Lattice-based Studies of QCD.

Size: px
Start display at page:

Download "Lattice-based Studies of QCD."

Transcription

1 Lattice-based Studies of QCD. David Richards Jefferson Laboratory QCD and Hadron Physics Town Meeting, Temple, Sept , 2014!!!!! Thanks: R. Briceno, W. Detmold, M. Engelhardt, K-F Liu, S. Meinel, M. Savage + JLab colleagues

2 Outline Lattice : Theory and Computation Achievements and Opportunities Spectrum of QCD The structure of hadrons The NN Interaction (Polarizabilities) (Isospin breaking) (Fundamental Symmetries). Initiatives and Resources

3 Nuclear Interacti ons Science Infrastructure Software Scidac ê f H0L 1 mn f H1L 1T Hadron Structure HGeVL Sivers-Shift, u-d - quarks 0.0 z` = 0.39, -0.2»b T» = 0.24 fm, -0.4 m p = 518 MeV ò DY SIDIS ô Spectroscopy negative parity h»v» Hlattice unitsl positive parity exotics Lattice QCD INCITE Leadership-class USQCD Facilities Clusters + GPUS + BG/Q GlueX energy reach 0.5 3

4 The Spectrum of QCD 4

5 Low-lying Hadron Spectrum Benchmark of LQCD Durr et al., BMW Collaboration Science 2008 Control over: Quark-mass dependence Continuum extrapolation finite-volume effects (pions, resonances)

6 Spectroscopy: Isoscalar Meson Spectrum Dudek et al, arxiv: , arxiv: Report to NSAC: Implementing the 2007 LRP A key part of the 12-GeV physics program at Jefferson Lab is the ability to produce these exotic hybrid mesons using photon beams, which is expected to generate unprecedented numbers of these particles. The GlueX experiment in the new Hall-D is poised to carry out this program using a detector designed to tackle just this problem. The GlueX experimental program is coupled with both detailed lattice QCD predictions and the strong support of the Jefferson Lab theory center in analyzing and interpreting the expected new data. This puts the U.S. in a unique position to explore this important new science made possible by the 12 GeV CEBAF Upgrade... J. Dudek et al., PRD73,

7 Excited Baryon Spectrum Broad features of SU(6)xO(3) symmetry. Counting of states consistent with NR quark model. Inconsistent with quark-diquark picture or parity doubling. [56,0 + ] [70,1 - ] [56,0 + ] [70,1 - ] [70, 0 + ], [56, 2 + ], [70, 2 + ], [20, 1 + ] N 1/2+ sector: need for complete basis to faithfully extract states 7

8 What we have learned.. Common mechanism in meson and baryon hybrids: chromomagnetic field with Eg GeV Subtract ρ Subtract N 8

9 Future Opportunities - I Luescher: energy levels at finite volume phase shift at corresponding k Matrix in l det h e 2i (k) U k L 2 i =0 lattice irrep Feng, Renner, Jansen, PRD83, PACS-CS, PRD84, Alexandru et al Lang et al., PRD84, Resonant I = 1 ππ Phase Shift Dudek, Edwards, Thomas, Phys. Rev. D 87, (2013) 9

10 Future Opportunities - II 180 (a) 180 (c) Dudek, Edwards, Thomas, Wilson, PRL (in press) Extend to inelastic channels: Guo et al, Briceno et al., First lattice calculations of inelastic channels Lattice QCD will predict results before or during GlueX 10

11 Singularities complex plane 11

12 Meson photoproduction R. Gothe Recent developments to make lattice QCD calculation possible: Briceño [JLab], Hansen & Walker-Loud [JLab/W&M] (2014) QED Agadjanov,Bernard, Meißner & Rusetsky (2014) p p p p p p p N

13 The Structure of Hadrons 13

14 Three-Dimensional Imaging 5D Wigner distributions 3D 1D

15 Isovector Charge Radius Green et al, arxiv: Precision Calculations of the Fundamental Quantities in Nuclear Physics - at physical quark masses

16 Origin of Nucleon Spin contributions to nucleon spin DSu+d L u+d m p 2 D HERMES (2007) contributions to nucleon spin DSu 2 DSd m 2 2 D L d L u LHPC, Haegler et al., Phys. Rev. D 77, (2008); D82, (2010) Total orbital angular momentum carried by quarks small Orbital angular momentum carried by individual quark flavors substantial.

17 Origin of Nucleon Spin - II 17

18 Parametrizations of GPDs Provide phenomenological guidance for GPD s CTEQ, Nucleon Form Factors, Regge Comparison with Diehl et al, hep-ph/ Important Role for LQCD

19 Transverse momentum distributions (TMDs) from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering) + DY HERMES, COMPASS, JLab 12 GeV, RHIC-spin, EIC, DY incoming proton hadronizing quark jet of hadrons P h incoming electron jet of hadrons final state interactions fragmenting proton remnant time Bernhard Musch 2011 final state interactions! explain large asymmetries otherwise forbidden! signature of QCD! 19

20 TMDs in Lattice QCD k y k u u xp z P z B. Musch, PhD Thesis; Haegler, Musch, Negele, Schafer arxiv: k x d = = Z Z z Z d(n k) Z d(n k) Introduce Momentum-space correlators d 4 l 2(2 ) 4 e ik l (l; P, S) d 4 l 2(2 ) 4 e ik l hp, S q(l) Uq(0) P, Si continuum U P exp ig d µ A µ ( ) 0 along path from 0 to Choice of path - retain gauge invariance SIDIS: path runs to infinity Lattice: equal time slice

21 Slide: A. Bacchetta Worm gears on the lattice P. Hägler, B. U. Musch, J. W. Negele, and A. Schäfer, Europhys. Lett. 88 (2009) 61001

22 Transverse momentum distributions (TMDs) Lattice QCD B. Musch et al., Phys.Rev. D85 (2012) ; M. Engelhardt, Lattice

23 Flavour-separated Hadron Physics Doi et al. (ChQCD Collaboration), arxiv: , PRD79:094502,2009 Strangeness contribution to electric and magnetic form factors. G s M (Q2 ) κ ud = κ ud = κ ud = Q 2 (GeV 2 ) G s E (Q2 ) κ ud = κ ud = κ ud = Q 2 (GeV 2 ) Uncertainties: statistical, Q 2 dependence, chiral extrapolation G s M (0) = 0.017(25)(07)

24 Strange-quark contribution to hadron spin QCDSF, arxiv: s MS ( p 7.4 GeV) = 0.020(10)(4) Small, negative contribution In general, Quark and gluons mix under renormalization ln µ 2 q S g = s (µ 2 ) 2 The local operators mix as follows: Pqq 2n f P qg P gq P gg q S g

25 Flavor-separated and Gluon Contributions PRELIMINARY: S. Meinel, Lattice 2014 Complete calculation of flavor-separated and gluonic contributions to nucleon spin Deka et al, arxiv:

26 Parton Distributions in LQCD Formulation of LQCD in Euclidean space precludes direct calculation of light-cone correlation functions LQCD computes Moments of parton distributions New ideas: calculations of QUASI-distributions in infinite-momentum frame x,y Detmold, Melnitchouk, Thomas Large P z q(x, µ, P z )= Z dz 4 e izk X. Ji, Phys. Rev. Lett. 110, (2013). X. Ji, J. Zhang, and Y. Zhao, Phys. Rev. Lett. 111, (2013). J. W. Qiu and Y. Q. Ma, arxiv: D ~P (z) z e ig R z 0 A z(z 0 )dz 0 (0) ~ P Equal time correlator E

27 q(x, µ, P z )= Flavor Structure Z dy y Z x y, µ P z q(y, µ)+o 2 QCD P 2 z, M 2 N P 2 z! +... H.W. Lin et al, arxiv: First lattice calculations of Quasi Distributions q(x)! q(x) smallest x ' 1/a 12 GeV; Future EIC Violation of Gottfried sum rule d(x) > ū(x)

28 NN Interactions and Nuclei { { (Lattice) QCD Many-body methods, EFT, GFMC, NCSM.. 28

29 H-Dibaryon Bound state of two (strange) baryons uuddss, originally proposed by Jaffe (1977) BH HMeVL NPLQCD : nf=2+1 HALQCD : nf= BH HMeVL NPLQCD : nf=2+1 HALQCD : nf= m p 2 HGeV 2 L m p 2 HGeVL Evidence for weakly bound or just unbound dibaryon 29

30 Nuclear Physics from QCD is Possible! s = 0 s = 1 s = Binding energies at physical strange-quark mass B [MeV] body 3-body 4-body d nn 3 He 4 3 n H 3 He 3 He He H-dib n He 4 He

31 The Structure of Hadrons in Nuclei How is the structure of a hadron modified in medium? Calculation of magnetic moments of lightest nuclei. Experimentally measured values NPLQCD, arxiv: m ' 800 MeV Differences from naive shell model

32

33 SUMMARY Person, Moment, Machine Amalgam of new ideas, algorithmic advances, and peta- and exa-scale computers: lattice QCD essential to fulfill NP mission.! Spectrocopy: Calculations of resonances that can confront experimental analysis. Electromagnetic Properties. Structure: Calculations of the fundamental properties at the physical quark masses. GPDs, TMDs, + Lattice QCD + Expt greater than each alone. An ab initio understanding of the NN interactions - properties of hadrons in nuclei

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Cold QCD. Meeting on Computational Nuclear Physics. Washington, DC July Thomas Luu Lawrence Livermore National Laboratory

Cold QCD. Meeting on Computational Nuclear Physics. Washington, DC July Thomas Luu Lawrence Livermore National Laboratory Cold QCD Meeting on Computational Nuclear Physics Washington, DC July 2012 Thomas Luu Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

"Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD

Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD "Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Kyoto, 26 Feb, 205 Outline Spectroscopy:

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

NUCLEAR PHYSICS FROM LATTICE QCD

NUCLEAR PHYSICS FROM LATTICE QCD Twelfth Workshop on Non-Perturbative QCD Paris, June 10-14, 2013 NUCLEAR PHYSICS FROM LATTICE QCD Kostas Orginos QCD Hadron structure and spectrum Hadronic Interactions Nuclear physics Figure by W. Nazarewicz

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

Parton Physics and Large Momentum Effective Field Theory (LaMET)

Parton Physics and Large Momentum Effective Field Theory (LaMET) Parton Physics and Large Momentum Effective Field Theory (LaMET) XIANGDONG JI UNIVERSITY OF MARYLAND INT, Feb 24, 2014 Outline Wilson s unsolved problem Large-momentum effective field theory (LaMET) An

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons

Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab),

More information

Lattice QCD for Cold Nuclear Physics

Lattice QCD for Cold Nuclear Physics Lattice QCD for Cold Nuclear Physics John Negele, David Richards and Martin J. Savage (USQCD Collaboration) (Dated: February 22, 2013) CONTENTS I. EXECUTIVE SUMMARY II. INTRODUCTION III. COMPUTATIONAL

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

Production and Searches for Cascade Baryons with CLAS

Production and Searches for Cascade Baryons with CLAS Production and Searches for Cascade Baryons with CLAS Photoproduction Cross sections Ground State Ξ (1320) Excited State Ξ 0 (1530) Search for Cascade Pentaquarks Elton S. Smith CLAS Collaboration Jefferson

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Light-Meson Spectroscopy at Jefferson Lab

Light-Meson Spectroscopy at Jefferson Lab Light-Meson Spectroscopy at Jefferson Lab Volker Credé Florida State University, Tallahassee, Florida PANDA Collaboration Meeting Uppsala, Sweden 06/10/2015 Outline Introduction 1 Introduction 2 Detector

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

Flavor Decomposition

Flavor Decomposition SIDIS Workshop for PAC30 April 14, 2006 Flavor Decomposition in Semi-Inclusive DIS Wally Melnitchouk Jefferson Lab Outline Valence quarks unpolarized d/u ratio polarized d/d ratio Sea quarks flavor asymmetry

More information

Physics of the Proton Spin Problem. Anthony W. Thomas

Physics of the Proton Spin Problem. Anthony W. Thomas Physics of the Proton Spin Problem Anthony W. Thomas 10 th Circum-Pan-Pacific Symposium on High Energy Spin Physics Academia Sinica : October 6 th 2015 Background The structure of the proton is a fundamental

More information

Lattice QCD and Hadron Structure

Lattice QCD and Hadron Structure Lattice QCD and Hadron Structure Huey-Wen Lin University of Washington 1 Human Exploration Matter has many layers of structure 10 2 m 10 9 m Materials Molecules 10 15 m The scientific cycle Proton 2 Parton

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Electromagnetic Form Factors

Electromagnetic Form Factors Electromagnetic Form Factors Anthony W. Thomas Workshop on Exclusive Reactions, JLab : May 24 th 2007 Electron Scattering Provides an Ideal Microscope for Nuclear Physics Electrons are point-like The interaction

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility Overview of Nuclear Physics at Jefferson Lab Thomas Jefferson National Accelerator Facility E-mail: bmck@jlab.org The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Recent Progress on Nucleon Structure with Lattice QCD

Recent Progress on Nucleon Structure with Lattice QCD Recent Progress on Nucleon Structure with Lattice QCD Huey-Wen Lin University of Washington Outline Lattice gauge theory Nucleon matrix elements on the lattice: systematics Building a picture of nucleons

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA.

Axial-Current Matrix Elements in Light Nuclei from Lattice QCD. Department of Physics, University of Washington, Box , Seattle, WA 98195, USA. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD, Emmanuel Chang and Michael L. Wagman Institute for Nuclear Theory, Seattle, Washington 98195-155, USA. E-mail: mjs5@uw.edu Silas R. Beane

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Transverse momentum distributions inside the nucleon from lattice QCD

Transverse momentum distributions inside the nucleon from lattice QCD Transverse momentum distributions inside the nucleon from lattice QCD The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Exciting opportunities at JLab GeV!

Exciting opportunities at JLab GeV! Exciting opportunities at JLab 25-75 GeV! JLab users town meeting, Newport News! March 16 2012! Kawtar Hafidi! Develop a common vision for the future! The future starts today! 40 - Today (2012), we are

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

The JLAB12 Collaboration

The JLAB12 Collaboration The JLAB12 Collaboration M.Battaglieri on behalf of the JLAB12 Collaboration INFN -GE, Italy 1 The CEBAF parameters Primary Beam: Electrons Beam Energy: 4 GeV (original) 6 GeV now 10 > λ > 0.1 fm 12 GeV

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

The Beam-Helicity Asymmetry for γp pk + K and

The Beam-Helicity Asymmetry for γp pk + K and The Beam-Helicity Asymmetry for γp pk + K and γp pπ + π Rafael A. Badui Jason Bono Lei Guo Brian Raue Florida nternational University Thomas Jefferson National Accelerator Facility CLAS Collaboration September

More information

Lattice QCD and Proton Structure:

Lattice QCD and Proton Structure: Lattice QCD and Proton Structure: How can Lattice QCD complement Experiment? Workshop on Future Opportunities in QCD Washington D.C. December 15, 006 How can Lattice QCD Complement Experiment? 1. Quantitative

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Update on the Hadron Structure Explored at Current and Future Facilities

Update on the Hadron Structure Explored at Current and Future Facilities 3D Nucleon Tomography Workshop Modeling and Extracting Methodology Update on the Hadron Structure Explored at Current and Future Facilities Jianwei Qiu September 25-29, 2017 Salamanca, Spin Atomic Structure

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud Status of scalar quark matrix elements from Lattice QCD André Walker-Loud Outline Nucleon matrix element calculations Direct method - 3 point function Indirect method - Feynman-Hellman Theorem Scalar Matrix

More information

Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics

Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics SC Program Announcement title and number: Scientific Discovery through Advanced Computing: Nuclear Physics (LAB 11-581)

More information

Nuclear Forces from Lattice QCD

Nuclear Forces from Lattice QCD Nuclear forces and their impact on structure, reactions and astrophysics TALENT 13 Lecture on Nuclear Forces from Lattice QCD Zohreh Davoudi University of Washington S-wave Luescher formula - a demonstration

More information

Hall D & GlueX Update. Alex Barnes, University of Connecticut

Hall D & GlueX Update. Alex Barnes, University of Connecticut Hall D & GlueX Update, University of Connecticut Hall D Experiments GlueX E12-06-102, C12-12-002, E1213-003 540 PAC days PrimEx-eta E12-10-011 79 PAC days Pion polarizability E12-13-008 25 PAC days JLab

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Hadron Structure on the Lattice

Hadron Structure on the Lattice Hadron Structure on the Lattice Huey-Wen Lin University of Washington Lattice gauge theory A brief introduction Outline Building a picture of hadrons Recent developments on form factors, EMC effect, etc.

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Yoshiyuki Miyachi, Tokyo Tech Contents Fragmentation and parton distribution function Resent fragmentation

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information