrödinger equation Schrödinger equation for heavy quarks: [ 2m f + 1 ] 2 +V e f f (r,t) Φ f i = E f i m (T)Φ f i f, f = charm, bottom T -dependent color singlet heavy quark potential mimics in-medium modifications of q q interaction reduction to 2-particle interaction clearly too simple, in particular close to T c recent analysis: using V e f f = F 1 : S.Digal, P.Petreczky, H.Satz, Phys. Lett. B514 (21)57 using V e f f = V 1 : C.-Y. Wong, hep-ph/482 using V e f f = V 1 : W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, hep-ph/5784 state J/ψ χ c ψ ϒ χ b ϒ χ b ϒ E i s[gev] T d /T c T d /T c T d /T c apenext workshop, Firenze, February 9, 27 p.15/25

25 Colored bound states - Diquarks [M. Döring, K. Hübner, OK, FK, 27] Coloured bound states speculated just above T c (SQGP) [E.V. Shuryak,I. Zahed (24/5)] - Is the interaction strong enough to support diquarks? - Potential models for coloured bound states - Diquark free and internal energies Colour antitriplet (anti-symmetric) or color sextet (symmetric) state: 3 3 = 3 6. Cqq(R,T) 3 = 3 2 Tr L()Tr L(R) 1 Tr L()L(R) 2 Cqq(R,T) 6 = 3 4 Tr L()Tr L(R) + 1 Tr L()L(R) 4 F 3,6 qq (R,T) = T lnc 3,6 qq (R,T) apenext workshop, Firenze, February 9, 27 p.16/25

26 Diquark free energies - qq vs. q q in the deconfined phase perturbative relation between diquark and quark-antiquark free energies F 1 Q Q (r,t)/σ1/2 2(F 3 QQ (r,t)-f Q (T))/σ 1/2 rσ 1/2 T/T c F 3 qq(r,t) 1 2 F1 q q(r,t) good approximation above T c. apenext workshop, Firenze, February 9, 27 p.17/25

27 Diquark free energies - qq vs. q q in the deconfined phase perturbative relation between diquark and quark-antiquark free energies F 1 Q Q (r,t)/σ1/2 2(F 3 QQ (r,t)-f Q (T))/σ 1/2 rσ 1/2 T/T c F 3 qq(r,t) 1 2 F1 q q(r,t) good approximation above T c. 2 temperature dependence for all separations F av Q Q (r,t)/σ1/2 F av QQ (r,t)/σ1/2 rσ 1/2 T/T c = entropy contributions play a role for all r. same asymptotic value for qq and q q = quarks in both systems are screened independently by the medium apenext workshop, Firenze, February 9, 27 p.17/25

28 Diquark free energies - qq vs. q q in the deconfined phase perturbative relation between diquark and quark-antiquark free energies F 1 Q Q (r,t)/σ1/2 2(F 3 QQ (r,t)-f Q (T))/σ 1/2 rσ 1/2 T/T c F 3 qq(r,t) 1 2 F1 q q(r,t) good approximation above T c. Dissociation temperatures for heavy q q and qq bound states: state cc (J/ψ) cc bb (ϒ) bb Es i [GeV] T dis /T c apenext workshop, Firenze, February 9, 27 p.17/25

29 Diquark free energies - Screening and string breaking.5 N QQ T/T c =.87 T/T c =.9 T/T c =.96 Net quark number induced by a qq-pair: N (c) QQ (r,t) = N q L (c) QQ N q = QQ (r,t), L (c) QQ (r,t) rt N QQ T/T c = 1.2 T/T c = 1.2 T/T c = 1.7 T/T c = 1.16 T/T c = 1.5 where N q is the quark number operator, N q = 1 ( ) ] D( ˆm,µ) [D 2 Tr 1 ( ˆm,). µ µ= Net quark number induced by a single static quark source, N Q (T) = N q Tr P( ) N q Q =. Tr P( ) rt apenext workshop, Firenze, February 9, 27 p.18/25

30 Diquark free energies - Screening and string breaking.5 N QQ T/T c =.87 T/T c =.9 T/T c =.96 Net quark number induced by a qq-pair: N (c) QQ (r,t) = N q L (c) QQ N q = QQ (r,t), L (c) QQ (r,t) rt N QQ (r ).8 N Q N - 3 QQ (r ) T/T c where N q is the quark number operator, N q = 1 ( ) ] D( ˆm,µ) [D 2 Tr 1 ( ˆm,). µ µ= Net quark number induced by a single static quark source, N Q (T) = N q Tr P( ) N q Q =. Tr P( ) Diquark is neutralized by quarks or antiquarks from the vacuum to be color neutral overall lim N QQ(r,T) = T 1, r < r c, 2, r > r c apenext workshop, Firenze, February 9, 27 p.18/25

31 Renormalized Polyakov loop Using short distance behaviour of free energies Renormalization of F(r, T) at short distances e F1(r,T)/T = ( Z r (g 2 ) ) 2N τ Tr (L x L y) Renormalization of the Polyakov loop 1 F 1 [MeV].76T c.81t c 5.9T c.96t c 1.T c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c r [fm] 4.1T c L ren = ( Z R (g 2 ) ) N t L lattice 15 1 F [MeV] N f = N f =2 N f =3 L ren defined by long distance behaviour of F(r,T) ( L ren = exp ) F(r =,T) 2T T/T c 4 apenext workshop, Firenze, February 9, 27 p.19/25

32 Renormalized Polyakov loop F 1 [MeV] 1.5 L ren 2F-QCD: N τ =4 SU(3): N τ =4 N τ =8 1.76T c.81t c 5.9T c.96t c 1.T c 1.2T c 1.7T c 1.23T c 1.5T c 1.98T c r [fm] 4.1T c F [MeV] N f = N f =2 N f =3 T/T c ( L ren = exp ) F(r =,T) 2T T/T c 4 apenext workshop, Firenze, February 9, 27 p.19/25

33 Renormalized Polyakov loop 1.5 L ren 1.5 N τ =4 N τ =8 High temperature limit, L ren = 1, reached from above as expected from PT Clearly non-perturbative effects below 5T c Renormalized T/T c Polyakov loop well defined 25 in quenched and full QCD - non-zero for finite quark mass - strong increase near T c ( L ren = exp ) F(r =,T) 2T apenext workshop, Firenze, February 9, 27 p.19/25

34 Renormalization constants Renormalization constants obtained from heavy quark free energies 1.4 Z R (g 2 ) g 2 4 =6/β The renormalization constants depend on the bare coupling, i.e. Z R (g 2 ) N τ ( ) Z R (g 2 ) exp g 2 (N 2 1)/NQ (2) + g 4 Q (4) +O (g 6 ) with Q (2) =.597(13) consistent with lattice perturbation theory (Heller + Karsch, 1985) apenext workshop, Firenze, February 9, 27 p.2/25

35 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L R D (T) L D (g 2,N τ ) g fixed N τ,1 N τ,2 T 1 T start apenext workshop, Firenze, February 9, 27 p.21/25

36 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L R D (T) g fixed 1.2 L D (g 2,N τ ) N τ,1 1. N τ,2.8.6 L 3 R N τ =4 N τ =6 N τ =8.4.2 T 1 T start. T/T c apenext workshop, Firenze, February 9, 27 p.21/25

37 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L ren direct renormalization plc renormalization Z R (g 2 ) direct renormalization plc renormalization.2 T/T c Both renormalization procedures are equivalent g 2 solely based on gauge-invariant quantities apenext workshop, Firenze, February 9, 27 p.21/25

38 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] use character property of direct product rep: χ p q (g) = χ p (g)χ q (g) Z(3) symmetry: L D e itφ L D triality (Z(3) charge): t p q mod 3 adjoint link variable [ U D=8] i j := 1 2 Tr [ U D=3 λ i (U D=3 ) λ j ] D (p,q) t C 2 (r) d D = C D /C F L D (x) 3 (1,) 1 4/3 1 L 3 6 (2,) 2 1/3 5/2 L3 2 L 3 8 (1,1) 3 9/4 L (3,) 6 9/2 L 3 L 6 L 8 15 (2,1) 1 16/3 4 L3 L 6 L 3 15 (4,) 1 28/3 7 L 3 L 1 L (3,1) 2 25/3 25/4 L3 L 1 L 6 27 (2,2) 8 6 L 6 2 L 8 1 apenext workshop, Firenze, February 9, 27 p.22/25

39 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] perturbation theory: F D (r,t) = C D α s (r) r for rλ QCD 1 renormalization of free energies: e F1 D (r,t)/t = ( Z r (g 2 ) ) 2d D N τ Tr (L D x L D y ) i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 11453] 3. F 1,R Q Q,8 (r,t)/σ1/ rσ 1/2 T/T c apenext workshop, Firenze, February 9, 27 p.22/25

40 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling hold beyond leading order? Singlet free energies of static quarks in representation D=3,8: F sing D (r,t) T ( = ln TrL ) D (x)l D (y) GF with L D made up of U D=3 and [ U D=8] i j := 1 2 Tr [ U D=3 λ i (U D=3 ) λ j ] 1. F 1,R Q Q,D (r,t)/c(d)/σ1/ D=8 D=3 rσ 1/2 T/T c apenext workshop, Firenze, February 9, 27 p.22/25

41 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L 1/C F 3 L 1/C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 11453] Z R D (g2 ) D=3 D=6 D=8 D=1 D=15 D sing =3 D sing = g 2 apenext workshop, Firenze, February 9, 27 p.22/25

42 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L 1/C F 3 L 1/C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 11453] Casimir scaling equivalent for bare or renormalized Polyakov loops.5 <L D > 1/d D D=3.3 D=6 D=8 D=1.25 D=15 D=15 D=24.2 D=27.15 T/T c apenext workshop, Firenze, February 9, 27 p.22/25

43 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L 1/C F 3 L 1/C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 11453] Casimir scaling equivalent for bare or renormalized Polyakov loops 1.6 L R D D=3 D=6 D=8 D=1 D=15 D sing =3 D sing = T/T c apenext workshop, Firenze, February 9, 27 p.22/25

44 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c.5.4 L R D D=3 D= T/T c apenext workshop, Firenze, February 9, 27 p.23/25

45 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c finite values of F 8 (r) at large distances [GeV] F R Q Q,8 d 8 F 1,R Q Q,3 F 1,R Q Q,8. r string (F 8 ) r string (V 8 ) r [fm] apenext workshop, Firenze, February 9, 27 p.23/25

46 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c finite values of F 8 (r) at large distances might be related to binding energy of gluelumps 2.8 F [GeV] r string [fm] 1..8 V 8 F 8 T/T c apenext workshop, Firenze, February 9, 27 p.23/25

47 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] 2-flavour QCD:.3 <L D > 1/d D D=3.1 D=6 D=8 D=1.5 D= T/T c apenext workshop, Firenze, February 9, 27 p.24/25

48 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] 2-flavour QCD: L R D D=3 D=6 D=8 D=1 D= Freedom to set the scale:. T/T. c V T= (r) V T= (r)+c Be carefull to extract T c by slope of L R Susceptibility not renormalized in this way L R D L R D exp( C/2T) Z R D Z R D exp( Ca(g 2 )/2) apenext workshop, Firenze, February 9, 27 p.24/25

49 Conclusions - Heavy quark free energies, internal energies and entropy Complex r and T dependence Running coupling shows remnants of confinenement above T c Entropy contributions play a role at finite T Non-perturbative effects in m D up to high T Non-perturbative effects dominated by gluonic sector - Bound states in the quark gluon plasma First estimates from potential models Higher dissociation temperature using V 1 (directly produced) J/ψ exist well above T c Diquarks unlikely to exist above T c - Renormalized Polyakov loop Two consistent renormalization procedures Renormalization constant depend on the bare coupling Applicable for higher representations Casimir scaling good approximation at high T apenext workshop, Firenze, February 9, 27 p.25/25

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Olaf Kaczmarek Felix Zantow Universität Bielefeld April 5, 26 Exploration of Hadron Structure and Spectroscopy,

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

arxiv:hep-lat/ v2 4 Mar 2005

arxiv:hep-lat/ v2 4 Mar 2005 EPJ manuscript No. (will be inserted by the editor) Deconfinement and Quarkonium Suppression Frithjof Karsch,2 a arxiv:hep-lat/524v2 4 Mar 25 Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

Thermodynamics using p4-improved staggered fermion action on QCDOC

Thermodynamics using p4-improved staggered fermion action on QCDOC Thermodynamics using p4-improved staggered fermion action on QCDOC for the RBC-Bielefeld Collaboration Brookhaven National Laboratory and Columbia University, USA E-mail: chulwoo@bnl.gov We present an

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Lattice calculation of the Polyakov loop and Polyakov loop correlators

Lattice calculation of the Polyakov loop and Polyakov loop correlators Lattice calculation of the Polyakov loop and Polyakov loop correlators Johannes Heinrich Weber 1,a (on behalf of TUMQCD collaboration) 1 Technische Universität München, Physik Department Tf, James-Franck-Str.

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma Miguel A. Escobedo Physik-Department T30f. Technische Universität München 19th of September

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

doi: /PhysRevD

doi: /PhysRevD doi:./physrevd.7.7 PHYSICAL REVIEW D 7, 7 (7) Heavy-quark free energy, Debye mass, and spatial string tension at finite temperature in two flavor lattice QCD with Wilson quark action Y. Maezawa, N. Ukita,

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

andf 9 Springer-Verlag 1988

andf 9 Springer-Verlag 1988 Z. Phys. C - Particles and Fields 37, 617-622 (1988) Zeitschdft Partic~ lur Physik C andf 9 Springer-Verlag 1988 Color screening and deconfinement for bound states of heavy quarks* F. Karsch 1, M.T. Mehr

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

arxiv: v1 [hep-lat] 19 Jun 2008

arxiv: v1 [hep-lat] 19 Jun 2008 BI-TP 2008/2, BNL-NT-08/2, TIFR/TH/23 The Spatial String Tension and Dimensional Reduction in QCD arxiv:0806.3264v [hep-lat] 9 Jun 2008 M. Cheng a, S. Datta b, J. van der Heide c, K. Huebner d, F. Karsch

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

arxiv: v1 [hep-ph] 24 Oct 2012

arxiv: v1 [hep-ph] 24 Oct 2012 Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma P. Czerski The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, arxiv:1210.6531v1

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Measuring freeze-out parameters on the Bielefeld GPU cluster

Measuring freeze-out parameters on the Bielefeld GPU cluster Measuring freeze-out parameters on the Bielefeld GPU cluster Outline Fluctuations and the QCD phase diagram Fluctuations from Lattice QCD The Bielefeld hybrid GPU cluster Freeze-out conditions from QCD

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

arxiv:hep-ph/ v1 6 Feb 1997

arxiv:hep-ph/ v1 6 Feb 1997 BI-TP 97/02 The Transverse Momentum Dependence of Anomalous J/ψ Suppression arxiv:hep-ph/9702273v1 6 Feb 1997 D. Kharzeev, M. Nardi and H. Satz Fakultät für Physik, Universität Bielefeld D-33501 Bielefeld,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal Motivation Effective Polyakov loop potential

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information