Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Size: px
Start display at page:

Download "Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008."

Transcription

1 Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008.

2 Collaborations Gary Goldstein (Tufts University) Leonard Gamberg (Penn State, Berks) Eric Voutier (Grenoble) AHLT: Saeed Ahmad (U. Wisconsin), Heli Honkanen (Iowa State), S.L., Swadhin Taneja Graduate Students: Osvaldo Gonzalez, Chuanzhe Lin, Huong Nguyen, Dan Perry

3 Outline Unpolarized GPDs from proton and neutron data sets New results using Jlab data constraints! Access to Chiral-Odd GPDs Practical method for the extraction of both tensor charge: q Burkardt's moment : T q Nuclei: DVCS and p0 electroproduction on 4He Conclusions/Outlook

4 1. Extraction from data needs a reliable GPD model

5 A more advanced phase of extracting GPDs from data (a bit of summary from ECT*, June'08, and Jlab Hall B meeting, Aug. 08) No longer simple models (D. Muller) Include Q 2 dependence (M. Diehl) Include all constraints from data DVCS, DVMP... (S.L.) Include new data as they become available... (S.L.) Use Lattice + Chiral Extrapolations (P. Hägler, A. Schaefer) Connect various experiments, separate valence from sea, flavors separation (T. Feldman)... New! Representation in terms of dispersion relation only necessary to measure imaginary part? Stronger polynomiality constraint (Anikin, Teryaev, Diehl, Ivanov, Vanderhaeghen) A similar program exists for TMDs (simpler partonic interpretation than GPDs) see e.g. M. Anselmino and collaborators

6 DVCS and Generalized Parton Distributions t= 2 Generalized Parton Distributions Correlator GPDs are hybrids of PDFs and FFs: describe simultaneously x and t-dependences! GPDs give access to spatial d.o.f. of partons! GPDs give access to orbital angular momentum of partons! X. Ji

7 DVCS Cross Section

8 What goes into a theoretically motivated parametrization...? The name of the game: Devise a form combining essential dynamical elements with a flexible model that allows for a fully quantitative analysis constrained by the data H q (X, t)= R(X, t) G(X, t) Regge Quark-Diquark Q 2 Evolution is an essential element!! S. Ahmad, H. Honkanen, S. Liuti and S.K. Taneja, Phys. Rev. D 75, (2007)

9 Two different time orderings/pole structure! DGLAP ERBL X> X< Quark anti-quark pair describes similar physics (dual to) Regge t-channel exchange!!

10 In DGLAP region partonic picture q q+ Regge k P + X P + k' =k - k + =XP + k' + =(X- )P + P' + =(1- )P + Quark-Diquark t Formulae extended to >0 in AHLT2 (arxiv: ).

11 Constraints on parameters...

12 = 0 Nucleon Form Factors

13 Parton Distribution Functions Notice! GPD parametric form is given at Q 2 =Q o 2 and evolved to Q 2 of data. Notice! We provide a parametrization for GPDs that simultaneously fits the PDFs: q(x) = H q (x,0,0)

14 Polynomiality For higher moments (n=2,3,...) use lattice results (consistency with data can be checked J u vs. J d ) n=2 n=3

15 Use information from Lattice QCD: (1) lattice results follow dipole behavior for n=1,2,3 P. Haegler

16 Chiral Extrapolations Dorati, Gail and Hemmert (2007) Wang, Thomas, Young (2008) Ashley et al. (2003) -t (GeV 2 )

17 Sensible predictions for k T vs. x Bj

18 Sensible predictions for r 2 = b 2 /(1-x Bj ) vs. x Bj (M. Burkardt)

19 Dominance of large x Bj at large t

20 Summary of Constraints Constraints from Form Factors Dirac Pauli Constraints from Polynomiality Constraints from PDFs Further Theoretical Constraints: Sensible prediction for hadron shape at x 1 Sensible prediction for k T dependence (connection with TMDs!) (SL and Taneja, 2004)

21 On the connection between TMDs and GPDs Liuti and Taneja, PRD (2004)

22 AHLT Parameterization v (Q o ) parameters v (Q o ) parameters use v1 for DGLAP region (X > ) 0 More details in AHLT, PRD 2007

23 Comparison with similar parametrizations at =0 (Diehl et al.) H q (x,0,t) E q (x,0,t) u d u d

24 Comparison with similar parametrizations at =0 (Guidal et al.)

25 The ERBL Region partonic interpretation is not obvious We extract it from lattice QCD results Hybrid Model (Dieter Mueller) We know the area from n=1 moment + constrained DGLAP

26 Weighted Average Value Location of X-bin We know n 3 moments Reconstruct GPDs from Bernstein moments Dispersion (error in X)

27 Test with known, previously evaluated GPD, at 0

28 ERBL Region AHLT arxiv: Determined from lattice moments up to n=3

29 Comparison with Jlab Hall A data (proton) Munoz Camacho et al. (2006) Note!! Im H from asymmetry Re H from x-section

30 Comparison with Jlab Hall A data (neutron) Mazouz et al. (2007)

31 AHLT, PRD75: (2007) From fit to form factors From fit to PDFs

32 VGG: crisis or not? Cannot reproduce both! Im F Re F Guidal (2008) Polyakov and Vanderhaeghen (2008)

33 Are the exclusive data telling us something? Real Part (S.Ahmad, S.L., preliminary)

34 Fitted directly at Q of data cusp (X- ) DA type shape needed to fit t -dependence of Jlab data!!! vanishes at X=0 as X

35 S. Ahmad Behavior determined by Jlab data on Real Part and Q 2 dependence Consistent with lattice determination!

36 Orbital Angular Momentum AHLT includes only valence contribution! J q =( q +1)A 20 (0)

37 Dispersion Relations (Anikin, Teryaev, Diehl, Ivanov, ) Q 2 2 H(x,x,t) + C

38 Where is threshold? Viewed this way a quark + spectator cannot be on their mass shell but hadronic jets must have some threshold. This threshold ( physical threshold ) is much higher than what required for the dispersion relations to be valid 0 physical t phys ifmasses in the two-body scattering problem are different! Continuum starts at s =(M+m ) 2 lowest hadronic threshold. How to fill the gap? Analytic continuation?

39 Gaps in dispersion integrals Q 2 =1.0 GeV 2 Q 2 =2.0 GeV 2-1.1>t>-2.7 GeV 2 Physical region has no gap for Q 2 =2.0 GeV 2 -t -t -0.60>t>-1.34 GeV 2 Physical region has no gap for Q 2 =1.0 GeV 2 Q 2 =5.5 GeV 2-2.4>t>-7.4 GeV 2 Physical region has no gap for Q 2 =5.5 GeV 2 -t From Gary Goldstein, SPIN 2008

40 When deeply virtual processes involve directly final states - like in exclusive or semi-inclusive processes - standard kinematic approximations should be questioned (Collins, Rogers, Stasto, 2007)

41

42 h 1 Transversity Simple Ansatz h 1 (x,q 2 ) = q f 1 (x,q 2 ) u H T (x,, t,q 2 ) = q H(x,, t,q 2 ) d E T (x,, t,q 2 ) = Tq H T (x,, t,q 2 ) Related to Boer-Mulders function: h 1

43 2. Electroproduction Observables and GPDs * *S. Ahmad, Gary Goldstein, S.L., arxiv: hep-ph

44 Exclusive o electroproduction h 1 LAB e e'

45 Dual Representation? t= 2 helicity amps. Quark-Hadron Helicity Amplitudes (Marcus Diehl)

46 Comparison between Regge and Partonic approaches

47 Q 2 dependence at pion vertex q o q' cross section Chiral Odd Generalized Form Factors

48 Only chiral-odd GPDs!!! J PC =1 -- J PC =1 +- J PC =1 --, 1 +-,... H T, E T,... ~ ~ J PC =1 ++,... (a 1 -type exchange) H, E,...

49 What goes into the quark-hadron amplitudes? Generalized Form Factors H T (X,0,0) = h 1 (X) = transversity h 1 (X,Q 2 ) dx = q= tensor charge E 2 (X,0,0) dx = T = Burkardt's moment h 1 (X) dx d 2 k T ~ - T (A.Metz)

50 Observables are sensitive to both q and T!... and more...!!!

51 Q 2 dependence

52 t-channel exchange vertex modeled as F (pseudoscalarmeson transition form factor),, b 1, h 1 J PC =1 -- ( 3 S 1 ), b 1, h 1 J PC =1 +- ( 1 P 1 ) J PC =0 -+ quark content:

53 Distinction between and b 1, h 1 exchanges J PC =1 -- J PC =1 +- o : qqbar from S, L S=0, L L o : qqbar from (S=0, L=1) (S=0,L=0) L =1 Vector exchanges no change in OAM Axial-vector exchanges change 1 unit of OAM!

54

55 Main Result: Tensor Charge and Anomalous Transverse Moment treated as free parameters to be extracted from data Fixed u and d

56

57 3. Nuclei: Spin 0 and Spin 1

58 GPDs & hadron tensor for Spin 0 nuclear target (S.L. and SwadhinTaneja, PRC 2005) o production (with G. Goldstein)

59 Jefferson Lab approved experiment, H. Egiyan, F.X Girod, K. Hafidi, S.L. and E. Voutier

60 Spatial structure of quarks and gluons in nuclei quark's position in nuclei Burkardt-Soper impact parameter

61

62 New! Test OAM SR in Spin 1 system: Deuteron (S.L. and S. Taneja)

63 o electro-production from 4He m quark =0 has to flip helicity for q +q and q q 0. o +1/2 4 He He +1/2 0-1/2 0 J PC = 1 +- exchange b 1, h 1 & J PC = exchange 0, o f 0,00(s,t,Q 2 ) = g +,0- A 0+,0 - +1,0 analogue of H T structure of p p A+i(p +p) B 2 invariant amps, 2 independent helicity amps 0 b 1 & h 1 0 & 0 4 He 4 He

64 Conclusions and Outlook Comparison between GPD models and data is indeed possible...gpd extraction is possible!!! Approaching Global Analysis Interesting connections between TMDs and GPDs Proposed extraction of tensor charge and transverse anomalous moment from neutral pion production data Spatial structure of Nuclei

65 J PC =1 --,,,.. J PC =1 +- b 1, h 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti Observability of Partonic Orbital Angular Momentum Abha Rajan PhD Advisor Dr Simonetta Liuti From Nucleons to Partons Scattering experiments probe internal structure of matter. By increasing energy we

More information

Transversity via Exclusive pion-electroproduction

Transversity via Exclusive pion-electroproduction Transversity via Exclusive pion-electroproduction Gary R. Goldstein (Tufts U.) Simonetta Liuti & Saeed Ahmad (U.Va.) Thanks also to : Leonard Gamberg Presentation for Transversity 2008 - Ferrara, Italy

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Gary R. Goldstein! Gary R. Goldstein! Presentation for CIPANP 2015,! Vail, Colorado!!!

Gary R. Goldstein! Gary R. Goldstein! Presentation for CIPANP 2015,! Vail, Colorado!!! Gary R. Goldstein! Gary R. Goldstein! Tufts University! Tufts University!!! Presentation for CIPANP 215,! Vail, Colorado!!! These ideas were developed in Jlab, Trento ECT*, INT, DIS211, SPIN, Frascati

More information

Generalized Parton Distributions in the Chiral Odd Sector & Their Role in Neutral Meson Leptoproduction

Generalized Parton Distributions in the Chiral Odd Sector & Their Role in Neutral Meson Leptoproduction Generalized Parton Distributions in the Chiral Odd Sector & Their Role in Neutral Meson Leptoproduction Gary R. Goldstein! Tufts University! Simonetta Liuti,! Osvaldo Gonzalez-Hernandez! University of

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan Twist Three Generalized Parton Distributions for Orbital Angular Momentum arxiv:160.00160v1 [hep-ph] 30 Jan 016 University of Virginia E-mail: ar5xc@virginia.edu Simonetta Liuti University of Virginia

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC Delia Hasch GPDs -- status of measurements -- a very brief introduction prerequisites and methods & DVMP: selected results on the way to an EIC see additional slides for results not covered POETIC 01,

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015 Twist Three Generalized Parton Distributions For Orbital Angular Momentum Abha Rajan University of Virginia HUGS, 2015 Simonetta Liuti, Aurore Courtoy, Michael Engelhardt Proton Spin Crisis Quark and gluon

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Hyon-Suk Jo for the CLAS collaboration IPN Orsay PANIC 2011 M.I.T. Cambridge - July 25, 2011 19th Particles & Nuclei International Conference

More information

Recent results on DVCS from Hall A at JLab

Recent results on DVCS from Hall A at JLab Recent results on DVCS from Hall A at JLab Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Sep 5, 2017 Carlos Muñoz Camacho (IPN-Orsay)

More information

Deeply Virtual Compton Scattering on the neutron

Deeply Virtual Compton Scattering on the neutron Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ For JLab Hall A & DVCS collaborations Physics case n-dvcs experimental setup Analysis method Results and conclusions Exclusive Reactions at

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Generalized parton distributions in the context of HERA measurements

Generalized parton distributions in the context of HERA measurements arxiv:1107.3423v1 [hep-ph] 18 Jul 2011 Generalized parton distributions in the context of HERA measurements Laurent SCHOEFFEL CEA Saclay/Irfu-SPP, 91191 Gif-sur-Yvette, France July 2, 2013 Abstract We

More information

Information Content of the DVCS Amplitude

Information Content of the DVCS Amplitude Information Content of the DVCS Amplitude DVCS? GPDs Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab Information Content of the DVCS Amplitude p.1/25 Generalized Parton

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Status report of Hermes

Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/28 2004 Spin physics: finalised and new results on: inclusive, semi-inclusive and exclusive measurements nuclear effects data

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Raphaël Dupré Disclaimer This will be only a selection of topics Like any review of a field I encourage

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Experimental Studies of Hadron Structure via Generalized Parton Distributions

Experimental Studies of Hadron Structure via Generalized Parton Distributions Experimental Studies of Hadron Structure via Generalized Parton Distributions IPN Orsay E-mail: niccolai@ipno.inp.fr Generalized Parton Distributions (GPDs) provide a unified description of hadronic structure

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Impact of SoLID Experiment on TMDs

Impact of SoLID Experiment on TMDs Impact of SoLID Experiment on TMDs QCD Evolution 2017 @ Jefferson Lab, Newport News May 22-26 th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin,

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

DVCS and DVMP: results from CLAS and the experimental program of CLAS12

DVCS and DVMP: results from CLAS and the experimental program of CLAS12 DVCS and DVMP: results from CLAS and the eperimental program of CLAS12 e e g N N GPDs Accessing GPDs via DVCS and DVMP Recent results from Jefferson Lab Silvia Niccolai IPN Orsay & CLAS Collaboration What

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Nucleon Spin Structure from Confinement to Asymptotic Freedom

Nucleon Spin Structure from Confinement to Asymptotic Freedom 21 September 2009 QNP09 Beijing Nucleon Spin Structure from Confinement to Asymptotic Freedom K. Griffioen College of William & Mary griff@physics.wm.edu 5th International Conference on Quarks in Nuclear

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Generalized Parton Distributions Recent Progress

Generalized Parton Distributions Recent Progress Generalized Parton Distributions Recent Progress (Mostly a summary of various talks at SIR2005@Jlab in May 2005 Pervez Hoodbhoy Quaid-e-Azam University Islamabad γ* γ,π,ρ hard soft x+ξ x-ξ GPDs P P t Factorisation:

More information

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore Polarizing Helium-3 for down quark spin enrichment Nigel Buttimore Trinity College Dublin 12 September 2012 Diffraction 2012 Polarized Helium-3 OUTLINE Introduction to the spin structure of polarized protons

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Quark Orbital Angular Momentum in the Model

Quark Orbital Angular Momentum in the Model Quark Orbital Angular Momentum in the Model Barbara Pasquini, Feng Yuan Pavia, INFN, Italy LBNL and RBRC-BNL, USA Ref: Pasquini, Yuan, work in progress 9/22/2010 1 Proton Spin Sum Quark spin ~30% DIS,

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Summary of Workshop on Spin of Nucleons from Low to High Energy Scales

Summary of Workshop on Spin of Nucleons from Low to High Energy Scales Summary of Workshop on Spin of Nucleons from Low to High Energy Scales Jen-Chieh Peng University of Illinois at Urbana-Champaign EINN2015, Paphos, Cyprus, Nov. 1-7, 2015 1 Three Sessions of the Spin Workshop

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Singular Charge Density at the Center of the Pion?

Singular Charge Density at the Center of the Pion? Singular Charge Density at the Center of the Pion? Gerald A. Miller University of Washington arxive:0901.11171 INT program Jlab-12 Fall 09 www.int.washington.edu/programs/09-3.html Why study the pion?

More information

Exciting opportunities at JLab GeV!

Exciting opportunities at JLab GeV! Exciting opportunities at JLab 25-75 GeV! JLab users town meeting, Newport News! March 16 2012! Kawtar Hafidi! Develop a common vision for the future! The future starts today! 40 - Today (2012), we are

More information

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory Alexei Prokudin Jefferson Laboratory WG6:Spin Physics TOTAL 60 talks Theory - 26 talks Experiment - 34 talks Theory Experiment WG6:Spin Physics

More information

A glimpse of gluons through deeply virtual Compton scattering

A glimpse of gluons through deeply virtual Compton scattering A glimpse of gluons through deeply virtual Compton scattering M. Defurne On behalf of the DVCS Hall A collaboration CEA Saclay - IRFU/SPhN June 1 st 017 June 1 st 017 1 / 7 The nucleon: a formidable lab

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions of weeks 8 and 9 of the INT program Gluons and the quark sea at high energy: distributions, polarization,

More information

Generalized TMDs in Hadronic collisions. Shohini bhattacharya Temple university Light cone 2018

Generalized TMDs in Hadronic collisions. Shohini bhattacharya Temple university Light cone 2018 Generalized TMDs in Hadronic collisions Shohini bhattacharya Temple university Light cone 2018 OUTLINE Generalized TMDs (GTMDs) Quark GTMDs in Exclusive Double Drell-Yan Process (S. Bhattacharya, A. Metz,

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at L. L. Pappalardo (On behalf of the Collaboration) INFN Università degli Studi di Ferrara - Dipartimento di Fisica Polo Scientifico

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 7 TH GHP WORKSHOP FEBRUARY 1-3, 2017 WASHINGTON, DC Simonetta Liuti University of Virginia 2/1/17 2 and A. Rajan et al., soon to be posted 2/1/17 3 Outline 1. Definitions

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Nucleon tomography at small-x

Nucleon tomography at small-x Nucleon tomography at small-x Yoshitaka Hatta (Yukawa inst. Kyoto U.) Contents Introduction: Wigner distribution in QCD Measuring Wigner (unpolarized case) Wigner distribution and orbital angular momentum

More information

Hall C SIDIS Program basic (e,e p) cross sections

Hall C SIDIS Program basic (e,e p) cross sections Hall C SIDIS Program basic (e,e p) cross sections Linked to framework of Transverse Momentum Dependent Parton Distributions Validation of factorization theorem needed for most future SIDIS experiments

More information

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France)

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France) Neutron DVCS Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Next generation of nuclear physics with JLab12 and EIC Florida International University February 10 13, 2016 Carlos Muñoz Camacho (IPN-Orsay)

More information

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado JAMboree Theory Center Jamboree Jefferson Lab, Dec 13, 2013 Introduction Hadrons composed of quarks and gluons scattering off partons Parton distribution functions Plausible at high energies (from GeV):

More information