Determination of Λ MS from the static QQ potential in momentum space

Size: px
Start display at page:

Download "Determination of Λ MS from the static QQ potential in momentum space"

Transcription

1 Determination of Λ MS from the static QQ potential in momentum space Antje Peters Goethe Universität Frankfurt January 16, 2014

2 Overview 1 Introductory notes and motivation 2 My investigations 3 Preliminary results 4 Difficulties Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

3 Introductory notes and motivation QCD problems are difficult... G n (x 1,.., x n ) = Z 0 Z δ n δj(x 1 )..δj(x n ) e(s I[ δ δj ]) exp( 1 2 d 4 x d 4 yj(x) F (x, y)j(y)) J=0 Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

4 Introductory notes and motivation QCD problems are difficult... G n (x 1,.., x n ) = Z 0 Z δ n δj(x 1 )..δj(x n ) e(s I[ δ δj ]) exp( 1 2 d 4 x d 4 yj(x) F (x, y)j(y)) J=0 Since S I is not a quadratic term no chance for exact analytical calculation. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

5 Introductory notes and motivation QCD problems are difficult... G n (x 1,.., x n ) = Z 0 Z δ n δj(x 1 )..δj(x n ) e(s I[ δ δj ]) exp( 1 2 d 4 x d 4 yj(x) F (x, y)j(y)) J=0 Since S I is not a quadratic term no chance for exact analytical calculation. perturbation theory F = F 0 + ɛf 1 + ɛ 2 F 2 + ɛ 3 F Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

6 Introductory notes and motivation QCD problems are difficult... G n (x 1,.., x n ) = Z 0 Z δ n δj(x 1 )..δj(x n ) e(s I[ δ δj ]) exp( 1 2 d 4 x d 4 yj(x) F (x, y)j(y)) J=0 Since S I is not a quadratic term no chance for exact analytical calculation. perturbation theory F = F 0 + ɛf 1 + ɛ 2 F 2 + ɛ 3 F lattice gauge theory d 4 x n a4 Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

7 Motivation Introductory notes and motivation The parameter Λ defines the scale for dimensionful perturbative results (cf. running coupling α s (Q) 1 ) log Q2 Λ 2 Analogous to the lattice spacing a for lattice results Results not reasonable without a scale! In the MS renormalization scheme: Λ MS Determine a result by a lattice computation and a perturbative calculation solve for Λ MS suitable observable : QQ potential simple computation on the lattice (no quark propagators) precise analysis in perturbation theory Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

8 Overview Introductory notes and motivation overall aim: calculate Λ MS method: compare lattice and perturbation theory results in the small range of QQ separation where both approaches are reliable approach: lattice computation in momentum space (more precise than position space 1?) 1 K. Jansen et al. [ETM Collaboration], JHEP 1201 (2012) 025 [arxiv: [hep-ph]]. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

9 Introductory notes and motivation The story so far... Determination of Λ MS in position space (i.e. comparison of lattice and perturbation theory results in position space) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

10 Introductory notes and motivation The story so far... Determination of Λ MS in position space (i.e. comparison of lattice and perturbation theory results in position space) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

11 Introductory notes and motivation The story so far... Determination of Λ MS in position space (i.e. comparison of lattice and perturbation theory results in position space) Result: Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

12 Introductory notes and motivation The story so far... Determination of Λ MS in position space (i.e. comparison of lattice and perturbation theory results in position space) Result: Λ MS = 315(30)MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

13 Introductory notes and motivation Why momentum space? Lattice theory lives in position space, but perturbation theory lives in momentum space. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

14 Introductory notes and motivation Why momentum space? Lattice theory lives in position space, but perturbation theory lives in momentum space. First idea: Fourier transform perturbation theory before comparison to lattice results! Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

15 Introductory notes and motivation Why momentum space? Lattice theory lives in position space, but perturbation theory lives in momentum space. First idea: Fourier transform perturbation theory before comparison to lattice results! Problem in position space: V pert (r) = d 3 pe ipr Ṽ pert (p) is wrong for p < Λ ( 300 MeV) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

16 Introductory notes and motivation Why momentum space? Lattice theory lives in position space, but perturbation theory lives in momentum space. First idea: Fourier transform perturbation theory before comparison to lattice results! Problem in position space: V pert (r) = d 3 pe ipr Ṽ pert (p) is wrong for p < Λ Unavoidable mistakes! ( 300 MeV) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

17 Introductory notes and motivation Why momentum space? Lattice theory lives in position space, but perturbation theory lives in momentum space. First idea: Fourier transform perturbation theory before comparison to lattice results! Problem in position space: V pert (r) = d 3 pe ipr Ṽ pert (p) is wrong for p < Λ Unavoidable mistakes! ( 300 MeV) New idea: get V (p) directly and consider it only for large momenta p Λ Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

18 Introductory notes and motivation The static QQ-potential Ṽ (p) = C F 4π p 2 α V [α s (µ), L(µ, p)] with L(µ, p) = ln µ2 p 2 L C F = 4 3 Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

19 Introductory notes and motivation The static QQ-potential with More than a series expansion: Ṽ (p) = C F 4π p 2 α V [α s (µ), L(µ, p)] L(µ, p) = ln µ2 p 2 L C F = 4 3 { α V [α s (µ), L(µ, p)] =α s (µ) 1 + α ( ) 2 s(µ) 4π P αs (µ) 1(L) + P 2 (L) 4π ( ) 3 αs (µ) + [P 3 (L) + a 3ln ln α s (µ)] +...} 4π Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

20 Introductory notes and motivation The static QQ-potential with More than a series expansion: Ṽ (p) = C F 4π p 2 α V [α s (µ), L(µ, p)] L(µ, p) = ln µ2 p 2 L C F = 4 3 { α V [α s (µ), L(µ, p)] =α s (µ) 1 + α ( ) 2 s(µ) 4π P αs (µ) 1(L) + P 2 (L) 4π ( ) 3 αs (µ) + [P 3 (L) + a 3ln ln α s (µ)] +...} 4π Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

21 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

22 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils ( L + α ) s(µ) β[α s (µ)] α V [α s (µ), L(µ, p)] = 0 2 α s (µ) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

23 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils ( L + α ) s(µ) β[α s (µ)] α V [α s (µ), L(µ, p)] = 0 2 α s (µ) The QCD β function fulfils Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

24 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils ( L + α ) s(µ) β[α s (µ)] α V [α s (µ), L(µ, p)] = 0 2 α s (µ) The QCD β function fulfils β[α s (µ)] = µ dα s (µ) α s (µ) dµ Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

25 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils ( L + α ) s(µ) β[α s (µ)] α V [α s (µ), L(µ, p)] = 0 2 α s (µ) The QCD β function fulfils β[α s (µ)] = µ dα s (µ) α s (µ) dµ Integration yields to leading order ( β[α s(µ)] = β0 2π Λ µ 1 µ dµ = Λ = µe 2π β 0 αs (µ) α s (µ) αs (µ) β0): 2π 1 α s(µ ) 2 dαs(µ ) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

26 Introductory notes and motivation A renormalization group invariant α V [α s (µ), L(µ, p)] is a renormalization group invariant, so it fulfils ( L + α ) s(µ) β[α s (µ)] α V [α s (µ), L(µ, p)] = 0 2 α s (µ) The QCD β function fulfils β[α s (µ)] = µ dα s (µ) α s (µ) dµ Integration yields to leading order : Λ = µe 2π β 0 αs (µ) µ = Λ = α s (µ) = (for perturbation theory: µ Λ) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

27 Introductory notes and motivation The quantity Λ MS Λ MS was introduced as a parameter of integration Determination in modified Minimal Subtraction Scheme Λ MS Λ MS tells us in which energy range perturbation theory is valid. Λ MS is necessary to interpret a QCD result properly. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

28 Starting point My investigations use n f = 2 gauge link configurations generated by the ETMC a = fm β = 4.35 (L/a) 3 T /a = Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

29 My investigations Extrapolation of lattice data extrapolation in position space V(r)a lattice data 500 extrapolated data data for fit r/a Extrapolation of lattice data Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

30 My investigations Transformation to momentum space Fourier transform Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

31 My investigations Transformation to momentum space Fourier transform Ṽ ( k) = 1 n 3 N 1 n x,n y,n z =0 V (n)e 2πi k n N Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

32 My investigations Transformation to momentum space Fourier transform Ṽ ( k) = 1 n 3 N 1 n x,n y,n z =0 V (n)e 2πi k n N cylinder cut to avoid lattice spacing errors (non-physical!) 0 cylinder cut -2e-08 V(p) in MeV -2-4e-08-6e-08-8e-08-1e p in MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

33 My investigations Symanzic improvement Symanzik s effective theory: handle lattice artefacts calculate potential at tree level (Symanzic action) compute the quark propagator with a recursive algorithm compare with the perturbation theory result in momentum space at leading order 1 p V ( p) p perturbative (leading order) propagator p in MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

34 My investigations Symanzic improvement Symanzik s effective theory: handle lattice artefacts calculate potential at tree level (Symanzic action) compute the quark propagator with a recursive algorithm compare with the perturbation theory result in momentum space at leading order 1 p 2 match tree level data 0-5e-06 improved original V(p) in MeV -2-1e e-05-2e e-05-3e p in MeV Antje Peters (Goethe improved Universität potential Frankfurt) in momentum Determinationspace of Λ January 16, / 22

35 Fitting procedure My investigations fit perturbation theory fomula to lattice results leading order (LO) up to next to-next to-next to-leading order (NNNLO) in coupling α s (µ) dependency of scale parameter µ? set µ = p estimate error Jackknife Method find proper fit range lattice assumptions and perturbation theory both reasonable? Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

36 A first result My investigations In leading order, lattice data confirms former result Λ MS = 315 MeV 4e-07 2e-07 N=256 LO, Λ=315 MeV V(p) in MeV e-07-4e-07-6e-07-8e-07-1e p in MeV good agreement at first glance Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

37 Results Preliminary results different fitting procedures yield different results estimate average value for Λ MS Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

38 Results Preliminary results different fitting procedures yield different results estimate average value for Λ MS Λ - MS in MeV fit range width 700 MeV, 3 parameters 250 A 200 B 150 C 100 D MeV center of fit range in momentum space in MeV Λ - MS in MeV fit range width 700 MeV, 4 parameters A 150 B C 100 D MeV center of fit range in momentum space in MeV Λ - MS in MeV fit range width 1500 MeV, 3 parameters 250 A 200 B 150 C 100 D MeV center of fit range in momentum space in MeV Λ - MS in MeV fit range width 1500 MeV, 4 parameters A 150 B C 100 D MeV center of fit range in momentum space in MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

39 Conclusions Preliminary results Λ MS in right order of magnitude: Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

40 Conclusions Preliminary results Λ MS in right order of magnitude: fit range width 700 MeV, 4 parameters Λ - MS in MeV A B C D 315 MeV center of fit range in momentum space in MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

41 Conclusions Preliminary results Λ MS in right order of magnitude: fit range width 700 MeV, 4 parameters Λ - MS in MeV A B C D 315 MeV center of fit range in momentum space in MeV 250 MeV MeV 2 (preliminary!) = (335 ± 50) MeV Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

42 Conclusions Preliminary results Λ MS in right order of magnitude: fit range width 700 MeV, 4 parameters Λ - MS in MeV A B C D 315 MeV center of fit range in momentum space in MeV 250 MeV MeV 2 (preliminary!) = (335 ± 50) MeV Wide spreading of values No better precision (?) Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

43 Conclusions Preliminary results Λ MS in right order of magnitude: fit range width 700 MeV, 4 parameters Λ - MS in MeV A B C D 315 MeV center of fit range in momentum space in MeV 250 MeV MeV 2 (preliminary!) = (335 ± 50) MeV Wide spreading of values No better precision (?) But the former result was definitely confirmed. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

44 Conclusions Preliminary results Λ MS in right order of magnitude: fit range width 700 MeV, 4 parameters Λ - MS in MeV A B C D 315 MeV center of fit range in momentum space in MeV 250 MeV MeV 2 (preliminary!) = (335 ± 50) MeV Wide spreading of values No better precision (?) But the former result was definitely confirmed. But there are still almost 3 months left!!! Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

45 Difficulties The wiggly line-quest alpha lattice alpha perturbative 0.6 α(p) p in 10 3 MeV wiggly behaviour of α Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

46 Difficulties 1 analysis of toy models to reproduce wiggly line potential potential in position space gap 0 gap 0.01 gap gap r/a 2 gaussian blur 3 adapted fitting procedures for extrapolation in position space Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

47 Difficulties 1 analysis of toy models to reproduce wiggly line V(p) 1e-07 5e-08 0 potential in momentum space gap 0 gap 0.01 gap gap e-08-1e p in MeV 2 gaussian blur 3 adapted fitting procedures for extrapolation in position space Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

48 Difficulties 1 analysis of toy models to reproduce wiggly line 2 gaussian blur V(p) 3e e-05 2e e-05 1e-05 5e e-06 potential in momentum space 0 it 1 it, σ Gauss =sqrt(0.5) 5 it, σ Gauss =sqrt(0.5) 1 it, σ Gauss =1.0 5 it, σ Gauss =1.0 1 it, σ Gauss =sqrt(2.0) 5 it, σ Gauss =sqrt(2.0) -1e p in MeV 3 adapted fitting procedures for extrapolation in position space Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

49 Difficulties 1 analysis of toy models to reproduce wiggly line 2 gaussian blur 3 adapted fitting procedures for extrapolation in position space 2 parameters: V (r) = π 1 + σr + 12 r r 2 3 parameters: V (r) = π 1 + σr r r 2 r 3 4 parameters: V (r) = π 1 + σr r r 2 r 3 r 4 Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

50 Difficulties 1 Limiting effects like in position space. 2 Momentum space brings its own problems. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

51 Difficulties 1 Limiting effects like in position space. 2 Momentum space brings its own problems. 3 But there are still almost 3 months left!!! Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

52 Difficulties Thanks for your attention. Antje Peters (Goethe Universität Frankfurt) Determination of Λ January 16, / 22

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration Determination of running coupling αs for N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Purpose of this project Determine the fundamental parameter of N f =

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

Discovery of charged bottomonium-like Z b states at Belle

Discovery of charged bottomonium-like Z b states at Belle Discovery of charged bottomonium-like Z b states at Belle Antje Peters 1 Christoph Rosenbaum 2 1 Goethe-Universität Frankfurt am Main 2 Justus-Liebig-Universität Giessen HGS-HIRe Lecture Week on Hadron

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

arxiv: v1 [hep-lat] 18 Aug 2017

arxiv: v1 [hep-lat] 18 Aug 2017 arxiv:1708.05562v1 [hep-lat] 18 Aug 2017 Computation of hybrid static potentials in SU(3) lattice gauge theory Christian Reisinger 1,, Stefano Capitani 1, Owe Philipsen 1, and Marc Wagner 1 1 Institut

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Two particle elastic scattering at 1-loop

Two particle elastic scattering at 1-loop Two particle elastic scattering at 1-loop based on S-20 Let s use our rules to calculate two-particle elastic scattering amplitude in, theory in 6 dimensions including all one-loop corrections: For the

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

The bottomonium spectrum from the static potential

The bottomonium spectrum from the static potential The bottomonium spectrum from the static potential Master thesis Michelle Weber Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main März 2017 Supervisor: Second supervisor: Prof. Dr.

More information

Spatial string tension revisited

Spatial string tension revisited Spatial string tension revisited (dimensional reduction at work) York Schröder work together with: M. Laine 1 Motivation RHIC QCD at T > (a few) 100 MeV asymptotic freedom weak coupling expansion slow

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:4.88v [hep-lat] 3 Oct 24 Zoltán Fodor University of Wuppertal, Department of Physics, Wuppertal D-4297, Germany Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich D-52425, Germany Eötvös

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Equation of state from N f = 2 twisted mass lattice QCD

Equation of state from N f = 2 twisted mass lattice QCD Equation of state from N f = twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Kirchner, M. Müller-Preussker (HU Berlin), M. P. Lombardo

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action Muon g 2 Hadronic Vacuum Polarization from 2+1+1 flavors of sea quarks using the HISQ action Jack Laiho Syracuse University April 31, 2015 Motivation The muon anomalous magnetic moment is currently measured

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Reorganizing the QCD pressure at intermediate coupling

Reorganizing the QCD pressure at intermediate coupling Reorganizing the QCD pressure at intermediate coupling Michael Strickland Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS) Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU) Reference:

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Heavy mesons and tetraquarks from lattice QCD

Heavy mesons and tetraquarks from lattice QCD Heavy mesons and tetraquarks from lattice QCD seminar, Technische Universität Darmstadt Marc Wagner Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

More information

Lattice study of multi-channel charmed meson scattering

Lattice study of multi-channel charmed meson scattering Lattice study of multi-channel charmed meson scattering Ting Chen ( x) Peking University in collaboration with Liuming Liu et.al. Helmholz-Institut für Strahlen- und Kernphysik, Universität Bonn August

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

The lattice gluon propagator in numerical stochastic perturbation theory

The lattice gluon propagator in numerical stochastic perturbation theory The lattice gluon propagator in numerical stochastic perturbation theory E.-M. Ilgenfritz 1, H. Perlt 2 and A. Schiller 2 1 Humboldt-Universität zu Berlin, 2 Universität Leipzig 8th Leipzig Workshop on

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

arxiv: v1 [hep-lat] 3 Aug 2015

arxiv: v1 [hep-lat] 3 Aug 2015 Exploring possibly existing qq b b tetraquark states with qq = ud,ss,cc arxiv:158.343v1 [hep-lat] 3 Aug 215 a, Pedro Bicudo b, Krzysztof Cichy a,c, Björn Wagenbach a, Marc Wagner a a Goethe-Universität

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

arxiv: v3 [hep-lat] 30 Jan 2018

arxiv: v3 [hep-lat] 30 Jan 2018 The lattice Landau gauge gluon propagator: lattice spacing and volume dependence Orlando Oliveira and Paulo J. Silva Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, - Coimbra,

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Universality check of the overlap fermions in the Schrödinger functional

Universality check of the overlap fermions in the Schrödinger functional Universality check of the overlap fermions in the Schrödinger functional Humboldt Universitaet zu Berlin Newtonstr. 15, 12489 Berlin, Germany. E-mail: takeda@physik.hu-berlin.de HU-EP-8/29 SFB/CPP-8-57

More information

Non-perturbative renormalization of

Non-perturbative renormalization of Non-perturbative renormalization of N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Our ultimate purpose Determine the fundamental parameter of N f = 2 + QCD

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Novel solutions of RG equations for α(s) and β(α) in the large N c limit

Novel solutions of RG equations for α(s) and β(α) in the large N c limit Novel solutions of RG equations for α(s) and β(α) in the large N c limit Yu.A. Simonov Abstract General solution of RG equations in the framework of background perturbation theory is written down in the

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD K and D oscillations in the Standard Model and its extensions from N f = 2+1+1 Twisted Mass LQCD, V. Giménez Dep. de Física Teòrica and IFIC, Universitat de València-CSIC P. Dimopoulos Centro Fermi - Museo

More information

Top-quark mass determination

Top-quark mass determination Trento, 13.Sept. 2017 LFC17: Old and New Strong Interaction from LHC to Future colliders Top-quark mass determination Peter Uwer Outline 1. Motivation 2. Some preliminaries 3. Overview of existing methods

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud Status of scalar quark matrix elements from Lattice QCD André Walker-Loud Outline Nucleon matrix element calculations Direct method - 3 point function Indirect method - Feynman-Hellman Theorem Scalar Matrix

More information

Fundamental Parameters of QCD from the Lattice

Fundamental Parameters of QCD from the Lattice Fundamental Parameters of QCD from the Lattice Milano Bicocca, DESY Zeuthen GGI Firenze, Feb 2007 Introduction Coupling Masses Summary and Outlook QCD Lagrangian and Parameters L QCD (g 0, m 0 ) = 1 4

More information

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach Non-perturbative Effects in ABJM Theory from Fermi Gas Approach Sanefumi Moriyama (Nagoya/KMI) [arxiv:1106.4631] with H.Fuji and S.Hirano [arxiv:1207.4283, 1211.1251, 1301.5184] with Y.Hatsuda and K.Okuyama

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Non-perturbative renormalization of Tensor currents in SF schemes

Non-perturbative renormalization of Tensor currents in SF schemes Non-perturbative renormalization of ensor currents in SF schemes David Preti in collaboration with P. Fritzsch, C. Pena 33rd International Symposium on Lattice Field heory Kobe, 4 July 25 Outline Motivation

More information