Heavy quark free energies, screening and the renormalized Polyakov loop

Size: px
Start display at page:

Download "Heavy quark free energies, screening and the renormalized Polyakov loop"

Transcription

1 Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9

2 Charmonium suppression ψ S(J/ ) observed charmonium yields at SPS+RHIC nuclear absorption length L using Bjorken formula (τ = f m) + lattice EOS: ε = de T/dη τ A T.25 In In, SPS Pb Pb, SPS Au Au, RHIC, y <.35 Au Au, RHIC, y =[.2,2.2] ε (GeV/fm 3) L [ f m] ε [GeV/ f m 3 ] T/T c [F. Karsch,D. Kharzeev,H. Satz,hep-ph/52239] suppression patterns in a narrow temperature regime detailed (lattice) equation of state needed detailed knowledge on heavy quark bound states needed What are the processes of charmonium formation/suppression? VI Workshop III, Rathen, October, 26 p.2/9

3 Motivation - Heavy quark bound states above deconfinement Quarkonium suppression as a probe for thermal properties of hot and dense matter [Matsui and Satz] - heavy quark potential gets screened - screening radius related to parton density r D g n/t - at high T screening radius smaller than size of a quarkonium state Typical length scales of heavy quark bound states: /Λ QCD fm - screening has to be strong enough to modify short distance behaviour - detailed analysis of heavy quark potentials - temperature and r dependence - screening properties above deconfinement - What is the correct effective potential at finite temperature? F (r,t) = U (r,t) T S (r,t) VI Workshop III, Rathen, October, 26 p.3/9

4 Heavy quark bound states above deconfinement Strong interactions in the deconfined phase T> T c Possibility of heavy quark bound states? Charmonium (χ c,j/ψ) as thermometer above T c Suppression patterns of charmonium/bottomonium = Potential models heavy quark potential (T =) V (r) = 4 3 α(r) r + σ r heavy quark free energies (T > T c ) F (r,t) 4 3 α(r,t) r e m(t)r heavy quark internal energies (T ) F (r,t) = U (r,t) T S (r,t) = Charmonium correlation functions/spectral functions VI Workshop III, Rathen, October, 26 p.4/9

5 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (98) Z Q Q Z (T) Z (T) Z D A... L(x) L (y) exp ( Z /T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q =, 8, av Lattice data used in our analysis: N f = : ,8,6-lattices ( Symanzik ) O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow (22, 24) N f = 2: lattices ( Symanzik, p4-stagg. ) m π /m ρ.7 (m/t =.4) O. Kaczmarek, F. Zantow (25), O. Kaczmarek et al. (23) N f = 3: lattices m π /m ρ.4 P. Petreczky, K. Petrov (24) VI Workshop III, Rathen, October, 26 p.5/9

6 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (98) Z Q Q Z (T) Z (T) Z D A... L(x) L (y) exp ( Z /T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q =, 8, av a /3 V =N σ a ln /T =N τ a O. Philipsen (22) O. Jahn, O. Philipsen (24) ( ln TrL(x) TrL ) (y) ( ln TrL(x)L ) (y) ( 9 8 TrL(x) TrL (y) 8 TrL(x)L (y) GF GF ) = F qq(r,t) T = F (r,t) T = F 8(r,T) T VI Workshop III, Rathen, October, 26 p.5/9

7 Heavy quark free energy F [MeV] 5-5 (a) r [fm].8t c.9t c.96t c.2t c.7t c.23t c.5t c.98t c 4.T c Renormalization of F(r, T) by matching with T = potential e F (r,t)/t = ( Z r (g 2 ) ) 2N τ Tr (L x L y) VI Workshop III, Rathen, October, 26 p.6/9

8 Heavy quark free energy F [MeV] 5-5 (a) r [fm].8t c.9t c.96t c.2t c.7t c.23t c.5t c.98t c 4.T c F [MeV] Renormalization of F(r, T) by matching with T = potential e F (r,t)/t = ( Z r (g 2 ) ) 2N τ Tr (L x L y) T -independent r / σ F(r,T) g 2 (r)/r -2 r [fm] VI Workshop III, Rathen, October, 26 p.6/9

9 Heavy quark free energy F [MeV] (a) String breaking T < T c F(r σ,t) < 5-5 r [fm].8t c.9t c.96t c.2t c.7t c.23t c.5t c.98t c 4.T c F [MeV] N f = N f =2 N f =3 T -independent r / σ F(r,T) g 2 (r)/r T/T c 4 VI Workshop III, Rathen, October, 26 p.6/9

10 Heavy quark free energy F [MeV] (a) String breaking T < T c F(r σ,t) < 5-5 r [fm].8t c.9t c.96t c.2t c.7t c.23t c.5t c.98t c 4.T c high-t physics rt ; screening µ(t) g(t)t F(,T) T F [MeV] N f = N f =2 N f =3 T -independent r / σ F(r,T) g 2 (r)/r T/T c 4 VI Workshop III, Rathen, October, 26 p.6/9

11 Heavy quark free energy F [MeV] (a) String breaking T < T c F(r σ,t) < 5-5 r [fm].8t c.9t c.96t c.2t c.7t c.23t c.5t c.98t c 4.T c high-t physics rt ; screening µ(t) g(t)t F(,T) T T -independent r / σ F(r,T) g 2 (r)/r Complex r and T dependence Small vs. large distance behavior Running coupling vs. screening Where do temperature effects set in? VI Workshop III, Rathen, October, 26 p.6/9

12 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c r [fm] F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme α qq (r,t) = 3 4 r2 df (r,t) dr VI Workshop III, Rathen, October, 26 p.7/9

13 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme..5 r [fm] non-perturbative confining part for r>.4 fm α qq (r,t) = 3 4 r2 df (r,t) dr α qq (r) 3/4r 2 σ present below and just above T c remnants of confinement at T> T c temperature effects set in at smaller r with increasing T maximum due to screening VI Workshop III, Rathen, October, 26 p.7/9

14 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme..5 r [fm] non-perturbative confining part for r>.4 fm α qq (r,t) = 3 4 r2 df (r,t) dr α qq (r) 3/4r 2 σ present below and just above T c remnants of confinement at T> T c temperature effects set in at smaller r with increasing T maximum due to screening = At which distance do T -effects set in? = definition of the screening radius/mass = definition of the T -dependent coupling VI Workshop III, Rathen, October, 26 p.7/9

15 Temperature depending running coupling ~ define α qq (T) by maximum of α qq (r,t): α qq (T) 2-flavor QCD ւ quenched α qq (T) α qq (r max,t) perturbative behaviour at high T : ( ) µt g 2 2-loop (T) = 2β ln + β ( ( )) µt ln 2ln, Λ MS β Λ MS T/T c 2.5 Using T c /Λ MS =.77(2) we find µ=.4(2)π VI Workshop III, Rathen, October, 26 p.8/9

16 Temperature depending running coupling ~ define α qq (T) by maximum of α qq (r,t): α qq (T) 2-flavor QCD ւ quenched α qq (T) α qq (r max,t) perturbative behaviour at high T : ( ) µt g 2 2-loop (T) = 2β ln + β ( ( )) µt ln 2ln, Λ MS β Λ MS T/T c 2.5 Using T c /Λ MS =.77(2) we find µ=.4(2)π non-perturbative large values near T c not a large Coulombic coupling remnants of confinement at T> T c string breaking and screening difficult to separate slope at high T well described by perturbation theory VI Workshop III, Rathen, October, 26 p.8/9

17 Temperature depending running coupling ~ define α qq (T) by maximum of α qq (r,t): α qq (T) 2-flavor QCD ւ quenched α qq (T) α qq (r max,t) perturbative behaviour at high T : ( ) µt g 2 2-loop (T) = 2β ln + β ( ( )) µt ln 2ln, Λ MS β Λ MS T/T c 2.5 Using T c /Λ MS =.77(2) we find µ=.4(2)π non-perturbative large values near T c not a large Coulombic coupling remnants of confinement at T> T c string breaking and screening difficult to separate = At which distance do T -effects set in? = calculation of the screening mass/radius slope at high T well described by perturbation theory VI Workshop III, Rathen, October, 26 p.8/9

18 Screening mass - perturbative vs. non-perturbative effects m D /T N f = N f =2 Screening masses obtained from fits to: F (r,t) F (r =,T) = 4α(T) e m D(T)r 3r at large distances rt > T/T c leading order perturbation theory: m D (T) T ( = A + N f 6 ) /2 g(t) VI Workshop III, Rathen, October, 26 p.9/9

19 Screening mass - perturbative vs. non-perturbative effects 4 3 m D /T A Nf = =.52(2) A Nf =2 =.42(2) N f = N f =2 Screening masses obtained from fits to: F (r,t) F (r =,T) = 4α(T) e m D(T)r 3r 2 m D /T 3 A Nf = =.39(2) 2 T/T c at large distances rt > leading order perturbation theory: m D (T) T ( = A + N f 6 ) /2 g(t) perturbative limit reached very slowly T/T c T depencence qualitatively described by perturbation theory But A = non-perturbative effects A in the (very) high temperature limit Difference between N f =,2 disappears when converting to physical units VI Workshop III, Rathen, October, 26 p.9/9

20 Screening mass - density dependence [M.Döring et al.] leading order perturbation theory: m D (T,µ q ) = g(t) + N f T 6 + N ( f µq 2π 2 T ) 2 Taylor expansion: m D (T) = m (T)+m 2 (T) ( µq T ) 2 +O (µ 4 q ) m /T 2 m 2 /T /2 m av 2 /T T/T c T/T c m 2 (T) agrees with perturbation theory for T>.5T c non-perturbative effects dominated by gluonic sector VI Workshop III, Rathen, October, 26 p./9

21 Heavy quark bound states above T c?.5 r [fm] r med r D bound states above deconfinement? first estimate: ψ mean charge radii of charmonium states compared to screening radius χ c.5 J/ψ thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement 2 3 T/T c 4 r med : V(r med ) F (r,t) r D [fm] <r> r med r entropy 2/m D (a) r (b) 2r cloud (c).. T/T c VI Workshop III, Rathen, October, 26 p./9

22 Heavy quark bound states above T c?.5 r [fm] r med r D bound states above deconfinement? first estimate:.5 ψ χ c J/ψ mean charge radii of charmonium states compared to screening radius thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement 2 3 T/T c 4 Better estimates: Better estimates: effective potentials in Schrödinger Equation Potential models, effective potential V e f f (r,t) But: Free energies vs. internal energies F(r,T) = U(r,T) TS(r,T) direct calculation using correlation functions Maximum entropy method spectral function VI Workshop III, Rathen, October, 26 p./9

23 Estimates on bound states from Schrödinger equation Schrödinger equation for heavy quarks: [ 2m f + ] 2 +V e f f (r,t) Φ f i = E f i m (T)Φ f i f, f = charm, bottom T -dependent color singlet heavy quark potential mimics in-medium modifications of q q interaction reduction to 2-particle interaction clearly too simple, in particular close to T c recent analysis: using V e f f = F : S.Digal, P.Petreczky, H.Satz, Phys. Lett. B54 (2)57 using V e f f = V : C.-Y. Wong, hep-ph/482 using V e f f = V : W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, hep-ph/5784 state J/ψ χ c ψ ϒ χ b ϒ χ b ϒ E i s[gev] T d /T c T d /T c T d /T c VI Workshop III, Rathen, October, 26 p.2/9

24 Renormalized Polyakov loop Using short distance behaviour of free energies Renormalization of F(r, T) at short distances e F(r,T)/T = ( Z r (g 2 ) ) 2N τ Tr (L x L y) Renormalization of the Polyakov loop F [MeV].76T c.8t c 5.9T c.96t c.t c.2t c.7t c.23t c.5t c.98t c r [fm] 4.T c L ren = ( Z R (g 2 ) ) N t L lattice 5 F [MeV] N f = N f =2 N f =3 L ren defined by long distance behaviour of F(r,T) ( L ren = exp ) F(r =,T) 2T T/T c 4 VI Workshop III, Rathen, October, 26 p.3/9

25 Renormalized Polyakov loop F [MeV].5 L ren 2F-QCD: N τ =4 SU(3): N τ =4 N τ =8.76T c.8t c 5.9T c.96t c.t c.2t c.7t c.23t c.5t c.98t c r [fm] 4.T c F [MeV] N f = N f =2 N f =3 T/T c ( L ren = exp ) F(r =,T) 2T T/T c 4 VI Workshop III, Rathen, October, 26 p.3/9

26 Renormalized Polyakov loop.5 L ren.5 N τ =4 N τ =8 High temperature limit, L ren =, reached from above as expected from PT Clearly non-perturbative effects below 5T c Renormalized T/T c Polyakov loop well defined 25 in quenched and full QCD - non-zero for finite quark mass - strong increase near T c ( L ren = exp ) F(r =,T) 2T VI Workshop III, Rathen, October, 26 p.3/9

27 Renormalization constants Renormalization constants obtained from heavy quark free energies.4 Z R (g 2 ).3.2. g 2 4 =6/β The renormalization constants depend on the bare coupling, i.e. Z R (g 2 ) N τ ( ) Z R (g 2 ) exp g 2 (N 2 )/NQ (2) + g 4 Q (4) +O (g 6 ) with Q (2) =.597(3) consistent with lattice perturbation theory (Heller + Karsch, 985) VI Workshop III, Rathen, October, 26 p.4/9

28 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L R D (T) L D (g 2,N τ ) g fixed N τ, N τ,2 T T start VI Workshop III, Rathen, October, 26 p.5/9

29 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L R D (T) g fixed.2 L D (g 2,N τ ) N τ,. N τ,2.8.6 L 3 R N τ =4 N τ =6 N τ =8.4.2 T T start. T/T c VI Workshop III, Rathen, October, 26 p.5/9

30 Direct renormalization of the Polyakov loop [S. Gupta,K. Hübner,OK] Instead of renormalizing heavy quark free energies Use Polyakov loops obtained at different N τ Assume no volume dependence (T > T c ) The renormalization constants only depend on coupling, i.e. Z(g 2 ) L ren direct renormalization plc renormalization Z R (g 2 ) direct renormalization plc renormalization.2 T/T c Both renormalization procedures are equivalent g 2 solely based on gauge-invariant quantities VI Workshop III, Rathen, October, 26 p.5/9

31 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] use character property of direct product rep: χ p q (g) = χ p (g)χ q (g) Z(3) symmetry: L D e itφ L D triality (Z(3) charge): t p q mod 3 adjoint link variable [ U D=8] i j := 2 Tr [ U D=3 λ i (U D=3 ) λ j ] D (p,q) t C 2 (r) d D = C D /C F L D (x) 3 (,) 4/3 L 3 6 (2,) 2 /3 5/2 L3 2 L 3 8 (,) 3 9/4 L 3 2 (3,) 6 9/2 L 3 L 6 L 8 5 (2,) 6/3 4 L3 L 6 L 3 5 (4,) 28/3 7 L 3 L L 5 24 (3,) 2 25/3 25/4 L3 L L 6 27 (2,2) 8 6 L 6 2 L 8 VI Workshop III, Rathen, October, 26 p.6/9

32 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] perturbation theory: F D (r,t) = C D α s (r) r for rλ QCD renormalization of free energies: e F D (r,t)/t = ( Z r (g 2 ) ) 2d D N τ Tr (L D x L D y ) i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453] 3. F,R Q Q,8 (r,t)/σ/ rσ /2 T/T c VI Workshop III, Rathen, October, 26 p.6/9

33 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling hold beyond leading order? Singlet free energies of static quarks in representation D=3,8: F sing D (r,t) T ( = ln TrL ) D (x)l D (y) GF with L D made up of U D=3 and [ U D=8] i j := 2 Tr [ U D=3 λ i (U D=3 ) λ j ]. F,R Q Q,D (r,t)/c(d)/σ/ D=8 D=3 rσ /2 T/T c VI Workshop III, Rathen, October, 26 p.6/9

34 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L /C F 3 L /C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453] Z R D (g2 ) D=3 D=6 D=8 D= D=5 D sing =3 D sing = g 2 VI Workshop III, Rathen, October, 26 p.6/9

35 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L /C F 3 L /C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453] Casimir scaling equivalent for bare or renormalized Polyakov loops.5 <L D > /d D D=3.3 D=6 D=8 D=.25 D=5 D=5 D=24.2 D=27.5 T/T c VI Workshop III, Rathen, October, 26 p.6/9

36 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling, L /C F 3 L /C D D, hold beyond two-loop order? renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453] Casimir scaling equivalent for bare or renormalized Polyakov loops.6 L R D D=3 D=6 D=8 D= D=5 D sing =3 D sing = T/T c VI Workshop III, Rathen, October, 26 p.6/9

37 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c.5.4 L R D D=3 D= T/T c VI Workshop III, Rathen, October, 26 p.7/9

38 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c finite values of F 8 (r) at large distances [GeV] F R Q Q,8 d 8 F,R Q Q,3 F,R Q Q,8. r string (F 8 ) r string (V 8 ) r [fm] VI Workshop III, Rathen, October, 26 p.7/9

39 String breaking for adjoint Polyakov loops [S. Gupta,K. Hübner,OK] string breaking expected for representations with triality t = non-zero for L R 8 even below T c finite values of F 8 (r) at large distances might be related to binding energy of gluelumps 2.8 F [GeV] r string [fm]..8 V 8 F 8 T/T c VI Workshop III, Rathen, October, 26 p.7/9

40 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] 2-flavour QCD:.3 <L D > /d D D=3. D=6 D=8 D=.5 D= T/T c VI Workshop III, Rathen, October, 26 p.8/9

41 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] 2-flavour QCD:.6.2 L R D D=3 D=6 D=8 D= D= Freedom to set the scale:. T/T. c V T= (r) V T= (r)+c Be carefull to extract T c by slope of L R Susceptibility not renormalized in this way L R D L R D exp(c/2t) Z R D Z R D exp(ca(g 2 )/2) VI Workshop III, Rathen, October, 26 p.8/9

42 Conclusions - Heavy quark free and internal energies Complex r and T dependence Running coupling shows remnants of confinenement above T c Entropy contributions play a role at finite T Non-perturbative effects in m D up to high T Non-perturbative effects dominated by gluonic sector - Renormalized Polyakov loop Two consistent renormalization procedures Renormalization constant depend on the bare coupling Applicable for higher representations Casimir scaling good approximation at high T - Charmonium in the quark gluon plasma First estimates from potential models Higher dissociation temperature using V (directly produced) J/ψ exist well above T c VI Workshop III, Rathen, October, 26 p.9/9

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma

Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Olaf Kaczmarek Felix Zantow Universität Bielefeld April 5, 26 Exploration of Hadron Structure and Spectroscopy,

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

arxiv:hep-lat/ v2 4 Mar 2005

arxiv:hep-lat/ v2 4 Mar 2005 EPJ manuscript No. (will be inserted by the editor) Deconfinement and Quarkonium Suppression Frithjof Karsch,2 a arxiv:hep-lat/524v2 4 Mar 25 Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma Miguel A. Escobedo Physik-Department T30f. Technische Universität München 19th of September

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

Lattice calculation of the Polyakov loop and Polyakov loop correlators

Lattice calculation of the Polyakov loop and Polyakov loop correlators Lattice calculation of the Polyakov loop and Polyakov loop correlators Johannes Heinrich Weber 1,a (on behalf of TUMQCD collaboration) 1 Technische Universität München, Physik Department Tf, James-Franck-Str.

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

arxiv:hep-ph/ v1 6 Feb 1997

arxiv:hep-ph/ v1 6 Feb 1997 BI-TP 97/02 The Transverse Momentum Dependence of Anomalous J/ψ Suppression arxiv:hep-ph/9702273v1 6 Feb 1997 D. Kharzeev, M. Nardi and H. Satz Fakultät für Physik, Universität Bielefeld D-33501 Bielefeld,

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

arxiv:hep-ph/ v1 9 Jul 1997

arxiv:hep-ph/ v1 9 Jul 1997 The p T Distribution of J/ψ in QGP Xiao-Fei Zhang a, Han-Wen Huang b, Xue-Qian Li c,d, and Wei-Qin Chao a,c arxiv:hep-ph/9707288v1 9 Jul 1997 a Institute of High Energy Physics, Academia Sinica, P.O.Box

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

arxiv:hep-ph/ v1 26 Sep 1999

arxiv:hep-ph/ v1 26 Sep 1999 The Evolution of Dynamical Screening in the Parton Cascade Model Helmut Satz 1 and Dinesh Kumar Srivastava 1,2 arxiv:hep-ph/9909510v1 26 Sep 1999 1: Fakultät für Physik, Universität Bielefeld, D-33501

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

annihilation of charm quarks in the plasma

annihilation of charm quarks in the plasma Quarkonia Production suppression vs enhancement quarkonia suppression ingredients and assumptions quarkonia in the QGP confrontation with data quarkonia enhancement ingredients and assumptions annihilation

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling Christian Szasz University of Erlangen-Nürnberg christian.szasz@theorie3.physik.uni-erlangen.de Marc Wagner Humboldt

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

Helmut Satz Fakultät für Physik, Universität Bielefeld, D Bielefeld, Germany and Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Helmut Satz Fakultät für Physik, Universität Bielefeld, D Bielefeld, Germany and Theory Division, CERN, CH-1211 Geneva 23, Switzerland CERN-TH/96-172 BI-TP 96/25 COLOUR DECONFINEMENT IN HOT AND DENSE MATTER arxiv:hep-ph/9611366v1 19 Nov 1996 Helmut Satz Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany and Theory

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density Opportunities for Lattice QCD Thermodynamics Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi (Boston

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information