Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Size: px
Start display at page:

Download "Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University"

Transcription

1 Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel, A. Pochinsky, S. Syritsyn T. Bhattacharya, R. Gupta, B. Yoon S. Liuti, A. Rajan

2 Fundamental TMD correlator Φ [Γ] unsubtr.(b,p,s,...) P,S q(0) Γ U[0,...,b] q(b) P,S 2 Φ [Γ] (x,k T,P,S,...) d 2 b T d(b P) (2π) 2 (2π)P + exp (ix(b P) ib T k T ) Φ [Γ] unsubtr.(b,p,s,...) S(b 2,...) b + =0 Soft factor S required to subtract divergences of Wilson line U S is typically a combination of vacuum expectation values of Wilson line structures Here, will consider only ratios in which soft factors cancel

3 Relation to physical processes Context: All this is largely academic if we can t connect it to a physical measurement. Not least, this should inform choice of gauge link U[0,...,b]... Factorization theorem which allows one to separate cross section into hard amplitude, fragmentation function, TMD? For example, SIDIS: l + N(P) l + h(p h ) + X Note final state effects in SIDIS

4 Relation to physical processes In general, no factorization framework with well-defined TMDs exists (e.g., processes with multiple hadrons in both initial and final state)! SIDIS and DY: Factorization framework has been given, which in particular includes: Specific form of the gauge link U[0,b] Accounts for final state interactions Further regularization required! Staple-shaped gauge link U[0, ηv, ηv + b, b]

5 Gauge link structure motivated by SIDIS Beyond tree level: Rapidity divergences suggest taking staple direction slightly off the light cone. Approach of Aybat, Collins, Qiu, Rogers makes v space-like. Parametrize in terms of Collins-Soper parameter ˆζ P v P v Light-like staple for ˆζ. Perturbative evolution equations for large ˆζ. Modified universality, f T-odd, SIDIS = ft-odd, DY

6 Fundamental TMD correlator Φ [Γ] unsubtr.(b,p,s,...) P,S q(0) Γ U[0,ηv,ηv + b,b] q(b) P,S 2 Φ [Γ] (x,k T,P,S,...) d 2 b T (2π) 2 d(b P) (2π)P + exp (ix(b P) ib T k T ) Φ [Γ] unsubtr.(b,p,s,...) S(b 2,...) b + =0 Soft factor S required to subtract divergences of Wilson line U S is typically a combination of vacuum expectation values of Wilson line structures Here, will consider only ratios in which soft factors cancel

7 Decomposition of Φ into TMDs All leading twist structures: Φ [γ+] = f ǫ ij k i S j m H f T odd Φ [γ+ γ 5] = Λg + k T S T m H g T Φ [iσi+ γ 5] = S i h + (2k ik j k 2 T δ ij)s j 2m 2 H h T + Λk i m H h L + ǫ ij k j m H h odd

8 TMD Classification All leading twist structures: q H U L T U f h Boer-Mulders (T-odd) L g h L T f T g T h h T Sivers (T-odd)

9 Decomposition of Φ into amplitudes Φ [Γ] unsubtr.(b,p,s, ˆζ,µ) P,S q(0) Γ U[0,ηv,ηv + b,b] q(b) P,S 2 Decompose in terms of invariant amplitudes; at leading twist, 2P + Φ [γ+ ] unsubtr. = A 2B + im H ǫ ij b i S j A 2B 2P + Φ [γ+ γ 5 ] unsubtr. = ΛA 6B + i[(b P)Λ m H (b T S T )] 2P + Φ [iσi+ γ 5 ] unsubtr. = im H ǫ ij b j A 4B S i A 9B A 7B im H Λb i A 0B + m H [(b P)Λ m H (b T S T )]b i A B (Decompositions analogous to work by Metz et al. in momentum space)

10 Fourier-transformed TMDs f(x,b 2 T,...) d 2 k T exp(ib T k T )f(x,k 2 T,...) In limit b T 0, recover k T -moments: f (n) (x, 0,...) f (n) (x,b 2 T,...) n! 2 m 2 b 2 H T n f(x,b 2 T,...) d 2 k T k 2 T 2m 2 H n f(x,k 2 T,...) f (n) (x) ill-defined for large k T, so will not attempt to extrapolate to b T = 0, but give results at finite b T. In this study, only consider first x-moments (accessible at b P = 0), rather than scanning range of b P: f [] (k 2 T,...) dxf(x,k 2 T,...) Bessel-weighted asymmetries (Boer, Gamberg, Musch, Prokudin, JHEP 0 (20) 02)

11 Relation between Fourier-transformed TMDs and invariant amplitudes A i Invariant amplitudes directly give selected x-integrated TMDs in Fourier (b T ) space (showing just the ones relevant for Sivers, Boer-Mulders shifts), up to soft factors: f [](0) (b 2 T, ˆζ,...,ηv P) = 2 A 2B ( b 2 T, 0, ˆζ,ηv P)/ S(b 2,...) f []() T (b 2 T, ˆζ,...,ηv P) = 2A 2B ( b 2 T, 0, ˆζ,ηv P)/ S(b 2,...) h []() (b 2 T, ˆζ,...,ηv P) = 2 A 4B ( b 2 T, 0, ˆζ,ηv P)/ S(b 2,...)

12 Generalized shifts Form ratios in which soft factors, (Γ-independent) multiplicative renormalization factors cancel Boer-Mulders shift: k y UT m h []() H f [](0) = dx d2 k T k y Φ [γ+ +s j iσ j+ γ 5] (x,k T,P,...) dx d 2 k T Φ [γ+ +s j iσ j+ γ 5] (x,k T,P,...) s T =(,0) Average transverse momentum of quarks polarized in the orthogonal transverse ( T ) direction in an unpolarized ( U ) hadron; normalized to the number of valence quarks. Dipole moment in b 2 T = 0 limit, shift. Issue: k T -moments in this ratio singular; generalize to ratio of Fourier-transformed TMDs at nonzero b 2 T, k y UT (b 2 T,...) m H h []() (b 2 T,...) f [](0) (b 2 T,...) (remember singular b T 0 limit corresponds to taking k T -moment). Generalized shift.

13 Generalized shifts from amplitudes Now, can also express this in terms of invariant amplitudes: k y UT (b 2 T,...) m H h []() (b 2 T,...) f [](0) (b 2 T,...) = m H Analogously, Sivers shift (in a polarized hadron): A 4B ( b 2 T, 0, ˆζ,ηv P) A 2B ( b 2 T, 0, ˆζ,ηv P) k y TU (b 2 A T,...) = m 2B ( b 2 T, 0, ˆζ,ηv P) H A 2B ( b 2 T, 0, ˆζ,ηv P) Worm-gear (g T ) shift: k x TL (b 2 A T,...) = m 7B ( b 2 T, 0, ˆζ,ηv P) N A 2B ( b 2 T, 0, ˆζ,ηv P) Generalized tensor charge (no k-weighting) : h [](0) f [](0) A = 9B ( b 2 T, 0, ˆζ,ηv P) (m 2 N b2 /2) A B ( b 2 T, 0, ˆζ,ηv P) A 2B ( b 2 T, 0, ˆζ,ηv P)

14 τ Lattice setup Evaluate directly Φ [Γ] unsubtr.(b,p,s, ˆζ,µ) 2 P,S q(0) Γ U[0,ηv,ηv + b,b] q(b) P,S Euclidean time: Place entire operator at one time slice, i.e., b, ηv purely spatial Since generic b, v space-like, no obstacle to boosting system to such a frame! Parametrization of correlator in terms of A i invariants permits direct translation of results back to original frame; form desired A i ratios. Use variety of P, b, ηv; here b P, b v (lowest x-moment, kinematical choices/constraints) Extrapolate η, ˆζ numerically.

15 Initial Numerical Investigation Use three MILC 2+-flavor gauge ensembles with a 0.2 fm: m π = 369 MeV ; ; 284 samples m π = 369 MeV ; ; 5264 samples m π = 58 MeV ; ; 3888 samples Sink momenta P: (0, 0, 0), (, 0, 0), ( 2, 0, 0), (,, 0) Variety of b, ηv; note b P, b v (lowest x-moment, kinematical choices/constraints) Largest ˆζ = 0.78

16 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T Ζ 0.39, DY SiversShift, udquarks b T 0.2 fm, m Π 58 MeV SIDIS Ηvlattice units

17 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T Ζ 0.39, DY SiversShift, udquarks b T 0.24 fm, m Π 58 MeV SIDIS Ηvlattice units

18 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T Ζ 0.39, DY SiversShift, udquarks b T 0.36 fm, m Π 58 MeV SIDIS Ηvlattice units

19 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T Ζ 0.39, DY SiversShift, udquarks b T 0.47 fm, m Π 58 MeV SIDIS Ηvlattice units

20 Results: Sivers shift Dependence of SIDIS limit on b T GeV f 0 mn f T Sivers ShiftSIDIS, udquarks Ζ 0.39, m Π 58 MeV b T fm

21 Dependence on staple extent; flavor separated Results: Sivers shift GeV f 0 m N f T Sivers Shift DY preliminary downquarks, Ζ 0.38, l 0.36 fm SIDIS GeV f 0 m N f T Sivers Shift DY preliminary upquarks, Ζ 0.38, l 0.36 fm SIDIS staple extentηvlattice units staple extentηvlattice units

22 Results: Sivers shift Dependence on staple extent; sequence of panels at different ˆζ GeV f 0 mn f T Sivers ShiftSIDIS, udquarks Ζ 0, b T 0.36 fm, m Π 58 MeV Ηvlattice units

23 Results: Sivers shift Dependence on staple extent; sequence of panels at different ˆζ GeV f 0 mn f T Ζ 0.39, DY SiversShift, udquarks b T 0.36 fm, m Π 58 MeV SIDIS Ηvlattice units

24 Results: Sivers shift Dependence on staple extent; sequence of panels at different ˆζ GeV f 0 mn f T Ζ 0.78, DY SiversShift, udquarks b T 0.36 fm, m Π 58 MeV SIDIS Ηvlattice units

25 Results: Sivers shift Dependence of SIDIS limit on ˆζ GeV f 0 m N f T total contrib. A 2 b T 0.36 fm m Π 58 MeV Sivers ShiftSIDIS, udquarks Ζ

26 Dependence of SIDIS limit on ˆζ, all three ensembles Results: Sivers shift GeV f 0 mn f T m Π 58MeV 20 3 m Π 369MeV 20 3 m Π 369MeV 28 3 b T 0.36 fm Sivers ShiftSIDIS, udquarks Ζ

27 Results: Boer-Mulders shift Dependence on staple extent GeV f 0 mn h DY BoerMulders Shift, udquarks Ζ 0.39, b T 0.36 fm, m Π 58 MeV SIDIS Ηvlattice units

28 Results: Boer-Mulders shift Dependence of SIDIS limit on b T GeV f 0 mn h BoerMulders ShiftSIDIS, udquarks Ζ 0.39, m Π 58 MeV b T fm

29 Dependence on staple extent; flavor separated Results: Boer-Mulders shift 0.4 BoerMulders Shift total 0.4 BoerMulders Shift total GeV 0.2 contrib. from a 4 GeV 0.2 contrib. from a 4 f 0 f 0 m N h downquarks, Ζ 0.39, b 0.36 fm DY connected only SIDIS m N h upquarks, Ζ 0.39, b 0.36 fm DY connected only SIDIS staple extentηvlattice units staple extentηvlattice units

30 Results: Boer-Mulders shift Dependence of SIDIS limit on ˆζ GeV 0. total contrib. A 4 f 0 m N h b T 0.36 fm m Π 58 MeV BoerMulders ShiftSIDIS, udquarks Ζ

31 Dependence of SIDIS limit on ˆζ, all three ensembles Results: Boer-Mulders shift GeV f m Π 58MeV 20 3 m Π 369MeV 20 3 m Π 369MeV 28 3 mn h b T 0.36 fm 0.2 BoerMulders ShiftSIDIS, udquarks Ζ

32 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks f 0 0 h DY Ζ 0.39, b T 0.2 fm, m Π 58 MeV SIDIS Ηv lattice units

33 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks f 0 0 h DY Ζ 0.39, b T 0.24 fm, m Π 58 MeV SIDIS Ηv lattice units

34 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks f 0 0 h DY Ζ 0.39, b T 0.36 fm, m Π 58 MeV SIDIS Ηv lattice units

35 Results: Transversity Dependence of SIDIS/DY limit on b T.5 h, udquarks f 0 h Ζ 0.39, m Π 58 MeV b T fm

36 Results: Transversity Dependence of SIDIS/DY limit on ˆζ f 0 h total contrib. A 9 m b T 0.36 fm m Π 58 MeV h, udquarks Ζ

37 Results: Transversity Dependence of SIDIS/DY limit on ˆζ, all three ensembles f 0 h m Π 58MeV 20 3 m Π 369MeV 20 3 m Π 369MeV 28 3 b T 0.36 fm h, udquarks Ζ

38 Results: g T worm gear shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn g T g T Shift, udquarks Ζ 0.39, b T 0.2 fm, m Π 58 MeV DY SIDIS Ηv lattice units

39 Results: g T worm gear shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn g T g T Shift, udquarks Ζ 0.39, b T 0.36 fm, m Π 58 MeV DY SIDIS Ηv lattice units

40 Dependence of SIDIS/DY limit on b T Results: g T worm gear shift GeV f 0 mn g T g T Shift, udquarks Ζ 0.39, m Π 58 MeV b T fm

41 Results: g T worm gear shift Dependence of SIDIS/DY limit on ˆζ 0.30 GeV f 0 mn g T 0.25 total contrib. A b T 0.36 fm m Π 58 MeV 5 g T Shift, udquarks Ζ

42 Results: g T worm gear shift Dependence of SIDIS/DY limit on ˆζ, all three ensembles GeV f m Π 58MeV 20 3 m Π 369MeV 20 3 m Π 369MeV 28 3 mn g T b T 0.36 fm 5 g T Shift, udquarks Ζ

43 Challenges The limit ˆζ : Approaching the light cone Discretization effects, soft factor cancellation on the lattice in TMD ratios Progress toward the physical pion mass

44 Approaching the light cone (with a pion)

45 Results: Boer-Mulders shift (pion) Dependence on staple extent; sequence of panels at different b T

46 Results: Boer-Mulders shift (pion) Dependence on staple extent; sequence of panels at different b T

47 Results: Boer-Mulders shift (pion) Dependence on staple extent; sequence of panels at different b T

48 Results: Boer-Mulders shift (pion) Dependence on staple extent; sequence of panels at different b T

49 Dependence of SIDIS limit on b T Results: Boer-Mulders shift (pion)

50 Results: Boer-Mulders shift (pion) Dependence of SIDIS limit on ˆζ; open symbols: contribution A 4 only

51 Results: Boer-Mulders shift (pion) Dependence of SIDIS limit on ˆζ; open symbols: contribution A 4 only

52 Dependence of SIDIS limit on ˆζ; fit function a + b/ˆζ GeV f 0 mπ h Results: Boer-Mulders shift (pion) uquarks BoerMuldersShiftSIDIS Ζ m Π 58MeV 0.36 fm

53 Dependence of SIDIS limit on ˆζ; fit function a + b/ˆζ 0 Results: Boer-Mulders shift (pion) GeV f 0 mπ h uquarks BoerMuldersShiftSIDIS m Π 58MeV b T 0.34 fm Ζ

54 Discretization effects: Comparison of RBC/UKQCD DWF ensemble (m π = 297MeV, a = 84fm) with clover ensemble (m π = 37MeV, a = 0.4fm) produced by K. Orginos and JLab collaborators

55 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.2 fm, m Π 297 MeV SIDIS GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.32, b T 0. fm, m Π 37 MeV SIDIS Ηvlattice units Ηvlattice units

56 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.25 fm, m Π 297 MeV SIDIS GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.32, b T 0.23 fm, m Π 37 MeV SIDIS Ηvlattice units Ηvlattice units

57 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.34 fm, m Π 297 MeV SIDIS GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.32, b T 0.34 fm, m Π 37 MeV SIDIS Ηvlattice units Ηvlattice units

58 Dependence of SIDIS limit on b T Results: Sivers shift

59 Dependence of SIDIS limit on ˆζ Results: Sivers shift

60 Dependence of SIDIS limit on b T Results: Boer-Mulders shift

61 Dependence of SIDIS limit on ˆζ Results: Boer-Mulders shift

62 Dependence of SIDIS limit on b T Results: Generalized Transversity

63 Dependence of SIDIS limit on ˆζ Results: Generalized Transversity

64 Dependence of SIDIS limit on b T Results: g T worm gear shift

65 Dependence of SIDIS limit on ˆζ Results: g T worm gear shift

66 Dependence on b T Results: Generalized Transversity, straight link

67 Results: g T worm gear shift, straight link Dependence on b T Evidence of operator mixing? Lattice perturbation theory M. Constantinou et al.

68 Dependence on the pion mass

69 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.27, b T 0.4 fm, m Π 70 MeV SIDIS Ηvlattice units GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.2 fm, m Π 297 MeV SIDIS Ηvlattice units

70 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.27, b T 0.2 fm, m Π 70 MeV SIDIS Ηvlattice units GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.7 fm, m Π 297 MeV SIDIS Ηvlattice units

71 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.27, b T 0.29 fm, m Π 70 MeV SIDIS Ηvlattice units GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.25 fm, m Π 297 MeV SIDIS Ηvlattice units

72 Results: Sivers shift Dependence on staple extent; sequence of panels at different b T GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.27, b T 0.4 fm, m Π 70 MeV SIDIS Ηvlattice units GeV f 0 mn f T DY SiversShift, udquarks Ζ 0.4, b T 0.42 fm, m Π 297 MeV SIDIS Ηvlattice units

73 Results: Sivers shift Dependence of SIDIS limit on b T GeV 0 5 Sivers ShiftSIDIS, udquarks GeV 0 5 Sivers ShiftSIDIS, udquarks f f mn f T Ζ 0.27, m Π 70 MeV mn f T Ζ 0.29, m Π 297 MeV b T fm b T fm

74 Results: Sivers shift Dependence of SIDIS limit on ˆζ GeV 0. total contrib. A 2 GeV 0. total contrib. A 2 f 0 m N f T b T 0.29 fm m Π 70 MeV f 0 m N f T b T 0.25 fm m Π 297 MeV 0.5 Sivers ShiftSIDIS, udquarks 0.5 Sivers ShiftSIDIS, udquarks Ζ Ζ

75 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks.4 h, udquarks.2.2 f f h DY Ζ 0.27, b T 0.4 fm, m Π 70 MeV SIDIS h DY Ζ 0.4, b T 0.2 fm, m Π 297 MeV SIDIS Ηvlattice units Ηvlattice units

76 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks.4 h, udquarks.2.2 f f h DY Ζ 0.27, b T 0.2 fm, m Π 70 MeV SIDIS h DY Ζ 0.4, b T 0.7 fm, m Π 297 MeV SIDIS Ηvlattice units Ηvlattice units

77 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks.4 h, udquarks.2.2 f f h DY Ζ 0.27, b T 0.29 fm, m Π 70 MeV SIDIS h DY Ζ 0.4, b T 0.25 fm, m Π 297 MeV SIDIS Ηvlattice units Ηvlattice units

78 Results: Transversity Dependence on staple extent; sequence of panels at different b T.4 h, udquarks.4 h, udquarks.2.2 f f h DY Ζ 0.27, b T 0.4 fm, m Π 70 MeV SIDIS h DY Ζ 0.4, b T 0.42 fm, m Π 297 MeV SIDIS Ηvlattice units Ηvlattice units

79 Results: Transversity Dependence of SIDIS/DY limit on b T.5 h SIDIS, udquarks.5 h SIDIS, udquarks f 0.0 f 0.0 h Ζ 0.27, m Π 70 MeV h Ζ 0.29, m Π 297 MeV b T fm b T fm

80 Results: Transversity Dependence of SIDIS/DY limit on ˆζ.5 total.5 total f 0 h contrib. A 9 m b T 0.29 fm m Π 70 MeV f 0 h contrib. A 9 m b T 0.25 fm m Π 297 MeV h SIDIS, udquarks Ζ h SIDIS, udquarks Ζ

81 Results: Sivers shift summary Dependence of SIDIS limit on ˆζ Experimental value from global fit to HERMES, COMPASS and JLab data, M. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, Phys. Rev. D 89 (204) 07403

82 2 = 2 2 = 2 q q Proton spin decompositions q + L q + J g (Ji) q q + L q + g + L g (Jaffe-Manohar) q... and many more (in fact, we will see a continuous interpolation between the two... ) There isn t one unique way of separating quark and gluon orbital angular momentum the different decompositions have different, legitimate meanings.

83 Interpreting terms in the energy-momentum tensor: Quark orbital angular momentum L q iψ ( r D) z ψ Can be obtained from L q = J q S q, where S q and J q can be related to GPDs (Ji sum rule) this has been used in Lattice QCD. Hitherto not accessed in Lattice QCD. L q iψ ( r ) z ψ in light cone gauge

84 Quark Orbital Angular Momentum L U 3 = dx d 2 k T d 2 r T (r T k T ) 3 W U (x,k T,r T ) Wigner distribution = dx d 2 k T k 2 T m 2 F 4(x,k 2 T,k T T, 2 T) T = 0 Generalized transverse momentum-dependent parton distribution (GTMD) = ǫ ij z T,i p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 Y. Hatta, X. Ji, M. Burkardt: Staple-shaped U[ z/2, z/2] Jaffe-Manohar OAM Straight U[ z/2, z/2] Ji OAM Connection to GTMDs A. Metz, M. Schlegel, C. Lorcé, B. Pasquini...

85 Direct evaluation of quark orbital angular momentum L U 3 = dx d 2 k T d 2 r T (r T k T ) 3 W U (x,k T,r T ) Wigner distribution L U 3 n = ǫ ij z T,i p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 n : Number of valence quarks p = P + T /2, p = P T /2, P,S in 3-direction, P This is the same type of operator as used in TMD studies generalization to off-forward matrix element adds transverse position information

86 L U 3 n = ǫ ij z T,i Direct evaluation of quark orbital angular momentum p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 Role of the gauge link U: Y. Hatta, M. Burkardt: Straight U[ z/2, z/2] Ji OAM Staple-shaped U[ z/2, z/2] Jaffe-Manohar OAM Difference is torque accumulated due to final state interaction z ηv + z 2 2 η z 2 ηv z 2 v

87 L U 3 n = ǫ ij z T,i Direct evaluation of quark orbital angular momentum p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 Role of the gauge link U: Direction of staple taken off light cone (rapidity divergences) Characterized by Collins-Soper parameter ˆζ P v P v Are interested in ˆζ ; synonymous with P in the frame of the lattice calculation (v = e 3 ) z ηv + z 2 2 η z 2 ηv z 2 v

88 L U 3 n = ǫ ij z T,i Direct evaluation of quark orbital angular momentum p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 Parameters to consider:, ˆζ, z, η z ηv + z 2 2 η v z 2 ηv z 2

89 L U 3 n = ǫ ij z T,i Direct evaluation of quark orbital angular momentum p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 Dataset contains only one value of T = 4π/aL GeV Substantial underestimate of f/ T by using f T,j T,j =0 = 2 T,j (f( T,j ) f( T,j ))

90 Direct evaluation of quark orbital angular momentum f z T,i z T,i =0 = 2da (f(dae i) f( dae i ))

91 L U 3 n = ǫ ij z T,i Direct evaluation of quark orbital angular momentum p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s T,j z + =z =0, T =0, z T 0 p,s ψ( z/2)γ + U[ z/2,z/2]ψ(z/2) p,s z + =z =0, T =0, z T 0 Remaining parameters to consider: ˆζ, η z ηv + z 2 2 η v z 2 ηv z 2

92 Ji quark orbital angular momentum: η = udquarks m Π 58 MeV L 3 Η0 n Η Ζ Signature of underestimate of f/ T

93 From Ji to Jaffe-Manohar quark orbital angular momentum

94 From Ji to Jaffe-Manohar quark orbital angular momentum

95 From Ji to Jaffe-Manohar quark orbital angular momentum

96 Burkardt s torque extrapolation in ˆζ Τ3L 3 Η0 n Η udquarks m Π 58 MeV Ζ τ 3 = (L (η= ) 3 /n (η= ) ) (L (η=0) 3 /n (η=0) ) Integrated torque accumulated by struck quark leaving proton

97 Flavor separation from Ji to Jaffe-Manohar quark orbital angular momentum

98 Conclusions and Outlook Continued exploration of TMDs using bilocal quark operators with staple-shaped gauge link structures. Soft factors, multiplicative renormalizations are canceled by constructing appropriate ratios of Fourier-transformed TMDs / GTMDs. Exploration of challenges posed by ˆζ limit, discretization effects, physical pion mass limit. Generalization to mixed transverse momentum / transverse position observables (Wigner functions / GT- MDs) gives direct access to quark orbital angular momentum and related observables such as quark spin-orbit coupling. A first comparison with experiment (Sivers shift) is encouraging. Current efforts concentrate on approaching the physical pion mass, improving the treatment of momentum transfer in GTMDs, and exploring further new TMD/GTMD observables (longitudinal polarization, twist-3 GTMDs).

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

arxiv: v1 [hep-lat] 3 Jan 2019

arxiv: v1 [hep-lat] 3 Jan 2019 evaluated using a direct derivative method arxiv:1901.00843v1 [hep-lat] 3 Jan 2019 a, J. Green b, N. Hasan c,d, S. Krieg c,d, S. Meinel e, f, J. Negele g, A. Pochinsky g and S. Syritsyn f,h a Department

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

arxiv: v1 [hep-lat] 6 Jan 2017

arxiv: v1 [hep-lat] 6 Jan 2017 Quark orbital dynamics in the proton from Lattice QCD from Ji to Jaffe-Manohar orbital angular momentum M. Engelhardt Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA arxiv:1701.01536v1

More information

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan Twist Three Generalized Parton Distributions for Orbital Angular Momentum arxiv:160.00160v1 [hep-ph] 30 Jan 016 University of Virginia E-mail: ar5xc@virginia.edu Simonetta Liuti University of Virginia

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015 Twist Three Generalized Parton Distributions For Orbital Angular Momentum Abha Rajan University of Virginia HUGS, 2015 Simonetta Liuti, Aurore Courtoy, Michael Engelhardt Proton Spin Crisis Quark and gluon

More information

Transverse momentum distributions inside the nucleon from lattice QCD

Transverse momentum distributions inside the nucleon from lattice QCD Transverse momentum distributions inside the nucleon from lattice QCD The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 7 TH GHP WORKSHOP FEBRUARY 1-3, 2017 WASHINGTON, DC Simonetta Liuti University of Virginia 2/1/17 2 and A. Rajan et al., soon to be posted 2/1/17 3 Outline 1. Definitions

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Nucleon tomography at small-x

Nucleon tomography at small-x Nucleon tomography at small-x Yoshitaka Hatta (Yukawa inst. Kyoto U.) Contents Introduction: Wigner distribution in QCD Measuring Wigner (unpolarized case) Wigner distribution and orbital angular momentum

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

arxiv: v1 [hep-ph] 13 Nov 2017

arxiv: v1 [hep-ph] 13 Nov 2017 Using Light-Front Wave Functions arxiv:7.0460v [hep-ph] 3 Nov 07 Department of Physics, Indian Institute of Technology Bombay; Powai, Mumbai 400076, India E-mail: asmita@phy.iitb.ac.in We report on some

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt New Mexico State University August 31, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation L q JM Lq Ji = change in OAM as quark leaves

More information

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.)

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.) Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) Outline Ji decomposition Complete decomposition Canonical orbital angular momentum Twist analysis Transversely polarized

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory Alexei Prokudin Jefferson Laboratory WG6:Spin Physics TOTAL 60 talks Theory - 26 talks Experiment - 34 talks Theory Experiment WG6:Spin Physics

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

Update on the Hadron Structure Explored at Current and Future Facilities

Update on the Hadron Structure Explored at Current and Future Facilities 3D Nucleon Tomography Workshop Modeling and Extracting Methodology Update on the Hadron Structure Explored at Current and Future Facilities Jianwei Qiu September 25-29, 2017 Salamanca, Spin Atomic Structure

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.)

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.) Nucleon spin and tomography Yoshitaka Hatta (Yukawa institute, Kyoto U.) Outline Nucleon spin decomposition Jaffe-Manohar vs. Ji Complete gauge invariant decomposition Orbital angular momentum Relation

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

arxiv: v3 [hep-ph] 30 Jun 2014

arxiv: v3 [hep-ph] 30 Jun 2014 Quark Wigner Distributions and Orbital Angular Momentum in Light-front Dressed Quark Model Asmita Mukherjee, Sreeraj Nair and Vikash Kumar Ojha Department of Physics, Indian Institute of Technology Bombay,

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture Four Hadron properties the mass? q How does QCD generate the nucleon mass? The vast majority

More information

TMDs and simulations for EIC

TMDs and simulations for EIC POETIC 2012, August 19 22, Indiana University Jefferson Lab TMDs and simulations for EIC F E Nucleon landscape Nucleon is a many body dynamical system of quarks and gluons Changing x we probe different

More information

Pseudo-Distributions on the Lattice

Pseudo-Distributions on the Lattice Pseudo-Distributions on the Lattice Joe Karpie William & Mary / Jefferson Lab In Collaboration with Kostas Orginos (W&M / JLab) Anatoly Radyushkin (Old Dominion U / JLab) Savvas Zafeiropoulos (Heidelberg

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Nucleon Structure & GPDs

Nucleon Structure & GPDs Nucleon Structure & GPDs Matthias Burkardt New Mexico State University August 15, 2014 Outline 2 GPDs: Motivation impact parameter dependent PDFs angular momentum sum rule physics of form factors DVCS

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Nucleon Structure at Twist-3

Nucleon Structure at Twist-3 Nucleon Structure at Twist-3 F. Aslan, MB, C. Lorcé, A. Metz, B. Pasquini New Mexico State University October 10, 2017 Outline 2 Motivation: why twist-3 GPDs twist-3 GPD G q 2 Lq twist 3 PDF g 2(x) force

More information

Generalized TMDs in Hadronic collisions. Shohini bhattacharya Temple university Light cone 2018

Generalized TMDs in Hadronic collisions. Shohini bhattacharya Temple university Light cone 2018 Generalized TMDs in Hadronic collisions Shohini bhattacharya Temple university Light cone 2018 OUTLINE Generalized TMDs (GTMDs) Quark GTMDs in Exclusive Double Drell-Yan Process (S. Bhattacharya, A. Metz,

More information

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering QCD Evolution 2017, JLab, May 22-26, 2017 Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering Marc Schlegel Institute for Theoretical Physics University of Tübingen in collaboration

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser.

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. Journal of Physics: Conference Series OPEN ACCESS Nucleon tomography To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. 527 012025 View the article online for updates and enhancements. This content

More information

Parton Physics and Large Momentum Effective Field Theory (LaMET)

Parton Physics and Large Momentum Effective Field Theory (LaMET) Parton Physics and Large Momentum Effective Field Theory (LaMET) XIANGDONG JI UNIVERSITY OF MARYLAND INT, Feb 24, 2014 Outline Wilson s unsolved problem Large-momentum effective field theory (LaMET) An

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

Impact of SoLID Experiment on TMDs

Impact of SoLID Experiment on TMDs Impact of SoLID Experiment on TMDs QCD Evolution 2017 @ Jefferson Lab, Newport News May 22-26 th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin,

More information

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS Trieste University and INFN on behalf of the COMPASS Collaboration Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS

More information

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti Observability of Partonic Orbital Angular Momentum Abha Rajan PhD Advisor Dr Simonetta Liuti From Nucleons to Partons Scattering experiments probe internal structure of matter. By increasing energy we

More information

陽子スピンの分解 八田佳孝 ( 京大基研 )

陽子スピンの分解 八田佳孝 ( 京大基研 ) 陽子スピンの分解 八田佳孝 ( 京大基研 ) Outline QCD spin physics Proton spin decomposition: Problems and resolution Orbital angular momentum Twist analysis Transverse polarization Method to compute G on a lattice 1101.5989

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 3D STRUCTURE OF THE NUCLEON AUGUST 29, 2017 INT UNIVERSITY OF WASHINGTON Simonetta Liuti University of Virginia 8/27/17 2 8/27/17 3 arxiv:1709.xxxx [hep-ph] 8/29/17 4 Outline

More information

arxiv: v1 [hep-ph] 9 Jul 2013

arxiv: v1 [hep-ph] 9 Jul 2013 Nuclear Physics B Proceedings Supplement Nuclear Physics B Proceedings Supplement (3) 5 Distribution of Angular Momentum in the Transverse Plane L. Adhikari and M. Burkardt Department of Physics, New Meico

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics Probing collinear and TMD fragmentation functions through hadron distribution inside the jet Zhongbo Kang UCLA The 7 th Workshop of the APS Topical Group on Hadronic Physics February 1-3, 2017 Jets are

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

The g 2 Structure Function

The g 2 Structure Function The g 2 Structure Function or: transverse force on quarks in DIS Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. The g 2 Structure Function p.1/38 Motivation

More information

Hadron Structure with DWF (II)

Hadron Structure with DWF (II) Yale University 3rd International Lattice Field Theory Network Workshop Jefferson Lab, Newport News, VA LHPC Hadron Structure project on USQCD resources Dru Renner University of Arizona Ronald Babich,

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Global Analysis for the extraction of Transversity and the Collins Function

Global Analysis for the extraction of Transversity and the Collins Function Global Analysis for the extraction of Transversity and the Collins Function Torino In collaboration with M. Anselmino, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin Summary Introduction: Introduction strategy

More information

Lattice-based Studies of QCD.

Lattice-based Studies of QCD. Lattice-based Studies of QCD. David Richards Jefferson Laboratory QCD and Hadron Physics Town Meeting, Temple, Sept. 13-15, 2014!!!!! Thanks: R. Briceno, W. Detmold, M. Engelhardt, K-F Liu, S. Meinel,

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

Hadron Structure: A Large Momentum Effective field Theory Approach

Hadron Structure: A Large Momentum Effective field Theory Approach Hadron Structure: A Large Momentum Effective field Theory Approach Xiaonu Xiong (INFN, Pavia) Jan. 6th, 2016 Biographical Xiaonu Xiong Born: 1986-09-20 Current Position: postdoc, INFN-section Pavia (2014-)

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes Filippo Delcarro What is the structure of the nucleons?! Is this structure explained by QCD?!!"#$%&' () *+,-. /0 Where does the spin of

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics? Gluon Spin Basics hvordan man bruger astrologi med tibetanske medicin Winter 2004 R.L. Jaffe The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

More information

Transverse Spin and TMDs

Transverse Spin and TMDs Transverse Spin and TMDs Jian-ping Chen ( 陈剑平 ), Jefferson Lab, Virginia, USA ECT* Dilepton Workshop, Nov. 6-10, 2017 Introduction Spin, Transverse Spin (Transversity), Tensor Charge TMDs: Confined Parton

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information