Baryon semi-leptonic decay from lattice QCD with domain wall fermions

Size: px
Start display at page:

Download "Baryon semi-leptonic decay from lattice QCD with domain wall fermions"

Transcription

1 4th ILFTN Workshop at Hayama, Mar. 8-11, 2006 Baryon semi-leptonic decay from lattice QCD with domain wall fermions Shoichi Sasaki (RBRC/U. of Tokyo) in collabration with Takeshi Yamazaki (RBRC)

2 Baryon semi-leptonic decay The octet baryons (p,n,λ,σ,ξ) admit various β-type decays. neutron beta decay B B + l ± + ν l ( ν l ) n p + e + ν e CVC (conserved vector current) hypothesis: p V + µ A + µ n =2 p V 3 µ A 3 µ p Weak matrix element Iso-vector nucleon matrix element way to access the nucleon structure

3 Baryon semi-leptonic decay The octet baryons (p,n,λ,σ,ξ) admit various β-type decays. hyperon beta decay B B + l ± + ν l ( ν l ) Alternative way to determine V us other than K l3 decays Δs=1 decay W ν e e T. Kaneko s talk Σ (sdd) n(udd) the weak mixing element (CKM) Vus

4 Baryon semi-leptonic decay The octet baryons (p,n,λ,σ,ξ) admit various β-type decays. hyperon beta decay B B + l ± + ν l ( ν l ) Alternative way to determine V us other than K l3 decays Vital input to analysis of strange quark spin fraction Σ(= u + d + s) Expt. = ± (g A /g V ) np = u d (g A /g V ) Λp = (2 u d s)/3 (g A /g V ) ΞΣ = ( u + d 2 s)/3 (g A /g V ) Σn = d s Assumption : SU(3) symmetry

5 Baryon semi-leptonic decay The octet baryons (p,n,λ,σ,ξ) admit various β-type decays. hyperon beta decay B B + l ± + ν l ( ν l ) Alternative way to determine V us other than K l3 decays Vital input to analysis of strange quark spin fraction s = ± 46 The hidden uncertainty of Δs coming from unknown SU(3) breaking in hyperon beta decays.

6 Baryon semi-leptonic decay The octet baryons (p,n,λ,σ,ξ) admit various β-type decays. hyperon beta decay B B + l ± + ν l ( ν l ) Alternative way to determine V us other than K l3 decays Vital input to analysis of strange quark spin fraction SU(3) breaking in hyperon beta decays

7 Baryon semi-leptonic decay B B + l ± + ν l ( ν l ) These decays are described by 6 form factors B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) 2M B q α σ αβ γ 5 q β + g 3(q 2 ) 2M B q α γ 5 ]u B (p ) 1st class: f 1 (q 2 ), f 2 (1 2 ), g 1 (q 2 ), g 3 (q 2 ) 2nd class: f 3 (q 2 ), g 2 (q 2 )

8 Baryon semi-leptonic decay B B + l ± + ν l ( ν l ) These decays are described by 6 form factors B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) 2M B q α σ αβ γ 5 q β + g 3(q 2 ) 2M B q α γ 5 ]u B (p ) 1st class: f 1 (q 2 ), f 2 (1 2 ), g 1 (q 2 ), g 3 (q 2 ) Sach s form factors G E (q 2 )=f 1 (q 2 )+ q2 f 2 (q 2 ) 2M B G M (q 2 )=f 1 (q 2 )+f 2 (q 2 )

9 Baryon semi-leptonic decay B B + l ± + ν l ( ν l ) These decays are described by 6 form factors B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) 2M B q α σ αβ γ 5 q β + g 3(q 2 ) 2M B q α γ 5 ]u B (p ) 1st class: f 1 (q 2 ), f 2 (1 2 ), g 1 (q 2 ), g 3 (q 2 ) g V = lim q 2 0 f 1(q 2 ) g A = lim q 2 0 g 1(q 2 ) forward limit

10 Baryon semi-leptonic decay B B + l ± + ν l ( ν l ) These decays are described by 6 form factors B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) 2M B q α σ αβ γ 5 q β + g 3(q 2 ) 2M B q α γ 5 ]u B (p ) 2nd class: f 3 (q 2 ), g 2 (q 2 ) SU(3) limit (neutron beta decay) f 3 (q 2 )=0, g 2 (q 2 )=0

11 Contents Nucleon axial charge Finite size effect O(a 2 ) correction Sasaki, Orginos, Ohta, Blum, Phys. Rev. D68 (03) Nucleon form factors Finite size effect Nf=2 & Nf=0 DWF results (preliminary) Hyperon beta decay SU(3) breaking effect An exploratory study in quench (Nf=0) DWF calculation

12 Nucleon axial charge

13 Nucleon axial charge ga Well measured quantity in experiment Iso-symmetry gives rise to the relation p V + µ A + µ n =2 p V 3 µ A 3 µ p from neutron beta decay; ga/gv= (35). The simplest nucleon matrix elements lowest moment (no covariant derivative) zero momentum transfer no disconnected diagram a benchmark calculation = a gold plated test

14 But expt (30) n p + e + ν e 1.2 g A = < 1 >!u-!d % discrepancy ( ga g A = lim q 2 0 g 1(q 2 ) g V ) expt. =1.2670(30) Quenched QCD (MIT) Full QCD (SESAM) Full QCD (SCRI-LHPC) long-standing problem M PS 2 [GeV 2 ]

15 Lattice calculation of ga (before 2002) type group fermion lattice β volume configs m π L g A quench KEK 1) Wilson 16 3 x (2.2 fm) (25) Kentuchy 2) Wilson 16 3 x (1.5 fm) (10) DESY 3) Wilson 16 3 x (1.5 fm) (90) LHPC-SESAM 7) Wilson 16 3 x (1.5 fm) (98) QCDSF 4) Wilson 16 3 x x (1.5 fm) 3 (1.6 fm) 3 O(500) O(300) 1.14(3) 32 3 x (1.6 fm) 3 O(100) QCDSF-UKQCD 5) Clover 16 3 x x (1.5 fm) 3 (1.6 fm) 3 O(500) O(300) 1.135(34) 32 3 x (1.6 fm) 3 O(100) full LHPC-SESAM 7) Wilson 16 3 x (1.7 fm) (106) SESAM 6) Wilson 16 3 x (1.5 fm) (20) 1. M. Fukugita et al., Phys. Rev. Lett. 75 (1995) K.F. Liu et al., Phys. Rev. D49 (1994) M. Göckeler et al., Phys. Rev. D53 (1996) S. Capitani et al., Nucl. Phys. B (Proc. Suppl.) 79 (1999) R. Horsley et al., Nucl. Phys. B (Proc. Suppl.) 94 (2001) S. Güsken et al., Phys. Rev. D59 (1999) D. Dolgov et al., Phys. ReV.D66 (2002)

16 Low value of ga in lattice QCD Possible systematic errors Quenching! g Full A < g Quench! ~ A at a~0.1 fm ~ 5-10 % Finite lattice spacing! (g A ) at a 0 > (g A ) at a~0.1 fm! ~ 5 % Determination of Z A! Z Non-pert A < Z Pert A (Clover )! ~ 10 % Finite volume No estimation?

17 Lattice calculation of ga (before 2002) type group fermion lattice β volume configs m π L g A quench KEK 1) Wilson 16 3 x (2.2 fm) (25) Kentuchy 2) Wilson 16 3 x (1.5 fm) (10) DESY 3) Wilson 16 3 x (1.5 fm) (90) LHPC-SESAM 7) Wilson 16 3 x (1.5 fm) (98) QCDSF 4) Wilson 16 3 x x (1.5 fm) 3 (1.6 fm) 3 O(500) O(300) 1.14(3) 32 3 x (1.6 fm) 3 O(100) QCDSF-UKQCD 5) Clover 16 3 x x (1.5 fm) 3 (1.6 fm) 3 O(500) O(300) 1.135(34) 32 3 x (1.6 fm) 3 O(100) full LHPC-SESAM 7) Wilson 16 3 x (1.7 fm) (106) SESAM 6) Wilson 16 3 x (1.5 fm) (20) 1. M. Fukugita et al., Phys. Rev. Lett. 75 (1995) K.F. Liu et al., Phys. Rev. D49 (1994) M. Göckeler et al., Phys. Rev. D53 (1996) S. Capitani et al., Nucl. Phys. B (Proc. Suppl.) 79 (1999) R. Horsley et al., Nucl. Phys. B (Proc. Suppl.) 94 (2001) S. Güsken et al., Phys. Rev. D59 (1999) D. Dolgov et al., Phys. ReV.D66 (2002)

18 DWF calculation of ga Big advantage in dealing with the axial symmetry - g A are supposed to respect the axial WT identity - Empirically known as Goldberger-Treiman relation: M N g A = f π g πn Excellent chiral properties of DWF lighter pion mass Especially, a significant relation ZV=ZA for local lattice currents - up to O(a 2 ) T. Blum et al, PRD66 (02) A ratio ga latt / gv latt directly yields the renormalized value of ga Just require to calculate the ratio of three-point functions!

19 CVC hypothesis The vector weak current is the iso-spin rotation of the electromagnetic current, j em µ = 2 3 V u µ 1 3 V d µ + [I +,j em µ ]= dγ µ u p dγ µ u n = p [I +,j em µ ] n = p j em µ p n j em µ n g V = lim q 2 0 p dγ µ u n = lim q 2 0 p jem µ p = 1 way to calculate the renormalization factor Z V = gv ren /gv lat =1/g lat V

20 CVC hypothesis (cont d) Further consideration of iso-spin symmetry provides lim q 2 0 p jem µ p = lim q 2 0 p V d µ p = lim q 2 0 p V u µ V d µ p =1 For the local lattice currents in the chiral limit, Three different determination of ZV can expose an O(a 2 ) lattice artifact. V f µ = Z V V f µ + O(a 2 ) in the continuum

21 Check of the relation ZA=ZV Nf0: DWF-DBW2 at β=0.87 (a -1 =1.3GeV) coarse lattice x 32 x 16 with M5=1.8 Sasaki-Orginos-Ohta-Blum, PRD68 (03) Z V = 1 g latt V N(t ) N(0) N(t )V 4 (t) N(0) Z V am f

22 Check of the relation ZA=ZV Nf0: DWF-DBW2 at β=0.87 (a -1 =1.3GeV) coarse lattice x 32 x 16 with M5=1.8 Sasaki-Orginos-Ohta-Blum, PRD68 (03) Z V = 1 g latt V N(t ) N(0) N(t )V 4 (t) N(0) Z V Z A Z A Acon 0 (t)π(0) A 0 (t)π(0) Y. Aoki et al., PRD69 (04) am f

23 Check of the relation ZA=ZV Nf0: DWF-DBW2 at β=0.87 (a -1 =1.3GeV) coarse lattice x 32 x 16 with M5=1.8 Sasaki-Orginos-Ohta-Blum, PRD68 (03) Z V = 1 g latt V N(t ) N(0) N(t )V 4 (t) N(0) Z V (u-d) Z V (j) Z V (d) Z A 0.12 Violation of lim q 2 0 p jem µ p = lim q 2 0 p V d µ p = lim q 2 0 p V u µ V d µ p implies an O(a 2 ) lattice artifact am f

24 Check of the relation ZA=ZV Nf0: DWF-DBW2 at β=0.87 (a -1 =1.3GeV) coarse lattice x 32 x 16 with M5=1.8 Sasaki-Orginos-Ohta-Blum, PRD68 (03) a -1 =1.3GeV Z V (u-d) Z V (j) Z V (d) a -1 =2.0GeV Z V (u-d) Z V (j) Z V (d) Z A am f am f

25 Check of the relation ZA=ZV Nf0: DWF-DBW2 at β=0.87 (a -1 =1.3GeV) coarse lattice x 32 x 16 with M5=1.8 Sasaki-Orginos-Ohta-Blum, PRD68 (03) In the chiral limit Z V =0.796(3) 0.78 Z A =0.7776(5) am f 8 Z V Z A % systematic error stemming from determination of Z-factor mainly due to O(a 2 ) corrections

26 Quench DWF calculation of ga 1.4 ga (exp.) = (3) Sasaki-Orginos-Ohta-Blum, PRD68 (03) g A 1.2 g ren A = glat A gv lat = N(t )A 3 (t)n(0) N(t )V 4 (t)n(0) the lightest pion mass, Mπ ~ 0.39 GeV relatively large volume, V ~ (2.4 fm) 3 large statistics, 416 configs mild quark mass dependence 0.8 Linear extrapolation yields L=2.4 fm (DWF/DBW2) ga = (27) M PS 2 [GeV 2 ]

27 Quench DWF calculation of ga 1.4 ga (exp.) = (3) Sasaki-Orginos-Ohta-Blum, PRD68 (03) g A 1.2 the lightest pion mass, Mπ ~ 0.39 GeV relatively large volume, V ~ (2.4 fm) 3 large statistics, 416 configs mild quark mass dependence 0.8 L=2.4 fm (DWF/DBW2) L=1.2 fm (DWF/DBW2) L=1.5 fm (DWF/Wilson) clear finite volume dependence M PS 2 [GeV 2 ] a 20 % increase from 1.2 fm to 2.4 fm resolve the long-standing problem!

28 Nf2: DWF-DBW2 at beta=0.80 (a-1 =1.7GeV) 163 x32x12 (L=1.9 fm): O(5000) MC trajectories m sea=2, 3, 4 (Mπ=0.49, 0.61, 0.70 GeV) m res=0137(5) f π= 134.0(42), fk=157.4(38) MeV B K MS (2 GeV)=0.495(18) RBC collaboration, Phys. Rev. D72, (05)

29 Nf2: DWF-DBW2 at beta=0.80 (a-1 =1.7GeV) 163 x32x12 (L=1.9 fm): 220 statistics m sea=3, 4 m sea=2 (underway) Nucleon structure function Blum, Lin, Ohta, Orginos, Sasaki

30 Nf=2 DWF calculation of ga g A L=2.4 fm (DWF/DBW2/Nf=0) L=1.9 fm (DWF/DBW2/Nf=2) M PS 2 [GeV 2 ]

31 Nucleon form factors

32 Neutron beta decay n p + e + ν e B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B σ αβ q β +g 1 (q 2 )γ α γ 5 + g 3(q 2 ) 2M B q α γ 5 ]u B (p ) Under CVC hypothesis (rigid isospin symmetry) f 3 (q 2 )=0 g 2 (q 2 )=0 p V + µ A + µ n =2 p V 3 µ A 3 µ p weak matrix element isovector nucleon matrix element

33 Nf2: DWF-DBW2 at beta=0.80 (a-1 =1.7GeV) 163 x32x12 (L=1.9 fm): 220 statistics m sea=3, 4 (Mπ=0.61, 0.70 GeV)

34 Vector (Dirac form factor; f1=gv) 0.8 m sea =4 (DWF/DBW2/Nf=2) g V (Q 2 ) / g V (0) Dipole (exp.) with M V =0.86 GeV g V (Q 2 g V (0) )= (1 Q 2 /MV 2 )2 M V = 0(6) GeV Q 2 (GeV 2 )

35 Vector (Dirac form factor; f1=gv) 0.8 m sea =3 (DWF/DBW2/Nf=2) m sea =4 (DWF/DBW2/Nf=2) g V (Q 2 ) / g V (0) Dipole (exp.) with M V =0.86 GeV g V (Q 2 g V (0) )= (1 Q 2 /MV 2 )2 M V = 0(6) GeV Q 2 (GeV 2 )

36 Axial-vector (g1=ga) m sea =4 (DWF/DBW2/Nf=2) 0.8 g A (Q 2 ) / g A (0) M A = 1.85(1) GeV ra~0.38fm 0.2 g A (Q 2 g A (0) )= (1 Q 2 /MA 2 )2 Dipole (exp.) with M A =8(8) GeV large discrepancy ra~0.63fm r 2 A = 12 M 2 A Q 2 (GeV 2 )

37 Axial-vector (g1=ga) 0.8 m sea =3 (DWF/DBW2/Nf=2) m sea =4 (DWF/DBW2/Nf=2) g A (Q 2 ) / g A (0) M A = 1.85(1) GeV 0.2 Dipole (exp.) with M A =8(8) GeV r 2 A = 12 M 2 A Q 2 (GeV 2 ) No sea-quark mass dependence!

38 Nf0: DWF-DBW2 at beta=0.87 (a-1 =1.3GeV) 163 x32x16 (L=2.4 fm): 119 statistics m f=4, 5, 6, 8 (Mπ= GeV)

39 Axial-vector (g1=ga) 0.8 L=1.9 fm (DWF/DBW2/Nf=2) L=2.4 fm (DWF/DBW2/Nf=0) g A (Q 2 ) / g A (0) M A = 1.85(1) GeV M A = 1.39(1) GeV ra~0.38fm ra~0.50fm 0.2 Dipole (exp.) with M A =8(8) GeV ra~0.63fm r 2 A = 12 M 2 A Q 2 (GeV 2 ) Finite volume effect?

40 No quark mass dependence! 0.8 m f =4 (DWF/DBW2/Nf=0) m f =5 (DWF/DBW2/Nf=0) m f =6 (DWF/DBW2/Nf=0) g A (Q 2 ) / g A (0) M A = 1.39(1) GeV 0.2 Dipole (exp.) with M A =8(8) GeV Q 2 (GeV 2 )

41 Nf0: DWF-DBW2 at beta=0.87 (a-1 =1.3GeV) 123 x32x16 (L=1.8 fm): 400 statistics

42 1.6 mπ ~ 0.76 GeV Finite volume effect on ga an gv g lat A Nf0: DWF-DBW2 at beta=0.87 (a -1 =1.3GeV) Large finite volume effect on nucleon axial charge less volume dependence for nucleon vector charge g lat V 2.4 fm g lat A g lat V = N(t )A 3 (t)n(0) N(t )N(0) = N(t )V 4 (t)n(0) N(t )N(0) L

43 Axial-vector Vector Nf0/L=2.4 fm Nf0/L=1.8 fm Dipole (exp.) with M A =0.86 GeV g A (Q 2 )/g A (0) g V (Q 2 )/g V (0) Nf0/L=2.4 fm Nf0/L=1.8 fm Dipole (exp.) with M A =8 GeV Q 2 Q 2 Finite volume effect is observed!

44 Axial-vector Vector Nf0/L=2.4 fm Nf0/L=1.8 fm Nf2/L=1.9 fm Dipole (exp.) with M A =0.86 GeV g A (Q 2 )/g A (0) g V (Q 2 )/g V (0) Nf0/L=2.4 fm Nf0/L=1.8 fm Nf2/L=1.9 fm Dipole (exp.) with M A =8 GeV Q 2 Q 2

45 Hyperon beta decay

46 Baryon semi-leptonic decay According to DWF study of neutron beta decay Better control of determination of Z factor, thanks to excellent chiral properties of DWF ga/gv in neutron beta decay is well reproduced within about 5 % accuracy even in quenched calculation The lightest baryon (nucleon) seems to be fitted in 2.4 fm lattice size (quench) In the next stage, we explore the hyperon beta decay in lattice QCD

47 Hyperon Beta Decay (Expt.) B Blν f SU(3) 1 g 1 /f 1 (Exp.) (g 1 /f 1 ) SU(3) n p ± 030 F + D Λ p ± 15 F + 1D 2 3 Ξ Λ ± 5 F 1D 2 3 Σ n ± 17 F D Ξ 0 Σ ± 0.21 F + D Ξ Ξ 0-1 N/A F D g V = lim q 2 0 f 1(q 2 ) g A = lim q 2 0 g 1(q 2 )

48 Hyperon Beta Decay (Expt.) B Blν f SU(3) 1 g 1 /f 1 (Exp.) (g 1 /f 1 ) SU(3) n p ± 030 F + D Λ p ± 15 F + 1D 2 3 Ξ Λ ± 5 F 1D 2 3 Σ n ± 17 F D Ξ 0 Σ ± 0.21 F + D Ξ Ξ 0-1 N/A F D g V = lim q 2 0 f 1(q 2 ) g A = lim q 2 0 g 1(q 2 ) Ξ Σ is the direct analogue of n p under d s Ξ Ξ is the direct analogue of Σ n under d s

49 Hyperon Beta Decay (Ξ ) Ξ Σ is the direct analogue of n p under d s W ν e e Ξ 0 (ssu) V us Σ + (suu) highly sensitive to SU(3) breaking Center of mass correction approach (Ratcliffe) " (ga/gv)np > (ga/gv)ξσ" 8-10% 1/Nc expansion approach (Flores-Mendieta-Jenkins-Manohar) " (ga/gv)np > (ga/gv)ξσ" 20-30%

50 Summary on Ξ (exp.) First and Single experiment at - g1 / f1 = 1.17 ± 0.28(stat) ± 5(syst) - g2 / f1 = 1.7 ± 2.0(stat) ± 0.5 (syst) no evidence for a nonzero value of the g2 form factor (2nd-class) Assumming g2 / f1 = 0 n p: g1 / f1= (35) - g1 / f1 = 1.32 ± 0.21(stat) ± 5(syst) no indication of flavor SU(3) breaking effects

51 2nd-class current B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) q α 2M B σ αβ γ 5 q β + g 3(q 2 ) q α γ 5 ]u B (p ) 2M B Time reversal invariance requires all 6 form factors to be real With respect to transformation under (extended) G-parity, 1st class Gf 1,2 (Q 2 )G 1 =+f 1,2 (Q 2 ) Gg 1,3 (Q 2 )G 1 = g 1,3 (Q 2 ) 2nd class Gf 3 (Q 2 )G 1 = f 3 (Q 2 ) (extended) G-parity invariance requires f 3 (Q 2 )=0 g 2 (Q 2 )=0 Gg 2 (Q 2 )G 1 =+g 2 (Q 2 ) G = Ce iπt 2,5,7

52 2nd-class current B V α A α B =ū B (p)[f 1 (q 2 )γ α + f 2(q 2 ) 2M B +g 1 (q 2 )γ α γ 5 + g 2(q 2 ) 2M B σ αβ q β + f 3(q 2 ) q α 2M B σ αβ γ 5 q β + g 3(q 2 ) q α γ 5 ]u B (p ) 2M B Time reversal invariance requires all 6 form factors to be real With respect to transformation under (extended) G-parity, 1st class Gf 1,2 (Q 2 )G 1 =+f 1,2 (Q 2 ) Gg 1,3 (Q 2 )G 1 = g 1,3 (Q 2 ) 2nd class Gf 3 (Q 2 )G 1 = f 3 (Q 2 ) (extended) G-parity invariance requires SU(3) breaking f 3 (Q 2 ) 0 g 2 (Q 2 ) 0 Gg 2 (Q 2 )G 1 =+g 2 (Q 2 ) G = Ce iπt 2,5,7

53 An exploratory study Extract the 2nd-class form factors (g2 and f3) SU(3) breaking = existence of non-zero g2 and f3 Quantify the SU(3) breaking effect on g1 / f1 double ratio: Σ(t )A 3 (t)ξ(0) Σ(t )V 4 (t)ξ(0) N(t )V 4 (t)n(0) N(t )A 3 (t)n(0) = g 1 (q 2 max) f 1 (q 2 max) δf 3 (q 2 max) ( ) f1 (0) g 1 (0) SU(3) ( )( ) g1 (0) f1 (0) f 1 (0) g 1 (0) SU(3) δ = M Ξ M Σ M Ξ + M Σ q 2 max = (M Ξ M Σ ) 2

54 Nf0: DWF-DBW2 at beta=0.87 (a-1 =1.3GeV) 163 x32x16 (L=2.4 fm): 119 statistics m l=4, 5, 6 (Mπ=0.53, 0.60, 0.65 GeV) fixed strange quark mass at m s=8

55 2nd-class form factors ml=5, ms=8 1.5 preliminary preliminary 0.5 G 2 (Q 2 ) / F 1 (Q 2 ) 0.5 F 3 (Q 2 ) / F 1 (Q 2 ) δ = M Ξ M Σ M Ξ + M Σ =14(1) Q 2 (GeV 2 ) Q 2 (GeV 2 ) g 2 (0.25 GeV 2 ) f 1 (0.25 GeV 2 ) =0.24(18) f 3 (0.25 GeV 2 ) f 1 (0.25 GeV 2 ) =0.25(8)

56 2nd-class form factors ml=5, ms=8 1.5 Hyperon beta decay Neutron beta decay 0.5 Hyperon beta decay Neutron beta decay G 2 (Q 2 ) / F 1 (Q 2 ) 0.5 F 3 (Q 2 ) / F 1 (Q 2 ) preliminary preliminary Q 2 (GeV 2 ) Q 2 (GeV 2 ) g 2 (0.25 GeV 2 ) f 1 (0.25 GeV 2 ) =0.24(18)(13) f 3 (0.25 GeV 2 ) f 1 (0.25 GeV 2 ) =0.25(8)(13)

57 2nd-class form factors Preliminary result (quenched lattice QCD) - at δ=14(1) (ml=5, ms=8) g 2 (0.25 GeV 2 ) f 1 (0.25 GeV 2 ) =0.24 ± 0.18 ± 0.13 KTeV@FNAL - δ=5 (phys.) g 2 (0) f 1 (0) =1.7 ± 2.0 ± 0.5

58 Other form factors ml=5, ms= F 1 (Q 2 ) / F 1 (0) G 1 (Q 2 ) / G 1 (0) Q 2 (GeV 2 ) Q 2 (GeV 2 ) F 2 (Q 2 ) / F 1 (0) G 3 (Q 2 ) / G 1 (0) Q 2 (GeV 2 ) Q 2 (GeV 2 )

59 Other form factors ml=5, ms=8 0.8 Hyperon beta decay Neutron beta decay 0.8 F 1 (Q 2 ) / F 1 (0) G 1 (Q 2 ) / G 1 (0) Q 2 (GeV 2 ) Q 2 (GeV 2 ) F 2 (Q 2 ) / F 1 (0) G 3 (Q 2 ) / G 1 (0) Q 2 (GeV 2 ) Q 2 (GeV 2 )

60 the SU(3) breaking effect on g1 / f1 Consider the following double ratio at the rest frame (p,k=0) Σ(t )A 3 (t)ξ(0) Σ(t )V 4 (t)ξ(0) N(t )V 4 (t)n(0) N(t )A 3 (t)n(0) = g 1 (q 2 max) f 1 (q 2 max) δf 3 (q 2 max) ( ) f1 (0) g 1 (0) SU(3) = ( )( ) g1 (0) f1 (0) f 1 (0) g 1 (0) SU(3) + O(δ 2 ) where δ = M Ξ M Σ M Ξ + M Σ q 2 max = (M Ξ M Σ ) 2

61 0.10 exp: -4(17) δ exp =50 = (g A/gV )np (ga/gv )ΞΣ SU(3) breaking (ga/gv )np ~ 4 ± 2% breaking (lower bound) (4, 8) (ml, ms) =(5, 8) (6, 8) Theoretical expectation δ δ δ = M Ξ M Σ M Ξ + M Σ

62 Summary/Outlook The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF). - DWF has a big advantage in dealing with the axial symmetry - It is easy to determine Z-factors for V(A) local currents Neutron beta decay corresponds to a gold plated test The axial-vector channel significantly suffers from the finite volume effect, while it is hardly observed in the vector channel.

63 Summary/Outlook The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF). - DWF has a big advantage in dealing with the axial symmetry - It is easy to determine Z-factors for V(A) local currents Neutron beta decay corresponds to a gold plated test There is a challenging issue to explore the SU(3) breaking effect in hyperon beta decay through a first principles calculation. Our exploratory study in quenched DWF calculation: Succeeded in evaluating 2nd-class form factors from lattice QCD Observed the SU(3) breaking effect with higher accuracy than expt.

64 Generating 2+1 flavor DWF configurations Large scale production run DWF + Iwasaki gauge action Lattice cutoff: a -1 ~ 1.7 GeV (β 2.13, c1= 0.331) Box size: V=24 3 x 64 x 16 L ~ 2.8 fm mlight = 3/4, 1/2, 1/4 of mstrange QCDOC with RBRC & BNL Lattice theorists Mπ ~ 350, 500, 750 MeV in collaboration with Columbia, UKQCD

65 Summary/Outlook The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF). - DWF has a big advantage in dealing with the axial symmetry - It is easy to determine Z-factors for V(A) local currents Neutron beta decay corresponds to a gold plated test There is a challenging issue to explore the SU(3) breaking effect in hyperon beta decay through a first principles calculation. Future: 2+1 flavors DWF calculation (RBC+UKQCD) is promissing for theoretical research on the SU(3) breaking effect in baryon semileptonic decays.

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Nucleon structure from 2+1-flavor dynamical DWF ensembles Nucleon structure from 2+1-flavor dynamical DWF ensembles Michael Abramczyk Department of Physics, University of Connecticut, Storrs, CT 06269, USA E-mail: michael.abramczyk@uconn.edu Meifeng Lin Computational

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Cascades on the Lattice

Cascades on the Lattice Cascade Physics - Jlab 2005 Cascades on the Lattice Kostas Orginos College of William and Mary - JLab LHP Collaboration LHPC collaborators R. Edwards (Jlab) G. Fleming (Yale) P. Hagler (Vrije Universiteit)

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis Hyperons and charmed baryons axial charges from lattice QCD Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute with C. Alexandrou and K. Hadjiyiannakou Electromagnetic

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD Nucleon form factors and moments of parton distributions in twisted mass lattice QCD C. Alexandrou (a,b), (a), C. Kallidonis (a), T. Korzec (a,c) (a) Department of Physics, University of Cyprus, P.O. Box

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta Yoshifumi Nakamura(NIC/DESY) for the theta collaboration S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D.

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

The kaon B-parameter from unquenched mixed action lattice QCD

The kaon B-parameter from unquenched mixed action lattice QCD The kaon B-parameter from unquenched mixed action lattice QCD Christopher Aubin Department of Physics, Columbia University, New York, NY, USA Department of Physics, College of William and Mary, Williamsburg,

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

Chiral extrapolation of lattice QCD results

Chiral extrapolation of lattice QCD results Chiral extrapolation of lattice QCD results Ross Young CSSM, University of Adelaide MENU 2010, May 31 June 4 2010 College of William & Mary Williamsburg, VA, USA Nucleon couples strongly to pions in QCD

More information

to N transition and form factors in Lattice QCD

to N transition and form factors in Lattice QCD to N transition and form factors in Lattice QCD C. Alexandrou University of Cyprus and Cyprus Institute NSTAR 2011, Jefferson Lab, 18 May 2011 C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Resonance FFs

More information

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011 Lattice QCD Steven Gottlieb, Indiana University Fermilab Users Group Meeting June 1-2, 2011 Caveats I will borrow (shamelessly). 3 Lattice field theory is very active so there is not enough time to review

More information

Flavor-Singlet g A from Lattice QCD

Flavor-Singlet g A from Lattice QCD Flavor-Singlet g A from Lattice QCD UK/95-01 Jan. 1995 hep-ph/9502334 arxiv:hep-ph/9502334v2 19 Feb 1995 S.J. Dong, J.-F. Lagaë, and K.F. Liu Dept. of Physics and Astronomy Univ. of Kentucky, Lexington,

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Omega baryon electromagnetic form factors from lattice QCD

Omega baryon electromagnetic form factors from lattice QCD Omega baryon electromagnetic form factors from lattice QCD C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2057, 1678 Nicosia, Cyprus and Computation-based Science and Technology Research

More information

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD NT@UW-06-08 JLAB-xxxx UNH-06-02 The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD Silas R. Beane, 1, 2 Kostas Orginos, 3, 2 and Martin J. Savage 4 (NPLQCD Collaboration)

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD NT@UW-06-08 JLAB-THY-06-484 UNH-06-02 arxiv:hep-lat/0604013v1 16 Apr 2006 The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD Silas R. Beane, 1,2 Kostas Orginos,

More information

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter G Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL Towards Exploring Parity Violation with Lattice QCD Brian Tiburzi 30 July 2014 RIKEN BNL Research Center Towards Exploring Parity Violation with Lattice QCD Towards Exploring Parity Violation with Lattice

More information

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos CHARMED BOTTOM BARYON SPECTROSCOPY Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos 1 OUTLINE Landscape of heavy baryon spectroscopy Details of our calculation Extrapolations Results

More information

arxiv:hep-lat/ v1 21 Sep 2005

arxiv:hep-lat/ v1 21 Sep 2005 Baryon magnetic moments in the background field method arxiv:hep-lat/0509067v1 21 Sep 2005 F.X. Lee a R. Kelly a L. Zhou a W. Wilcox b a Center for Nuclear Studies, Department of Physics, The George Washington

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC Aug 25, 2004 NP04, KEK Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and Y. Miyachi (Tokyo Tech) for

More information

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Hadron Structure James Zanotti The University of Adelaide Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Lecture 3 Neutron beta decay Nucleon axial charge, ga Deep Inelastic Scattering Structure

More information

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD

FLAG: LATTICE FLAVOUR PHYSICS AND WORLD FLAG: LATTICE FLAVOUR PHYSICS AND WORLD AVERAGES A. Vladikas INFN - TOR VERGATA Trento - ECT* 14th January 2013 Lattice QCD and Hadron Physics LPHA ACollaboration OUTLINE FLAG description and summary of

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud Status of scalar quark matrix elements from Lattice QCD André Walker-Loud Outline Nucleon matrix element calculations Direct method - 3 point function Indirect method - Feynman-Hellman Theorem Scalar Matrix

More information

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA.

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD, Emmanuel Chang and Michael L. Wagman Institute for Nuclear Theory, Seattle, Washington 98195-155, USA. E-mail: mjs5@uw.edu Silas R. Beane

More information

Recent Progress on Nucleon Structure with Lattice QCD

Recent Progress on Nucleon Structure with Lattice QCD Recent Progress on Nucleon Structure with Lattice QCD Huey-Wen Lin University of Washington Outline Lattice gauge theory Nucleon matrix elements on the lattice: systematics Building a picture of nucleons

More information

QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD

QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD Nucleon structure from Lattice QCD at nearly physical quark masses Gunnar Bali for RQCD with Sara Collins, Benjamin Gläßle, Meinulf Göckeler, Johannes Najjar, Rudolf Rödel, Andreas Schäfer, Wolfgang Söldner

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

Lattice QCD and Proton Structure:

Lattice QCD and Proton Structure: Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006 How can Lattice QCD Complement Experiment? 1. Quantitative

More information

arxiv: v1 [hep-lat] 6 Nov 2012

arxiv: v1 [hep-lat] 6 Nov 2012 HIM-2012-5 Excited state systematics in extracting nucleon electromagnetic form factors arxiv:1211.1282v1 [hep-lat] 6 Nov 2012 S. Capitani 1,2, M. Della Morte 1,2, G. von Hippel 1, B. Jäger 1,2, B. Knippschild

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab),

More information

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young Chiral extrapolation of nucleon form factors from lattice data P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young 1. Introduction CHPT Finite-Range- Regularization 2. Magnetic form factors 3. Extrapolation

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Nucleon generalized form factors with twisted mass fermions

Nucleon generalized form factors with twisted mass fermions Nucleon generalized form factors with twisted mass fermions Department of Physics, University of Cyprus, P.O. Box 537, 78 Nicosia, Cyprus, and Computation-based Science and Technology Research Center,

More information

Electromagnetic Form Factors

Electromagnetic Form Factors Electromagnetic Form Factors Anthony W. Thomas Workshop on Exclusive Reactions, JLab : May 24 th 2007 Electron Scattering Provides an Ideal Microscope for Nuclear Physics Electrons are point-like The interaction

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

PUBLISHED VERSION. The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C.

PUBLISHED VERSION. The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C. PUBLISHED VERSION Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James Michael; RBC Collaboration; UKQCD Collaboration Nucleon foractors

More information

The Wave Function of the Roper Resonance

The Wave Function of the Roper Resonance The Wave Function of the Roper Resonance Special Research Centre for the Subatomic Structure of Matter, School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia Waseem Kamleh Special

More information

Current Physics Projects by JLQCD

Current Physics Projects by JLQCD Current Physics Projects by JLQCD Jun Noaki 野秋 淳一 for JLQCD Collaboration Lattice Hadron Physics V, Cairns July 20 24, 2015 Geography JLQCD members (as of Jul. 2015) Tsukuba (KEK) : G. Cossu, B. Fahy,

More information

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions

PoS(LATTICE 2015)261. Scalar and vector form factors of D πlν and D Klν decays with N f = Twisted fermions Scalar and vector form factors of D πlν and D Klν decays with N f = + + Twisted fermions N. Carrasco (a), (a,b), V. Lubicz (a,b), E. Picca (a,b), L. Riggio (a), S. Simula (a), C. Tarantino (a,b) (a) INFN,

More information

Konstantinos Orginos' RIKEN-BNL Research Centel; Brookhaven National Luboratory, Upton, NY 11973, USA

Konstantinos Orginos' RIKEN-BNL Research Centel; Brookhaven National Luboratory, Upton, NY 11973, USA z RBRC-294 Spin on the lattice Konstantinos Orginos' RIKEN-BNL Research Centel; Brookhaven National Luboratory, Upton, NY 11973, USA Abstract. I review the current status of hadronic structure computations

More information

Low-energy QCD II Status of Lattice Calculations

Low-energy QCD II Status of Lattice Calculations Low-energy QCD II Status of Lattice Calculations Hartmut Wittig Institute for Nuclear Physics and Helmholtz Institute Mainz Determination of the Fundamental Parameters of QCD Nanyang Technical University

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

arxiv:hep-lat/ v1 3 Apr 1999

arxiv:hep-lat/ v1 3 Apr 1999 CP-PACS results for light hadron spectrum in quenched and two-flavor full QCD Yoshinobu Kuramashi for the CP-PACS Collaboration Department of Physics, Washington University, St. Louis, Missouri 63130 We

More information

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

Nuclear Force from Lattice QCD

Nuclear Force from Lattice QCD Department of Physics, University of Tokyo, Tokyo 113 0033, JAPAN E-mail: ishii@rarfaxp.riken.jp Sinya AOKI Graduate School of Pure and Applied Science, University of Tsukuba, Tukuba 305 8571, Ibaraki,

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

RESONANCE at LARGE MOMENTUM TRANSFERS

RESONANCE at LARGE MOMENTUM TRANSFERS 1 V. M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti µ ELECTROPRODUCTION

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Tom Blum (University of Connecticut, RIKEN BNL Research Center) with Christopher Aubin (Fordham) Saumitra Chowdhury (UConn) Masashi

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

The 1405 MeV Lambda Resonance in Full-QCD

The 1405 MeV Lambda Resonance in Full-QCD , Waseem Kamleh, Derek B. Leinweber, and M. Selim Mahbub Special Research Centre for the Subatomic Structure of Matter School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia E-mail:

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

Orbital Angular Momentum and Nucleon Structure. Anthony W. Thomas

Orbital Angular Momentum and Nucleon Structure. Anthony W. Thomas Orbital Angular Momentum and Nucleon Structure Anthony W. Thomas Workshop on Orbital Angular Momentum in QCD INT Seattle - February 9 th 2012 Outline A reminder: the proton spin crisis is not the same

More information

The N-tο- (1232) transition from Lattice QCD :

The N-tο- (1232) transition from Lattice QCD : The N-tο-(13) transition from Lattice QCD : Electromagnetic, Axial and Pseudoscalar Form Factors with N F = +1 domain wall fermions Antonios Tsapalis Hellenic Naval Academy & National Technical University

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

arxiv: v1 [hep-lat] 24 Dec 2008

arxiv: v1 [hep-lat] 24 Dec 2008 of hadrons from improved staggered quarks in full QCD arxiv:081.4486v1 [hep-lat] 4 Dec 008, a A. Bazavov, b C. Bernard, c C. DeTar, d W. Freeman, b Steven Gottlieb, a U.M. Heller, e J.E. Hetrick, f J.

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

Properties of ground and excited state hadrons from lattice QCD

Properties of ground and excited state hadrons from lattice QCD Properties of ground and excited state hadrons from lattice QCD Daniel Mohler TRIUMF, Theory Group Vancouver, B.C., Canada Newport News, March 22 200 Co-Workers: Christof Gattringer, Christian Lang, Georg

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Kenji Sasaki (YITP, Kyoto University) Collaboration

Kenji Sasaki (YITP, Kyoto University) Collaboration Strangeness Strangeness S=- S=- baryon-baryon baryon-baryon interactions interactions from from Lattice Lattice QCD QCD Kenji Sasaki YITP, Kyoto University for HAL QCD Collaboration H HA ALL H Hadrons

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

J/ψ-Φ interaction and Y(4140) on the lattice QCD

J/ψ-Φ interaction and Y(4140) on the lattice QCD J/ψ-Φ interaction and Y(4140) on the lattice QCD Sho Ozaki (Univ. of Tokyo) in collaboration with Shoichi Sasaki (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo & Riken) Contents Introduction Charmonium(J/ψ)-Φ

More information