The Lambda parameter and strange quark mass in two-flavor QCD

Size: px
Start display at page:

Download "The Lambda parameter and strange quark mass in two-flavor QCD"

Transcription

1 The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv: ] in collaboration with F.Knechtli, B.Leder, M.Marinkovic, S.Schaefer, R.Sommer, F.Virotta LPHA ACollaboration lavi net The 7th International Workshop on Chiral Dynamics August 6-10, 2012, Jefferson Lab, Newport News, VA P. Fritzsch Chiral Dynamics

2 Introductory remarks Toolbox: lattice regularisation of QCD, including N f = 2 dynamical quarks 1 Compute fundamental parameters of QCD, i.e., renormalization group invariant (RGI) quantities Λ (N f ) QCD ; M i, i = u, d, s,... non-perturbatively Λ (2) MS, m s(2gev) 2 Good control over systematic errors, like autocorrelations; finite volume, discretisation,..., chiral extrapol. 3 Scale setting through physical quantities as f π, f K, m Ω,... (Coordinated Lattice Simulations, CLS, effort) to convert dim.less numbers (a f π, a f K,... ) a, L,... in physical units 4 Compute further quantities of interest decay constants, masses, form factors,..., ALPHAs B-physics program P. Fritzsch Chiral Dynamics

3 GENERAL SETUP P. Fritzsch Chiral Dynamics

4 Non-perturbative Renormalization Ingredient: Schrödinger functional as intermediate renormalization scheme massless, finite volume renorm. scheme in the continuum IR regulator on the lattice (Dirichlet b.c. in time) m = 0 on the lattice NP definition of a running coupling g 2 (µ), w/ box size L = 1/µ N f = 2: QCD running coupling [ALPHA 04] and mass [ALPHA 05] known through finite size scaling technique NP running coupling: NP running mass: Λ-parameter, low energy scale µ 1/L 1 RGI quark masses M i P. Fritzsch Chiral Dynamics

5 Dynamical fermion simulations e.g.: O7 ensemble, , m π 270 MeV Lattice framework: plaquette gauge action mass-degenerate doublet of non-perturbatively improved Wilson fermions Our criteria: FV effects small by construction Lm π data for chiral extrapolation uses 400 m π 500 MeV 300 three lattice spacings 200 < 0.08 fm 100 Goal: controlled extrapol. to physical point a/fm mπ/mev P. Fritzsch Chiral Dynamics

6 TWO STRATEGIES FOR CHIRAL EXTRAPOLATIONS P. Fritzsch Chiral Dynamics

7 Setting the scale Standard procedure, still room for improvements though calibrate lattice spacing a through dimensionful reference quantity Q: a 1 [MeV] = Q exp [MeV] [ ] aq latt choose well behaved quantity Q according to, Q { f π, f K, m N, m π,...} experimentally available input reasonable signal-to-noise ratio well-controlled and understood chiral behaviour mild cut-off effects... Our choice: kaon decay constant f K milder chiral extrapolation compared to f π better control over systematic errors (2 strategies) P. Fritzsch Chiral Dynamics

8 Two chiral extrapolations strategy 2 strategy 1 P. Fritzsch Chiral Dynamics

9 Strategy 1 fix ratio: m 2 ( K κ1, h(κ 1 ) ) fk 2 ( κ1, h(κ 1 ) ) = R! K = m2 K,phys fk,phys 2 trajectory with m K m K,phys and thus m s + m light const + O(m 2 ) κ 3 h(κ 1 ) determined by interpolation PQ-SU(3) ChPT: f K ( κ1, h(κ 1 ) ) f K,phys systematic expansion in [Sharpe 97] strategy 1 m 2 π, m 2 K m2 K,phys P. Fritzsch Chiral Dynamics

10 Strategy 2 fix strange quark s PCAC mass: am 34 ( κ1, s(κ 1, µ) )! = µ µ fixed for 2 values (independent of κ 1 ) κ 3 s(κ 1, µ) determined by interpolation SU(2) ChPT: [Roessl:1999; AlltonEtAl:2008] ( a f K κ1, s(κ 1, µ) ) p(µ) [am K ] 2( κ 1, s(κ 1, µ) ) q(µ) strategy 2 solve numerically for µ s : q(µ) p(µ) 2 m2 K,phys µ=µs fk,phys 2 P. Fritzsch Chiral Dynamics

11 Results for chiral extrapolations β = 5.2 β = 5.3 β = 5.5 global fit expansion variable: afk m y 1 2 π(κ 1 ) 8π 2 fk 2 ( ) 0.1 κ1, κ y π y 1 ChPT to 1-loop, i.e., LEC or combinations thereof multiply (y 1 y π ) O(y 2 ) small f K,phys = 155 MeV [FLAG 11] (isospin symmetric limit & QED effects removed) Strategy 1: NLO partially quenched SU(3) ChPT κ 3 = h(κ 1 ) a = [a f K ] / f K,phys Strategy 2: NLO SU(2) ChPT κ 3 = s(κ 1, µ s ) a = p(µ s ) / f K,phys P. Fritzsch Chiral Dynamics

12 Results for chiral extrapolations Systematics at finest lattice spacing afk yπ y1 cut at y 1 = 0.1 y 1 m2 π(κ 1 ) 8π 2 f 2 K (κ 1) global fit: α 4, α f independent of β check systematic from chiral extrapolation: chiral vs. linear fit (see above) Strategy 1 - Strategy 2 LEC s: α 4 = 0.57(12), α f = 1.13(8) taking all systematics into account: β a f K a[fm] (7)(6) (9)(7) (6)(6) (7)(7) (4)(3) (4)(5) P. Fritzsch Chiral Dynamics

13 RESULTS Λ, M s P. Fritzsch Chiral Dynamics

14 The Λ parameter of N f = 2 QCD Master formula: Λ (2) 1 MS = [ ] f K fk L 1 cont [ALPHA 05] [ L 1 Λ (2) SF ]cont Λ(2) MS Λ (2) SF Renorm. scale set through SF coupling: g 2 (L 1 ) = 4.484, µ 1 = 1/L 1 Exact relation between schemes: / Λ (2) SF = (3) Λ (2) MS Non-perturbative running coupling: L 1 Λ (2) SF = 0.264(15) Missing piece: [ fk L 1 ] cont L1fK strategy 1 strategy (afk) 2 x 10 3 P. Fritzsch Chiral Dynamics

15 The Λ parameter of N f = 2 QCD Master formula: Λ (2) 1 MS = [ ] f K fk L 1 cont using result from strategy 1 [ALPHA 05] [ L 1 Λ (2) SF ]cont Λ(2) MS Λ (2) SF L 1 f K = 0.315(8)(2) Λ (2) SF / f K = 0.84(6) Renorm. scale set through SF coupling: g 2 (L 1 ) = 4.484, µ 1 = 1/L 1 Exact relation between schemes: / Λ (2) SF = (3) Λ (2) MS Non-perturbative running coupling: L 1 Λ (2) SF = 0.264(15) Missing piece: [ fk L 1 ] L1fK cont Λ (2) = 310(20) MeV MS strategy 1 strategy (afk) 2 x 10 3 P. Fritzsch Chiral Dynamics

16 The strange quark mass in N f = 2 QCD RGI strange quark mass: M s = Z M m s = M m(µ 1 ) m s(µ 1 ) = M m(µ 1 ) Z A Z P (µ 1 ) m s Renorm. scale set through SF coupling: g 2 (L 1 ) = 4.484, µ 1 = 1/L 1 Non-perturbative running mass: [ALPHA 05] M / m(µ 1 ) = 1.308(16) P. Fritzsch Chiral Dynamics

17 The strange quark mass in N f = 2 QCD RGI strange quark mass: M s = Z M m s = M m(µ 1 ) m s(µ 1 ) = M m(µ 1 ) Z A Z P (µ 1 ) m s Renorm. scale set through SF coupling: g 2 (L 1 ) = 4.484, µ 1 = 1/L 1 Non-perturbative running mass: [ALPHA 05] M / m(µ 1 ) = 1.308(16) Strategy 1: only combination m s + m directly accessible remove average light quark mass m additional systematic uncertainty combination of LEC α 4 & α 6 from constrained global fit Strategy 2: (conceptually preferred) no additional LEC s involved m s / f K = 0.678(12)(5) M s = 138(3)(1) MeV, ( ) m MS s µ =2 GeV = 102(3)(1) MeV P. Fritzsch Chiral Dynamics

18 Summary complete analysis of CLS based N f = 2 ensembles; a = ( )fm Conservative error estimates through autocorrelation analysis Scale setting with f K Two strategies for chiral extrapolation in agreement simple linear extrapolation also agrees within errors small cut-off effects control over systematic effects in scale setting Main results Λ (2) = 310(20) MeV, M MS m MS s s = 138(3)(1) MeV ( ) µ =2 GeV = 102(3)(1) MeV controlled reduction of statistical & systematic error achieved (since 2005) consistent with scale setting through r 0 (not coverred) P. Fritzsch Chiral Dynamics

19 Outlook unclear situation N f Λ MS experiment theory 0 238(19) MeV m K, K µν µ, K πµν µ lattice gauge theory [ALPHA 93] 2 310(20) MeV m K, K µν µ, K πµν µ this work 5 212(12) MeV world average perturb. theory [Bethke 11] remove remaining systematic uncertainty due to quenching N f = 3, 4? TODO? other low energy constants m / m s... Thank you for your attention!... and many thanks to my colleagues F.Knechtli, B.Leder, M.Marinkovic, S.Schaefer, R.Sommer, F.Virotta P. Fritzsch Chiral Dynamics

20 BACKUP SLIDES P. Fritzsch Chiral Dynamics

21 Autocorrelations in HMC generated data... grow towards the continuum limit autocorrel. depends on observable F = 1 N N i=1 F i autocorrelation function Γ F (t) = (F t F)(F 0 F) integrated autocorrelation time τ int = 1 2 t=1 ρ F(t), ρ F (t) = Γ F (t) / Γ F (0) ρfk (t) W u W l t τ exp (β) = 200 c τ R act e 7[β 5.3] τ exp estimated from β = 5.3 and quenched scaling [Schaefer,Sommer,Virotta 10] R act fraction of active links (DD-HMC: 30%; MP-HMC: 100%) c τ=2 = 1; c τ=0.5 = 2 Exponential tail accounts for 50% of the total uncertainty! P. Fritzsch Chiral Dynamics

22 Masses and decay constants A handle on excited states ( lattice, a = 0.045fm, m π = 268MeV ) x ameff x min x0 Taking τ exp into account: ampcac t 1 st step: double exponential fit to {c 1, c 2, m} with m = m + 2m π ( ) ( ) F(x 0 ) = c 1 e mx 0 + e m(t x 0) + c 2 e m x 0 + e m (T x 0 ) + criterion: stat.error(am eff ) 4 1 st excited state contribution x min 0 2 nd step: single exponential fit (c 2 0) c 2 0 well justified theoretically; see talk by M.Golterman P. Fritzsch Chiral Dynamics

23 Results for chiral extrapolations Strategy 1 afk β = 5.2 β = 5.3 β = 5.5 strat.1: strat.2: cut at y 1 = 0.1 m y 1 2 π(κ 1 ) 8π 2 fk 2 ( κ1, h(κ 1 ) ) yπ y1 constrained global fit: α 4 independent of a partially quenched ChPT: ( f K κ1, h(κ 1 ) ) ] = f K,phys [1 + L K (y 1, y K ) + (α ) (y 1 y π ) + O(y 2 ), L K (y 1, y K ) = L K (y 1, y K ) L K (y π, y K ), L K (y 1, y K ) = 2 1 y 1 log(y 1 ) 1 8 y 1 log(2y K /y 1 1). y 3 y 1 (π K) does not appear, since y 3 = 2y K y 1 + O(y 2 ) combination of chiral logs overall much smaller with less curvature compared to L π P. Fritzsch Chiral Dynamics

24 Results for chiral extrapolations Strategy 2 afk β = 5.2 β = 5.3 β = 5.5 strat.1: strat.2: cut at y 1 = 0.1 m y 1 2 π(κ 1 ) 8π 2 fk 2 ( κ1, s(κ 1, µ) ) yπ y1 constrained global fit: α f, α m independent of a SU(2) ChPT: ( a f K κ1, s(κ 1, µ) ) ] = p(µ) [1 3 8 [y 1 log(y 1 ) y π log(y π )] + α f (µ) (y 1 y π ) + O(y 2 1 ), a 2 m 2 K( κ1, s(κ 1, µ) ) ] = q(µ) [1 + α m (µ) (y 1 y π ) + O(y 2 1 ) for three different fixed µ q(µ s ) p(µ s ) 2 = m2 K,phys f 2 K,phys a = p(µ s) f K,phys P. Fritzsch Chiral Dynamics

25 The strange quark mass in N f = 2 QCD RGI strange quark mass: M s = Z M m s = M m(µ 1 ) m s(µ 1 ) = M m(µ 1 ) Z A Z P (µ 1 ) m s Renorm. scale set through SF coupling: g 2 (L 1 ) = 4.484, µ 1 = 1/L 1 Non-perturbative running mass: [ALPHA 05] M / m(µ 1 ) = 1.308(16) Strategy 1: ( 2m 13 κ1, h(κ 1 ) ) ( Z P f K κ1, h(κ 1 ) ) = m s + m [ ] 1 + L m (y f 1, y K ) + (α 4,6 4 1 )(y 1 y π ) + O(y 2 1 ) K,phys Strategy 2: L m (y 1, y K ) = L m (y 1, y K ) L m (y π, y K ), α 4,6 = 3α 4 4α 6, L m (y 1, y K ) = (y K 3 8 y 1) log(2y K /y 1 1) y K log(y 1 ) M s f K,phys = M m(l 1 ) 1 (conceptually preferred) Z P (L 1 ) [1 b µ s P µ s ] FK,phys bare, P. Fritzsch Chiral Dynamics

26 The strange quark mass in N f = 2 QCD RGI strange quark mass: M s = Z M m s = M m(µ 1 ) m s(µ 1 ) = M m(µ 1 ) Z A Z P (µ 1 ) m s m s / f K = 0.678(12)(5) Strategy 1: use y 1 = m 2 π(κ 1 ) / 8π 2 fk 2 (κ 1) < 0.1 Renorm. scale set through SF coupling: remove avg. light quark contribution m by correction g 2 (L 1 ) = factor 4.484, ρ: M s = (M s + µ 1 M)(1 = 1/L ρ) 1 Non-perturbative LOχPT : running ρ = M /( mass: M s + M ) [ALPHA 05] m2 π M / LECm(µ α 4,6 from 1 ) = constrained 1.308(16) global fit Strategy 2: 2m 2 K neglect tiny O(a) impr. term, ( b A b P )am sea Strategy 1: ( 2m 13 κ1, h(κ 1 ) ) ( Z P f K κ1, h(κ 1 ) ) = m s + m [ ] 1 + L m (y f 1, y K ) + (α 4,6 4 1 )(y 1 y π ) + O(y 2 1 ) K,phys Strategy 2: L m (y 1, y K ) = L m (y 1, y K ) L m (y π, y( K ), ) α 4,6 = 3α 4 4α 6, M s = 138(3)(1) MeV L m (y 1, y K ) = (y K 8 3 y m MS s µ = 2GeV = 102(3)(1) MeV 1) log(2y K /y 1 1) y K log(y 1 ) M s f K,phys = M m(l 1 ) 1 (conceptually preferred) Z P (L 1 ) [1 b µ s P µ s ] FK,phys bare, P. Fritzsch Chiral Dynamics

27 Generic strategy... to connect low- & high-energy regime NP ly one more important ingredient: How to connect hadronic observables from low-energies to the widely used MS-scheme? µ lattice PT (MS) 100 GeV m Z 10 GeV m τ m D 1 GeV m p 100 MeV m π 1/L µ, E, p 1/a µ pert Λ P. Fritzsch Chiral Dynamics

28 Generic strategy... to connect low- & high-energy regime NP ly one more important ingredient: How to connect hadronic observables from low-energies to the widely used MS-scheme? µ lattice intermediate (SF) µ PT (MS) 100 GeV m Z intermediate renorm. scheme Schrödinger functional (finite volume, continuum scheme) 10 GeV m τ m D RG scale evolution solved NP ly 1 GeV m p 1/L max thus continuum limit needs to be well controled (small cutoff effects) 100 MeV m π low-energy scale fixed by imposing g 2 (L max ) u max 1/L µ, E, p 1/a µ pert Λ P. Fritzsch Chiral Dynamics

29 Scale dependence of QCD parameters Running coupling and mass, g 2 (µ) g 2 = 5.5 g 2 = 4.61 Renormalization group (RG) equations 1 coupling µ g g 0 = β(g) g 3 (b 0 + b µ 1 g ) 2 m(µ) M mass µ m g 0 = τ(g) g 2 (d 0 + d m µ 1 g ) µ/λ in a massless scheme, b 0, b 1, d 0 universal Solution leads to exact equations in mass-independent scheme P. Fritzsch Chiral Dynamics

30 Scale dependence of QCD parameters Running coupling and mass, Renormalization Group Invariants (RGI) g 2 (µ) m(µ) M g 2 = 5.5 g 2 = µ/λ Renormalization group (RG) equations 1 coupling µ g µ Λ µ [ b 0 g 2] b 1 /(2b 2 0 ) e 1/(2b 0g 2) exp 2 mass µ m m µ M m(µ)[2b 0 g 2 ] d 0/(2b 0 ) exp = β(g) g 0 g 3 (b 0 + b 1 g ) { g [ 1 dg 0 β(g) + 1 b 0 g 3 b ]} 1 b0 2g = τ(g) g 0 g 2 (d 0 + d 1 g ) { g [ τ(g) dg 0 β(g) d ]} 0 b 0 g in a massless scheme, b 0, b 1, d 0 universal Solution leads to exact equations in mass-independent scheme P. Fritzsch Chiral Dynamics

Fundamental Parameters of QCD from the Lattice

Fundamental Parameters of QCD from the Lattice Fundamental Parameters of QCD from the Lattice Milano Bicocca, DESY Zeuthen GGI Firenze, Feb 2007 Introduction Coupling Masses Summary and Outlook QCD Lagrangian and Parameters L QCD (g 0, m 0 ) = 1 4

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration Determination of running coupling αs for N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Purpose of this project Determine the fundamental parameter of N f =

More information

Non-perturbative renormalization of

Non-perturbative renormalization of Non-perturbative renormalization of N f = 2 + QCD with Schrödinger functional scheme Yusuke Taniguchi for PACS-CS collaboration Our ultimate purpose Determine the fundamental parameter of N f = 2 + QCD

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Non-perturbative renormalization of Tensor currents in SF schemes

Non-perturbative renormalization of Tensor currents in SF schemes Non-perturbative renormalization of ensor currents in SF schemes David Preti in collaboration with P. Fritzsch, C. Pena 33rd International Symposium on Lattice Field heory Kobe, 4 July 25 Outline Motivation

More information

Lattice computation for the QCD Lambda parameter

Lattice computation for the QCD Lambda parameter Lattice computation for the QCD Lambda parameter twisted gradient flow scheme for quenched system Issaku Kanamori (Hiroshima Univ.) Workshop on Hadron Physics & QCD July 17, 2017 at Academia Sineca based

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Light Meson spectrum with Nf=2+1 dynamical overlap fermions

Light Meson spectrum with Nf=2+1 dynamical overlap fermions Light Meson spectrum with Nf=2+1 dynamical overlap fermions Jun Noaki (KEK) for JLQCD-TWQCD Collaborations: S.Aoki, T-W.Chiu, H.Fukaya, S.Hashimoto, T-H.Hsieh, T.Kaneko, H.Matsufuru, T.Onogi, E.Shintani

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm

Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, Santanu Mondal, Anwesa Sarkar June

More information

The Conformal Window in SU(3) Yang-Mills

The Conformal Window in SU(3) Yang-Mills The Conformal Window in SU(3) Yang-Mills Ethan T. Neil ethan.neil@yale.edu Department of Physics Yale University Lattice 2008 Williamsburg, VA July 15, 2008 Ethan Neil (Yale) Conformal Window in Yang-Mills

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

Chiral perturbation theory with physical-mass ensembles

Chiral perturbation theory with physical-mass ensembles Chiral perturbation theory with physical-mass ensembles Steve Sharpe University of Washington S. Sharpe, Future of ChPT for LQCD 5/19/16 @ TUM-IAS EFT workshop 1 /35 ChPT for LQCD: Does it have a future?

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Light pseudoscalar masses and decay constants with a mixed action

Light pseudoscalar masses and decay constants with a mixed action Light pseudoscalar masses and decay constants with a mixed action Jack Laiho Washington University Christopher Aubin and Ruth Van de Water Lattice 2008 July 15, 2008 William + Mary, July 15, 2008 p.1/21

More information

arxiv: v2 [hep-lat] 24 Oct 2007

arxiv: v2 [hep-lat] 24 Oct 2007 Non-perturbative renormalisation of four-fermion operators in N f = 2 QCD arxiv:7.2862v2 [hep-lat] 24 Oct 27 LPHA ACollaboration Petros Dimopoulos, Gregorio Herdoiza, Anastassios Vladikas INFN, Sezione

More information

Universality check of the overlap fermions in the Schrödinger functional

Universality check of the overlap fermions in the Schrödinger functional Universality check of the overlap fermions in the Schrödinger functional Humboldt Universitaet zu Berlin Newtonstr. 15, 12489 Berlin, Germany. E-mail: takeda@physik.hu-berlin.de HU-EP-8/29 SFB/CPP-8-57

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD FLAG: LATTICE FLAVOUR PHYSICS AND WORLD AVERAGES A. Vladikas INFN - TOR VERGATA Trento - ECT* 14th January 2013 Lattice QCD and Hadron Physics LPHA ACollaboration OUTLINE FLAG description and summary of

More information

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34 The Topology in QCD Ting-Wai Chiu Physics Department, National Taiwan University The vacuum of QCD has a non-trivial topological structure. T.W.

More information

arxiv: v1 [hep-lat] 3 Nov 2009

arxiv: v1 [hep-lat] 3 Nov 2009 SU(2 chiral fits to light pseudoscalar masses and decay constants arxiv:0911.0472v1 [hep-lat] 3 Nov 2009 The MILC Collaboration: A. Bazavov, W. Freeman and D. Toussaint Department of Physics, University

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion T.W. Chiu, Lattice 2008, July 15, 2008 p.1/30 Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion Ting-Wai Chiu Physics Department, National Taiwan University Collaborators: S.

More information

openq*d simulation code for QCD+QED

openq*d simulation code for QCD+QED LATTICE 2017 Granada openq*d simulation code for QCD+QED Agostino Patella CERN & Plymouth University on behalf of the software-development team of the RC collaboration: Isabel Campos (IFCA, IFT), Patrick

More information

Locality and Scaling of Quenched Overlap Fermions

Locality and Scaling of Quenched Overlap Fermions χqcd Collaboration: a, Nilmani Mathur a,b, Jianbo Zhang c, Andrei Alexandru a, Ying Chen d, Shao-Jing Dong a, Ivan Horváth a, Frank Lee e, and Sonali Tamhankar a, f a Department of Physics and Astronomy,

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

Mixed action simulations: approaching physical quark masses

Mixed action simulations: approaching physical quark masses Mixed action simulations: approaching physical quark masses Stefan Krieg NIC Forschungszentrum Jülich, Wuppertal University in collaboration with S. Durr, Z. Fodor, C. Hoelbling, S. Katz, T. Kurth, L.

More information

Meson Baryon Scattering

Meson Baryon Scattering Meson Baryon Scattering Aaron Torok Department of Physics, Indiana University May 31, 2010 Meson Baryon Scattering in Lattice QCD Calculation of the π + Σ +, and π + Ξ 0 scattering lengths Aaron Torok

More information

Confining and conformal models

Confining and conformal models Confining and conformal models Lecture 4 Hasenfratz University of Colorado, Boulder 2011 Schladming Winter School Technicolor models are candidates for dynamical electroweak symmetry breaking gauge coupling

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino Outline Motivation Simulations Spectrum Mesons and baryons Chiral

More information

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD

PoS(LATTICE 2013)393. K and D oscillations in the Standard Model and its. extensions from N f = Twisted Mass LQCD K and D oscillations in the Standard Model and its extensions from N f = 2+1+1 Twisted Mass LQCD, V. Giménez Dep. de Física Teòrica and IFIC, Universitat de València-CSIC P. Dimopoulos Centro Fermi - Museo

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

arxiv: v2 [hep-lat] 16 Oct 2009

arxiv: v2 [hep-lat] 16 Oct 2009 Investigating the critical slowing down of QCD simulations arxiv:91.1465v2 [hep-lat] 16 Oct 29 Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany E-mail: sschaef@physik.hu-berlin.de

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

The light hadron spectrum from lattice QCD

The light hadron spectrum from lattice QCD Ch. Hoelbling with S. Durr Z. Fodor J. Frison S. Katz S. Krieg T. Kurth L. Lellouch Th. Lippert K. Szabo G. Vulvert The Budapest-Marseille-Wuppertal collaboration Rab 2008 Outline 1 Motivation 2 Setup

More information

Quenched QCD with O a improvement: The spectrum of light hadrons

Quenched QCD with O a improvement: The spectrum of light hadrons Quenched QCD with O a improvement: The spectrum of light hadrons K. C. Bowler, P. Boyle,* J. Garden, R. D. Kenway, D. G. Richards, P. A. Rowland, S. M. Ryan, and H. Simma Department of Physics & Astronomy,

More information

arxiv:hep-lat/ v1 3 Apr 1999

arxiv:hep-lat/ v1 3 Apr 1999 CP-PACS results for light hadron spectrum in quenched and two-flavor full QCD Yoshinobu Kuramashi for the CP-PACS Collaboration Department of Physics, Washington University, St. Louis, Missouri 63130 We

More information

arxiv: v1 [hep-ph] 13 Nov 2013

arxiv: v1 [hep-ph] 13 Nov 2013 euniversityofmanchester November 14, 2013 arxiv:1311.3203v1 [hep-ph] 13 Nov 2013 Odd- and even-parity charmed mesons revisited in heavy hadron chiral perturbation theory Mohammad Alhakami 1 School of Physics

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Aspects of HQET on the lattice

Aspects of HQET on the lattice Japan Wochen an Deutschen Hochschulen, May 2011, Bergische Universität, Wuppertal Introduction: Particle Physics Observations (e, µ,... Z,... t, Lorenz invariance... ) + Principles (Unitarity, Causality,

More information

arxiv: v1 [hep-lat] 8 Oct 2007

arxiv: v1 [hep-lat] 8 Oct 2007 arxiv:71.1517v1 [hep-lat] 8 Oct 27 Lattice QCD with two light Wilson quarks and maximally twisted mass Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

Numerical Stochastic Perturbation Theory and The Gradient Flow

Numerical Stochastic Perturbation Theory and The Gradient Flow Numerical Stochastic Perturbation Theory and The Gradient Flow Mattia Dalla Brida Trinity College Dublin, Ireland Dirk Hesse Universita degli Studi di Parma, Italia 31st International Symposium on Lattice

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks

Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks PHYSICAL REVIEW D, VOLUME 64, 034505 Decay constants of B and D mesons from improved relativistic lattice QCD with two flavors of sea quarks A. Ali Khan, 1 S. Aoki, 2 R. Burkhalter, 1,2 S. Ejiri, 1 M.

More information

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD The decay constants f B + and f D + from three-flavor lattice QCD C. Bernard a, C. DeTar b, M. Di Pierro c, A.X. El-Khadra d, R.T. Evans d, E. Freeland e, S. Gottlieb f, U.M. Heller g, J.E. Hetrick h,

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

arxiv: v1 [hep-lat] 19 Jan 2016

arxiv: v1 [hep-lat] 19 Jan 2016 from lattice QCD with nearly physical quark masses arxiv:1601.04818v1 [hep-lat] 19 Jan 2016 Gunnar Bali, a Sara Collins, a Meinulf Göckeler, a, a Andreas Schäfer, a Andre Sternbeck b a Institut für Theoretische

More information

Baryon semi-leptonic decay from lattice QCD with domain wall fermions

Baryon semi-leptonic decay from lattice QCD with domain wall fermions 4th ILFTN Workshop at Hayama, Mar. 8-11, 2006 Baryon semi-leptonic decay from lattice QCD with domain wall fermions Shoichi Sasaki (RBRC/U. of Tokyo) in collabration with Takeshi Yamazaki (RBRC) Baryon

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

RG scaling at chiral phase transition! in two-flavor QCD

RG scaling at chiral phase transition! in two-flavor QCD Lattice 2016 July 25-30 2016 RG scaling at chiral phase transition in two-flavor QCD K.-I.Ishikawa(Hiroshima U.) Y. Iwasaki(U.Tsukuba) Yu Nakayama(CalTech) T. Yoshie(U. Tsukuba) 1 Objective Clarify the

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Thermal transition temperature from twisted mass QCD

Thermal transition temperature from twisted mass QCD Thermal transition temperature from twisted mass QCD tmft collaboration: Florian Burger, Malik Kirchner, Michael Müller-Preussker Humboldt-Universität zu Berlin, Institut für Physik, 12489 Berlin, Germany

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

arxiv: v1 [hep-lat] 6 Feb 2009

arxiv: v1 [hep-lat] 6 Feb 2009 ROM2F/2009/03 February 6, 2009 Quenched B K -parameter from Osterwalder-Seiler tmqcd quarks and mass-splitting discretization effects P. Dimopoulos a, H. Simma b and A. Vladikas c arxiv:0902.074v [hep-lat]

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

IR fixed points in SU(3) Gauge Theories

IR fixed points in SU(3) Gauge Theories 205/03/03 SCGT5 IR fixed points in SU(3) Gauge Theories Y. Iwasaki U.Tsukuba and KEK In Collaboration with K.-I. Ishikawa(U. Horoshima) Yu Nakayama(Caltech & IPMU) T. Yoshie(U. Tsukuba) Plan of Talk Introduction

More information

arxiv: v1 [hep-lat] 4 Oct 2016

arxiv: v1 [hep-lat] 4 Oct 2016 arxiv:60.0093v [hep-lat] 4 Oct 06 Leptonic decay-constant ratio / rom clover-improved N = + QCD Universität Regensburg, Institut ür Theoretische Physik, D-93040 Regensburg, Germany E-mail: enno.scholz@physik.uni-regensburg.de

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

arxiv: v1 [hep-lat] 12 Sep 2016

arxiv: v1 [hep-lat] 12 Sep 2016 Neutral Kaon Mixing Beyond the Standard Model with n f = 2 + 1 Chiral Fermions Part 1: Bare Matrix Elements and Physical Results N. Garron a, R.J. Hudspith b, A.T. Lytle c a Theoretical Physics Division,

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Hadron Structure James Zanotti The University of Adelaide Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Lecture 3 Neutron beta decay Nucleon axial charge, ga Deep Inelastic Scattering Structure

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

arxiv: v3 [hep-ph] 27 Aug 2014

arxiv: v3 [hep-ph] 27 Aug 2014 Improved light quark masses from pseoscalar sum rules Stephan Narison a a Laboratoire Univers et Particules de Montpellier, CNRS-INP, Case 070, Place Eugène Bataillon, 09 - Montpellier, France. arxiv:101.689v

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

The kaon B-parameter from unquenched mixed action lattice QCD

The kaon B-parameter from unquenched mixed action lattice QCD The kaon B-parameter from unquenched mixed action lattice QCD Christopher Aubin Department of Physics, Columbia University, New York, NY, USA Department of Physics, College of William and Mary, Williamsburg,

More information

B Kl + l at Low Hadronic Recoil

B Kl + l at Low Hadronic Recoil B Kl + l at Low Hadronic Recoil Gudrun Hiller Danny van Dyk Christian Wacker TU Dortmund - Theoretische Physik III DPG-Frühjahrstagung Karlsruhe 11 31. March 11 Christian Wacker (TU Dortmund) B Kl + l

More information

The lattice gluon propagator in numerical stochastic perturbation theory

The lattice gluon propagator in numerical stochastic perturbation theory The lattice gluon propagator in numerical stochastic perturbation theory E.-M. Ilgenfritz 1, H. Perlt 2 and A. Schiller 2 1 Humboldt-Universität zu Berlin, 2 Universität Leipzig 8th Leipzig Workshop on

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information