QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD

Size: px
Start display at page:

Download "QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD"

Transcription

1 Nucleon structure from Lattice QCD at nearly physical quark masses Gunnar Bali for RQCD with Sara Collins, Benjamin Gläßle, Meinulf Göckeler, Johannes Najjar, Rudolf Rödel, Andreas Schäfer, Wolfgang Söldner and André Sternbeck QCD APS Hadronic Physics Baltimore, April 10, 2015

2 Outline Importance of proton structure beyond QCD Lattice QCD set-up Mass: σ-terms Spin: The q s and g A Other couplings Momentum fraction: x u d Summary Gunnar Bali (Regensburg) Nucleon structure QCD 2 / 40

3 Protons in use e.g. at the LHC Gunnar Bali (Regensburg) Nucleon structure QCD 3 / 40

4 What is known about parton distribution functions? The u and d PDFs are well-known from experiment, e.g., at DESY. Strangeness and gluonic PDFs have much larger uncertainties. Generated using from the NNPDF2.3 data set. NNPDF: R D Ball et al, NPB 867 (13) 244 Gunnar Bali (Regensburg) Nucleon structure QCD 4 / 40

5 Nucleons as dark matter probes: XENON1T at Gran Sasso y-scale of shaded areas depends on scalar couplings m q N qq N. Gunnar Bali (Regensburg) Nucleon structure QCD 5 / 40

6 Proton structure calculations are essential to constrain beyond-the-standard-model (BSM) dark matter candidates, relating predictions to experimental limits.... important to predict cross-sections for processes on the quark-gluon level. Experiment e.g. unable to directly measure strangeness and gluon PDFs.... needed to relate QCD to low energy effective theories that are also relevant for precision experiments. Here I concentrate on How is the mass distributed among the partons? (scalar couplings) How is the spin distributed? (axial couplings) Proton-neutron transition couplings. (g S, g T, g T, g P, g P ) How is the momentum distributed? (moments of PDFs) Gunnar Bali (Regensburg) Nucleon structure QCD 6 / 40

7 Lattice QCD Na o o o o o o o o o o o a o o o o o o o o o o o o o o plaquette link site typical values: a 1 = 2 5 GeV, Na = 2 7 fm continuum limit: a 0, Na fixed infinite volume: Na O = 1 S[U,ψ, ψ] [du] [dψ][d ψ] O[U]e Z Measurement : average over a representative ensemble of gluon configurations {U i } with probability P(U i ) [dψ][d ψ]e S[U,ψ, ψ] O = 1 n n i=1 O(U i ) + O O 1 n n 0 Gunnar Bali (Regensburg) Nucleon structure QCD 7 / 40

8 Input: discretized L QCD = 1 16πα L (a) FF + q f (D/ + m f (a))q f mπ latt /mn latt m latt N = m phys N a = mπ phys /m phys N m u (a) m d (a) Output: hadron masses, matrix elements, decay constants, etc... Required: 1. L = Na : FSE suppressed with exp( Lm π ) Lm π m latt q m latt ud mq phys : chiral perturbation theory (χpt) helps for m ud but must be sufficiently small to start with (m π 200 MeV?). 3. a 0: functional form known: O(a 2 ), O(α s a) 4 lattice spacings. Gunnar Bali (Regensburg) Nucleon structure QCD 8 / 40

9 Landscape of recent lattice simulations (2M K 2 -Mπ 2 ) 1/2 [MeV] ETMC '10 (2+1+1) MILC '10 QCDSF-UKQCD '10 BMWc'10 PACS-CS '09 JLQCD/TWQCD '09 RBC-UKQCD '10 HSC '08 M π [MeV] ETMC '09 (2) ETMC '10 (2+1+1) MILC '10 MILC '12 QCDSF '10 (2) QCDSF-UKQCD '10 BMWc '10 BMWc'08 PACS-CS '09 RBC/UKQCD '10 JLQCD/TWQCD '09 HSC '08 BGR '10 CLS '10 (2) M π [MeV] a[fm] Figures taken from C Hoelbling, arxiv: L[fm] % 0.3% 1% ETMC '09 (2) ETMC '10 (2+1+1) MILC '10 MILC '12 QCDSF '10 (2) QCDSF-UKQCD '10 BMWc '10 BMWc'08 PACS-CS '09 RBC/UKQCD '10 JLQCD/TWQCD '09 HSC '08 BGR '10 (2) CLS '10(2) M π [MeV] Gunnar Bali (Regensburg) Nucleon structure QCD 9 / 40

10 Computational challenges Cost of simulation is proportional to number of points: (L/a) 4 condition number of linear system: 1/m 2 π L 1/2 /m π in (Omelyan) time integration within hybrid Monte Carlo 1/a 2 critical slowing down (autocorrelations) Adjusting L 1/m π this means: cost 1 a 6 m 7.5 π In addition: for baryonic observables at small m π serious signal/noise problem. State of the art: sites, corresponding to ( ) 2 (sparse) complex matrices. Tremendous progress in Hybrid Monte Carlo, solver, noise reduction. Gunnar Bali (Regensburg) Nucleon structure QCD 10 / 40

11 HW Hamber, E Marinari, G Parisi, C Rebbi, NPB225 (83) 475 (Appendix B) GP Lepage 89, C N (t) exp ( m N t) [ C N (t)] 2 C N (t) C N (t) exp [( m N 3 2 m π ) ] t exp ( 3m π t) Self-averaging over many source points increases statistics. Becomes increasingly important towards small m π. Gunnar Bali (Regensburg) Nucleon structure QCD 11 / 40

12 Three point functions Evaluate N qγq N (Lines: quark propagators M 1 xy, M = /D + m q ) O = q Γq N N connected disconnected q {u, d}: both quark-line connected and disconnected terms. q = s: only the disconnected term. Connected requires only 12 rows (spin colour) of M 1. Disconnected 12N 3 rows (timeslice): stochastic all-to-all methods. Disconnected cancels (m u = m d, ////// QED) from isovector combinations: proton minus neutron, i.e. p (ūγu dγd) p = p ūγd n. Gunnar Bali (Regensburg) Nucleon structure QCD 12 / 40

13 Action and ensembles N f = 2 NP improved Sheikholeslami-Wilson fermions, Wilson glue. Lm π up to 6.7, a down to 0.06 fm, m π down to 150 MeV. Two lattice spacings around m π 290 MeV, three around 425 MeV Wuppertal=Gauss smearing iterations on top of APE smearing. # β a/fm κ V m π/mev Lm π n conf t sink /a I (4) 13 II (2) 15 III (2) 15,17 IV (2) 7,9,11,13,15,17 V (2) 15 VI (2) 15 VII (2) 15 VIII (3) 9,12,15 IX (2) 17 X (2) 17 XI (2) 17 Gunnar Bali (Regensburg) Nucleon structure QCD 13 / 40

14 Ensembles II Lmπ VIII VII XI VI V I IV a 0.08 fm a 0.07 fm a 0.06 fm m π [GeV] III X II IX Lm π 6.7: Lm π > 4.1: Lm π > 3.4: Lm π 2.8: Gunnar Bali (Regensburg) Nucleon structure QCD 14 / 40

15 Decomposition of the proton (and pion) mass I m N = m q N q 1 q N q {u,d,s,...} }{{} quarks ( m N m q N q 1 q N 4 q }{{} trace anomaly 1 N (E 2 B 2 ) + qd γq 8πα L N q }{{} ) gluon interactions (Eucl. spacetime) VEV 0 qq 0 is understood to be subtracted from N qq N. Pion-nucleon σ-term: σ πn = m u N ūu N + m d N dd N = σ u + σ d. Scalar particles (Higgs, neutralino etc.) couple quark matrix elements. Gunnar Bali (Regensburg) Nucleon structure QCD 15 / 40

16 Decomposition of the proton (and pion) mass II Therefore: σ π = m ud π ūu + dd π = m ud m π m ud m π 1 2 m 3 π + }{{} 8 m π }{{} σ π gluon interactions = m π + O(m }{{ 2 π) 3. } GMOR m π }{{} trace anomaly σ π can be further decomposed into valence and sea quark contributions. Wilson fermions: singlet and non-singlet mass renormalization constants differ by r m > 1 valence > connected : r := π ūu + dd π sea π ūu + dd π = r m ( π ūu + dd π dis lat π ūu + dd π lat 1 ) + 1 Gunnar Bali (Regensburg) Nucleon structure QCD 16 / 40

17 Pion mass: σ π compared to m π /2 0.2 σπ (GeV) m π (GeV) [S Collins, D Richtmann] The theoretical expectation σ π m π /2 is confirmed. Gunnar Bali (Regensburg) Nucleon structure QCD 17 / 40

18 Pion mass: light sea quark and strange quark contribs. 0.3 r σs (GeV) m π (GeV) m π (GeV) Less than 10% of σ π (or 5% of the mass) is due to sea quarks. Strange quarks are negligible too. Nevertheless, r m = Zm singlet > 1 means at a fm about 30% of the signal originates from the disconnected contribution. So this needs to be computed even for the valence quark contribution. /Z nonsinglet m Gunnar Bali (Regensburg) Nucleon structure QCD 18 / 40

19 σ πn for the nucleon 0.3 σπn [GeV] a 0.08 fm a 0.07 fm a 0.06 fm ETMC N f = m 2 π [GeV2 ] 0.05 Lm π 6.7: Lm π > 4.1: Lm π > 3.4: [S Collins] The non-vanishing light quark masses are directly responsible for only 35 MeV of the nucleon mass but for 68 MeV of the pion mass! This may not be too surprising since m N 0 as m ud 0. Gunnar Bali (Regensburg) Nucleon structure QCD 19 / 40

20 Chiral extrapolation of the nucleon mass preliminary t (unconstrained) 3.0 r0mn 2.5 combined t data: r 0 σ (uncorrected) data: r 0 M N (volume-corrected) data: r 0 M N physical point (r fm) (r 0 m π ) 2 Gunnar Bali (Regensburg) Nucleon structure QCD 20 / 40

21 The scalar matrix elements m q N qq N determine the coupling of the nucleon to scalar particles at zero recoil: f N m N α q f Tq + 2 m q {u,d,s} q 33 6 f α q T G. m q {c,b,t,...} q Cross section f N 2. Higgs example: α q m q /m W. f Tq m q N qq N m N are the contributions of the light quark masses to the proton mass and f TG 1 q {u,d,s} f Tq. Little about f Tq is known experimentally. Gunnar Bali (Regensburg) Nucleon structure QCD 21 / 40

22 Scalar strangeness content a 0.08 fm a 0.07 fm a 0.06 fm Engelhardt N f = ETMC N f = fts m 2 π [GeV2 ] [QCDSF: GB et al, arxiv: , RQCD: S Collins et al, in preparation]: NPI Wilson [M Engelhardt, arxiv: ]: domain wall on staggered [ETMC, C Alexandrou et al, arxiv: ]: twisted mass Gunnar Bali (Regensburg) Nucleon structure QCD 22 / 40

23 Spin of the nucleon 1 2 = 1 2 Σ + L q + J g : q, q Ji decomposition into the contributions of the (longitudinal) quark spins Σ = u + ū + d + d + s + s +, the (longitudinal) quark and antiquark orbital angular momenta L q = J q 1 2 q and the (longitudinal) gluon total angular momentum J g. Naïve non-relativistic SU(6) quark model: Σ = 1, L q = J g = s = 0. Relativistic quark models: Σ 0.6, L quarks 0.2. I will say nothing about the Jaffe and Manohar decomposition: 1 2 = 1 2 Σ + L quarks + G + L g ( J g G + L g, J q 1 ) 2 q + L q. Gunnar Bali (Regensburg) Nucleon structure QCD 23 / 40

24 The total quark angular momenta J q = 1 2 q + L q can be extracted from generalized form factors at q 2 = 0: J q + J q = 1 2 [ A q 20 (0) + Bq 20 (0)], where A q 20 (q2 ) and B q 20 (q2 ) are obtained from matrix elements of local quark bilinears of the form N, s, p + q qγ {µ 1 D µ 2} q N, s, p. Then L q = J q 1 2 q, J g = 1 2 J q. q, q Gunnar Bali (Regensburg) Nucleon structure QCD 24 / 40

25 Individual quark spin contributions (q {u, d, s}) Axial charges: ( q + q) s µ = 1 m N N, s qγ µ γ 5 q N, s = F q A (0) = Ãq 10 (0) a 3 = s µ 1 m N N, s ψγ µ γ 5 λ 3 ψ N, s = u d = g A a 8 = s µ 3 m N N, s ψγ µ γ 5 λ 8 ψ N, s = u + ū + d + d 2 s 2 s a 0 (Q 2 ) = s µ 1 m N N, s ψγ µ γ 5 1ψ N, s = u + ū + d + d + s + s = Σ(Q 2 ). ψ = (u, d, s) t, λ j are Gell-Mann flavour matrices. a 3 = g A known from neutron β decay, assuming isospin symmetry. a 8 usually estimated from hyperon β decay, assuming SU(3) F symmetry. Gunnar Bali (Regensburg) Nucleon structure QCD 25 / 40

26 Extraction of the q s from experiment DIS gives spin structure functions of proton and neutron g p,n 1 (x, Q 2 ). First moment related to a i s via OPE (leading twist): Γ p,n 1 (Q2 ) = 1 0 dx g p,n 1 (x, Q 2 ) = 1 36 [(a 8 ± 3a 3 )C NS + 4a 0 C S ] Use models to extrapolate g 1 from experimental x min to x = 0! C S/NS = C S/NS (α s (Q 2 )). Combinations of a i give q s, e.g., ( s + s)(q 2 ) = 1 3 [a 0(Q 2 ) a 8 ] SIDIS allows for direct measurements of the q(x) but requires fragmentation functions. [COMPASS, arxiv ] Naive Extrap. combined with DSSV ( s + s)(5 GeV 2 ) 0.02 ± 0.02 ± ± 0.02 ± 0.02 DSSV: [de Florian et al, arxiv: ] Gunnar Bali (Regensburg) Nucleon structure QCD 26 / 40

27 No continuum limit, m π 290 MeV add 20 % systematic error. Lattice 0.8 DSSV x>0.001 DSSV u+ u d+ d s+ s Σ = a 0 [QCDSF: GB et al, ] Result in the MS scheme at µ 2 = 7.4 GeV 2 : Σ = u + d + s = 0.45(4)(9) s = 0.020(10)(4) Gunnar Bali (Regensburg) Nucleon structure QCD 27 / 40

28 Comparison of recent lattice calculations s + s QCDSF 11 N f = 2 Engelhardt 12 N f = ETMC 13 N f = χ-qcd 14 N f = m 2 π GeV 2 Consistency between different determinations: small s + s. ETMC result shows statistical accuracy that is possible. Systematics! [QCDSF: GB et al, ; M Engelhardt, ; ETMC: A Abdel-Rehim et al, ; χqcd: Y Yang et al, unpublished.] Gunnar Bali (Regensburg) Nucleon structure QCD 28 / 40

29 J q + J q = 1 2 (Aq 20(0) + B q 20(0)) From Lattice 14 review [M Constaninou, ] Contributions to nucleon spin m 2 π (GeV 2 ) : disconnected contribution included. J u J d [LHPC: S Syritsyn et al, (N f = 2 + 1); QCDSF/UKQCD: A Sternbeck et al, (N f = 2); ETMC: C Alexandrou et al, , unpublished (N f = 2); ETMC: C Alexandrou et al, (N f = ).] Gunnar Bali (Regensburg) Nucleon structure QCD 29 / 40

30 g A = u d ga a 0.08 fm a 0.07 fm a 0.06 fm Expt Lm π 6.7: Lm π > 4.1: Lm π > 3.4: Lm π 2.8: [S Collins, R Rödl] m 2 π [GeV2 ] Comparing similar volumes: no significant discretization effects. m π 425 MeV: g A increases by 5% with Lm π m π 290 MeV: g A up by 6% with Lm π , then constant. m π 150 MeV: No difference between Lm π 2.8 and Lm π 3.5. Gunnar Bali (Regensburg) 3 Nucleon structure QCD 30 / 40

31 Finite volume effects predicted by χpt similar for g A and F π = follow QCDSF: R Horsley et al, arxiv: and plot ratio a 0.08 fm a 0.07 fm a 0.06 fm Exp ga/fπ [GeV 1 ] m 2 π [GeV2 ] Extrapolation to physical point: g A /F π = 13.88(29) GeV 1 Expt: g A /F π = (34) GeV 1. Using F π (expt) = MeV we obtain g A = 1.280(27)(35) Expt: g A = (35). Gunnar Bali (Regensburg) Nucleon structure QCD 31 / 40

32 g A : summary of recent lattice results 1.4 ga QCDSF N f = 2 Mainz N f = 2 ETMC N f = 2 LHPC N f = RBC N f = ETMC N f = PNDME N f = RQCD N f = 2 RQCD N f = 2, g A/F π Expt m 2 π [GeV2 ] QCDSF: Mainz: ETMC 2: LHPC: RBC/UKQCD: ETMC 2+1+1: PNDME: RQCD: Gunnar Bali (Regensburg) Nucleon structure QCD 32 / 40

33 Isovector scalar charge g S MS (2 GeV) a 0.08 fm a 0.07 fm a 0.06 fm g S MS (2 GeV) m 2 π [GeV2 ] LHPC Nf = PNDME Nf = ETMC Nf = RQCD Nf = m 2 π [GeV2 ] LHPC: , PNDME: , ETMC: , RQCD: Gunnar Bali (Regensburg) Nucleon structure QCD 33 / 40

34 Isovector tensor charge a 0.08 fm a 0.07 fm a 0.06 fm ETMC Nf = 2 RBC Nf = LHPC Nf = PNDME Nf = ETMC Nf = RQCD Nf = 2 g T MS (2 GeV) g T MS (2 GeV) m 2 π [GeV2 ] m 2 π [GeV2 ] ETMC 2: , RBC: , LHPC: , PNDME: , ETMC 2+1+1: , RQCD: General remark: we vary a 2 only by a factor 1.8 we cannot exclude lattice spacing effects of up to /( ) g 1.7 g. Gunnar Bali (Regensburg) Nucleon structure QCD 34 / 40

35 Isovector electromagnetic formfactors p ūγ µ d n = ū p (p f ) [ g V (q 2 )γ µ + g T (q 2 ] ) iσ µν q ν u n (p i ) 2m N Dirac FF: g V (q 2 ) = F p 1 (q2 ) F1 n(q2 ) q2 0 1 Pauli FF: g T (q 2 ) = F p 2 (q2 ) F2 n(q2 ) q2 0 κ p κ n (5) [ g V (Q 2 ) = 1 r Q2 + O(Q 4 ), g T (Q 2 ) = g T (0) Proton radius: rp 2 r g T (0) 2mN 2. Dipole fit to determine the induced tensor charge g T = g T (0): g T (Q 2 ) = g T (0) ( 1 + r 2 2 Q 2 /12 ) 2. 1 r Q2 + O(Q 4 ) Gunnar Bali (Regensburg) Nucleon structure QCD 35 / 40 ]

36 Extrapolation of the Pauli formfactor at m π = 290 MeV Difference between magnetic moment anomalies g T (0) = κ p κ n. 4.0 Lm π 3.4 Lm π 4.2 Lm π 6.7 Lm π 3.4 Lm π 4.2 Lm π g T /g V g T Q 2 [GeV 2 ] Q 2 [GeV 2 ] Extrapolation error decreases with smaller Q 2 min = π2 /L 2. Therefore, invisible FSE for Lm π > 3.4 at m π = 290 MeV (L > 2.3 fm) do not necessarily imply they are irrelevant within the smaller statistical errors at m π = 150 MeV (L > 4.5 fm). Gunnar Bali (Regensburg) Nucleon structure QCD 36 / 40

37 Induced isovector tensor charge Extrapolating in the usual way... however, FSE are unquantifiable at the lightest mass point and O(a) improvement is not yet included a 0.08 fm a 0.07 fm a 0.06 fm Expt gt 3 gt m 2 π [GeV2 ] QCDSF Nf = 2 Mainz Nf = 2 ETMC Nf = 2 LHPC Nf = RBC Nf = ETMC Nf = PNDME Nf = RQCD Nf = 2 Expt m 2 π [GeV] QCDSF: , Mainz: , ETMC 2: , LHPC: , RBC: , ETMC 2+1+1: , PNDME: , RQCD: Gunnar Bali (Regensburg) Nucleon structure QCD 37 / 40

38 Isovector quark momentum fraction: x MS u d(2 GeV) [RQCD: GB et al, arxiv: ] N f = 2 x MS u d(2 GeV) a 0.08 fm a 0.07 fm a 0.06 fm CT10 ( 14) NNPDF ( 12) ABM ( 11) MSTW ( 09) m 2 π [GeV 2 ] Lm π 6.7: Lm π > 4.1: Lm π > 3.4: Lm π 2.8: Mild dependence on V, m π. Renormalised non-perturbatively. O(a) leading errors, a varied from 0.08 to 0.06 fm. Improvement on earlier calculations which suffered from excited state contamination x MS u d (2 GeV) Near physical point but more work needs to be done lattice spacing dependence? Gunnar Bali (Regensburg) Nucleon structure QCD 38 / 40

39 x MS u d(2 GeV): summary of recent lattice results x MS u d(2 GeV) RQCD Nf = RBC/UKQCD ( 10), ( 13) Nf = LHPC ( 12) Nf = ETMC ( 13) Nf = ETMC ( 13) Nf = m 2 π [GeV 2 ] RQCD: GB et al, ; RBC/UKQCD: Y Aoki et al, arxiv: ; LHPC: J Green et al, arxiv: ; ETMC 2+1+1: C Alexandrou et al, arxiv: ; ETMC 2: C Alexandrou et al, arxiv: PDFs from S Alekhin et al, ; CT10: J Gao et al, ; NNPDF: R Ball et al ; A Martin et al [ETMC, arxiv: ]: disconnected contributions small predictions for x MS (2 GeV) soon. Mixing between quarks and glue! q Gunnar Bali (Regensburg) Nucleon structure QCD 39 / 40

40 Summary Lattice can contribute to many quantities that are hard to constrain by experiment, e.g., σ πn, f Ts, g S, g T. Lattice calculations are important to determine the spin content of the nucleon: q, Σ, J q, x q,.... In the past disconnected quark line diagrams were often omited and differences quoted: g A, x u d,..., but no s, Σ, J q, x q etc. Improved methods now allow for the calculation of these contributions. g A seems to approach the physical value, once Lm π > 4. x u d comes out 20% bigger than expected. lattice spacing effects? Renormalization? Precision physics requires an extrapolation a 0. For quite a few quantities however errors of 20% are acceptable. High Mellin moments almost impossible to compute recent interest also in quasi parton distribution functions. Gunnar Bali (Regensburg) Nucleon structure QCD 40 / 40

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD André Sternbeck a,b On behalf of the RQCD collaboration (Regensburg) a Friedrich-Schiller-Universität Jena, Germany b SFB/TRR 55 Hadron Physics from Lattice QCD September

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg HADRON WAVE FUNCTIONS FROM LATTICE QCD Vladimir M. Braun QCD Institut für Theoretische Physik Universität Regensburg How to transfer a large momentum to a weakly bound system? Heuristic picture: quarks

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

arxiv: v1 [hep-lat] 19 Jan 2016

arxiv: v1 [hep-lat] 19 Jan 2016 from lattice QCD with nearly physical quark masses arxiv:1601.04818v1 [hep-lat] 19 Jan 2016 Gunnar Bali, a Sara Collins, a Meinulf Göckeler, a, a Andreas Schäfer, a Andre Sternbeck b a Institut für Theoretische

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis Hyperons and charmed baryons axial charges from lattice QCD Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute with C. Alexandrou and K. Hadjiyiannakou Electromagnetic

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay 1 / 49 Lattice QCD calculation of nucleon charges g A, g S and g for nedm and beta decay Boram Yoon Los Alamos National Laboratory with. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin PNDME Collaboration

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Lattice QCD Calculation of Nucleon Tensor Charge

Lattice QCD Calculation of Nucleon Tensor Charge 1 / 36 Lattice QCD Calculation of Nucleon ensor Charge. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 2 / 36 Neutron EDM, Quark

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD Nucleon form factors and moments of parton distributions in twisted mass lattice QCD C. Alexandrou (a,b), (a), C. Kallidonis (a), T. Korzec (a,c) (a) Department of Physics, University of Cyprus, P.O. Box

More information

arxiv: v1 [hep-lat] 6 Nov 2012

arxiv: v1 [hep-lat] 6 Nov 2012 HIM-2012-5 Excited state systematics in extracting nucleon electromagnetic form factors arxiv:1211.1282v1 [hep-lat] 6 Nov 2012 S. Capitani 1,2, M. Della Morte 1,2, G. von Hippel 1, B. Jäger 1,2, B. Knippschild

More information

Nucleon generalized form factors with twisted mass fermions

Nucleon generalized form factors with twisted mass fermions Nucleon generalized form factors with twisted mass fermions Department of Physics, University of Cyprus, P.O. Box 537, 78 Nicosia, Cyprus, and Computation-based Science and Technology Research Center,

More information

Recent Progress on Nucleon Structure with Lattice QCD

Recent Progress on Nucleon Structure with Lattice QCD Recent Progress on Nucleon Structure with Lattice QCD Huey-Wen Lin University of Washington Outline Lattice gauge theory Nucleon matrix elements on the lattice: systematics Building a picture of nucleons

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Baryon semi-leptonic decay from lattice QCD with domain wall fermions

Baryon semi-leptonic decay from lattice QCD with domain wall fermions 4th ILFTN Workshop at Hayama, Mar. 8-11, 2006 Baryon semi-leptonic decay from lattice QCD with domain wall fermions Shoichi Sasaki (RBRC/U. of Tokyo) in collabration with Takeshi Yamazaki (RBRC) Baryon

More information

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Nucleon structure from 2+1-flavor dynamical DWF ensembles Nucleon structure from 2+1-flavor dynamical DWF ensembles Michael Abramczyk Department of Physics, University of Connecticut, Storrs, CT 06269, USA E-mail: michael.abramczyk@uconn.edu Meifeng Lin Computational

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

Physics of the Proton Spin Problem. Anthony W. Thomas

Physics of the Proton Spin Problem. Anthony W. Thomas Physics of the Proton Spin Problem Anthony W. Thomas 10 th Circum-Pan-Pacific Symposium on High Energy Spin Physics Academia Sinica : October 6 th 2015 Background The structure of the proton is a fundamental

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data L. Alvarez-Ruso 1, T. Ledwig 1, J. Martin-Camalich, M. J. Vicente-Vacas 1 1 Departamento de Física Teórica

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

LOW-ENERGY QCD and STRANGENESS in the NUCLEON PAVI 09 Bar Harbor, Maine, June 009 LOW-ENERGY QCD and STRANGENESS in the NUCLEON Wolfram Weise Strategies in Low-Energy QCD: Lattice QCD and Chiral Effective Field Theory Scalar Sector: Nucleon Mass and

More information

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud Status of scalar quark matrix elements from Lattice QCD André Walker-Loud Outline Nucleon matrix element calculations Direct method - 3 point function Indirect method - Feynman-Hellman Theorem Scalar Matrix

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter G Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Hadron Structure James Zanotti The University of Adelaide Lattice Summer School, August 6-24, 2012, INT, Seattle, USA Lecture 3 Neutron beta decay Nucleon axial charge, ga Deep Inelastic Scattering Structure

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

hadronic structure of the nucleon

hadronic structure of the nucleon hadronic structure of the nucleon Kim Somfleth PhD Student, CSSM, University of Adelaide August 6, 2018 Collaborators: Jacob Bickerton, Alex Chambers, Roger Horsley, Yoshifumi Nakamura, Holger Perlt, Paul

More information

Nucleon matrix elements

Nucleon matrix elements Nucleon matrix elements Constantia Alexandrou University of Cyprus and The Cyprus Institute Symposium on Effective Field Theories and Lattice Gauge Theory May 20, 2016 C. Alexandrou (Univ. of Cyprus &

More information

Cascades on the Lattice

Cascades on the Lattice Cascade Physics - Jlab 2005 Cascades on the Lattice Kostas Orginos College of William and Mary - JLab LHP Collaboration LHPC collaborators R. Edwards (Jlab) G. Fleming (Yale) P. Hagler (Vrije Universiteit)

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Lattice QCD and Proton Structure:

Lattice QCD and Proton Structure: Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006 How can Lattice QCD Complement Experiment? 1. Quantitative

More information

arxiv: v1 [hep-lat] 23 Dec 2010

arxiv: v1 [hep-lat] 23 Dec 2010 arxiv:2.568v [hep-lat] 23 Dec 2 C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2537, 678 Nicosia, Cyprus and Computation-based Science and Technology Research Center, Cyprus Institute,

More information

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta Yoshifumi Nakamura(NIC/DESY) for the theta collaboration S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D.

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

Hadron Structure on the Lattice

Hadron Structure on the Lattice Hadron Structure on the Lattice Huey-Wen Lin University of Washington Lattice gauge theory A brief introduction Outline Building a picture of hadrons Recent developments on form factors, EMC effect, etc.

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

PoS(LATTICE 2008)114. Investigation of the η -η c -mixing with improved stochastic estimators

PoS(LATTICE 2008)114. Investigation of the η -η c -mixing with improved stochastic estimators Investigation of the η -η c -mixing with improved stochastic estimators and Gunnar S. Bali Institut für Theoretische Physik, Universität Regensburg, 934 Regensburg, Germany E-mail: christian.ehmann@physik.uni-regensburg.de,

More information

Chiral extrapolation of lattice QCD results

Chiral extrapolation of lattice QCD results Chiral extrapolation of lattice QCD results Ross Young CSSM, University of Adelaide MENU 2010, May 31 June 4 2010 College of William & Mary Williamsburg, VA, USA Nucleon couples strongly to pions in QCD

More information

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes Nikolaus Warkentin for QCDSF Institut für Theoretische Physik Universität Regensburg Theoretical framework for hard exclusive

More information

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011 Lattice QCD Steven Gottlieb, Indiana University Fermilab Users Group Meeting June 1-2, 2011 Caveats I will borrow (shamelessly). 3 Lattice field theory is very active so there is not enough time to review

More information

arxiv:hep-ph/ v1 12 Oct 1994

arxiv:hep-ph/ v1 12 Oct 1994 A QCD ANALYSIS OF THE MASS STRUCTURE OF THE NUCLEON arxiv:hep-ph/9410274v1 12 Oct 1994 Xiangdong Ji Center for Theoretical Physics Laboratory for Nuclear Science and Department of Physics Massachusetts

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Nucleon Deformation from Lattice QCD Antonios Tsapalis Nucleon Deformation from Lattice QCD Antonios Tsapalis National Technical University of Athens School of Applied Mathematics and Physical Sciences & Hellenic Naval Academy 5 th Vienna Central European

More information

Light pseudoscalar masses and decay constants with a mixed action

Light pseudoscalar masses and decay constants with a mixed action Light pseudoscalar masses and decay constants with a mixed action Jack Laiho Washington University Christopher Aubin and Ruth Van de Water Lattice 2008 July 15, 2008 William + Mary, July 15, 2008 p.1/21

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

Hadron Structure with DWF (II)

Hadron Structure with DWF (II) Yale University 3rd International Lattice Field Theory Network Workshop Jefferson Lab, Newport News, VA LHPC Hadron Structure project on USQCD resources Dru Renner University of Arizona Ronald Babich,

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory

Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory Nucleon Electromagnetic Form Factors in Lattice QCD and Chiral Perturbation Theory Sergey N. Syritsyn (LHP Collaboration) Massachusetts Institute of Technology Laboratory for Nuclear Science November 6,

More information

Flavor-Singlet g A from Lattice QCD

Flavor-Singlet g A from Lattice QCD Flavor-Singlet g A from Lattice QCD UK/95-01 Jan. 1995 hep-ph/9502334 arxiv:hep-ph/9502334v2 19 Feb 1995 S.J. Dong, J.-F. Lagaë, and K.F. Liu Dept. of Physics and Astronomy Univ. of Kentucky, Lexington,

More information

Quark Physics from Lattice QCD

Quark Physics from Lattice QCD Quark Physics from Lattice QCD K. Szabo published in NIC Symposium 2018 K. Binder, M. Müller, A. Trautmann (Editors) Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Schriften

More information

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD

NUCLEON AND PION-NUCLEON FORM FACTORS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NUCLEON AND PION-NUCLEOORM FACTORS FROM LATTICE

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Strange quark contributions to nucleon mass and spin from lattice QCD

Strange quark contributions to nucleon mass and spin from lattice QCD arxiv:1210.0025v2 [hep-lat] 5 Dec 2012 Strange quark contributions to nucleon mass and spin from lattice QCD M. Engelhardt Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Orbital Angular Momentum and Nucleon Structure. Anthony W. Thomas

Orbital Angular Momentum and Nucleon Structure. Anthony W. Thomas Orbital Angular Momentum and Nucleon Structure Anthony W. Thomas Workshop on Orbital Angular Momentum in QCD INT Seattle - February 9 th 2012 Outline A reminder: the proton spin crisis is not the same

More information

Pseudo-Distributions on the Lattice

Pseudo-Distributions on the Lattice Pseudo-Distributions on the Lattice Joe Karpie William & Mary / Jefferson Lab In Collaboration with Kostas Orginos (W&M / JLab) Anatoly Radyushkin (Old Dominion U / JLab) Savvas Zafeiropoulos (Heidelberg

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation

Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation Quark and Glue Momenta and Angular Momenta in the Proton a Lattice Calculation a, M. Deka b,c, T. Doi d, Y.B. Yang e, B. Chakraborty a, Y. Chen e, S.J. Dong a, T. Draper a, M. Gong a, H.W. Lin f, D. Mankame

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA THE QUARK AND MESON STRUCTURE IN THE INSTANTON AuttWr(s): A. Blotz, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Shuryak, SUNY Stony Brook, Stony Brook, NY 11794,

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Low-energy QCD II Status of Lattice Calculations

Low-energy QCD II Status of Lattice Calculations Low-energy QCD II Status of Lattice Calculations Hartmut Wittig Institute for Nuclear Physics and Helmholtz Institute Mainz Determination of the Fundamental Parameters of QCD Nanyang Technical University

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

Hadron structure in Lattice QCD

Hadron structure in Lattice QCD Hadron structure in Lattice QCD C. Alexandrou University of Cyprus and Cyprus Institute Hadrons from Quarks and Gluons International Workshop XLII on Gross Properties of Nuclei and Nuclear Excitations

More information

arxiv: v1 [hep-lat] 12 Sep 2016

arxiv: v1 [hep-lat] 12 Sep 2016 Neutral Kaon Mixing Beyond the Standard Model with n f = 2 + 1 Chiral Fermions Part 1: Bare Matrix Elements and Physical Results N. Garron a, R.J. Hudspith b, A.T. Lytle c a Theoretical Physics Division,

More information

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Particle Physics Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Lecture 12: Mesons and Baryons Mesons and baryons Strong isospin and strong hypercharge SU(3) flavour symmetry Heavy quark states

More information

The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers

The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers The Quest for Solving QCD: Simulating quark and gluon interactions on supercomputers Karl Jansen Introduction Status of present Lattice calculations Hadron structure on the lattice Moments of parton distribution

More information

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore Polarizing Helium-3 for down quark spin enrichment Nigel Buttimore Trinity College Dublin 12 September 2012 Diffraction 2012 Polarized Helium-3 OUTLINE Introduction to the spin structure of polarized protons

More information

The kaon B-parameter from unquenched mixed action lattice QCD

The kaon B-parameter from unquenched mixed action lattice QCD The kaon B-parameter from unquenched mixed action lattice QCD Christopher Aubin Department of Physics, Columbia University, New York, NY, USA Department of Physics, College of William and Mary, Williamsburg,

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Investigations of hadron structure on the lattice

Investigations of hadron structure on the lattice School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK E-mail: jzanotti@ph.ed.ac.uk Lattice simulations of hadronic structure are now reaching a level where they are able to not

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

Flavor Decomposition

Flavor Decomposition SIDIS Workshop for PAC30 April 14, 2006 Flavor Decomposition in Semi-Inclusive DIS Wally Melnitchouk Jefferson Lab Outline Valence quarks unpolarized d/u ratio polarized d/d ratio Sea quarks flavor asymmetry

More information