Quark Orbital Angular Momentum

Size: px
Start display at page:

Download "Quark Orbital Angular Momentum"

Transcription

1 Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015

2 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions (Jaffe v. Ji), change in OAM due to FSI Summary 2

3 Deeply Virtual Compton Scattering (DVCS) 3 form factor electron hits nucleon & nucleon remains intact Compton scattering electron hits nucleon, nucleon remains intact & photon gets emitted study amplitude that nucleon remains intact as function of momentum transfer F (q 2 ) F (q 2 ) = dxgp D(x, q 2 ) GPDs provide momentum disected form factors study both energy & q 2 dependence additional information about momentum fraction x of active quark generalized parton distributions GP D(x, q 2 )

4 Physics of GPDs: 3D Imaging of the Nucleon 4 MB, PRD62, (2000) form factors: F T ρ( r) GP Ds(x,0, 2 ): form factor for quarks with momentum fraction x suitable FT of GP Ds should provide spatial distribution of quarks with momentum fraction x Impact Parameter Dependent Quark Distributions d 2 q(x, b ) = (2π) 2 GP D(x, 0, 2 )e ib q(x, b ) = parton distribution as a function of the separation b from the transverse center of momentum R i q,g r,ix i probabilistic interpretation! no relativistic corrections: Galilean subgroup! (MB,2000) corollary: interpretation of 2d-FT of F 1 (Q 2 ) as charge density in transverse plane also free from relativistic corrections (MB,2003;G.A.Miller, 2007)

5 Impact parameter dependent quark distributions 5 unpolarized proton q(x, b ) = d 2 (2π) 2 H(x, 0, 2 )e ib F 1 ( 2 ) = dxh(x, 0, 2 ) x = momentum fraction of the quark b relative to center of momentum small x: large meson cloud larger x: compact valence core x 1: active quark becomes center of momentum b 0 (narrow distribution) for x 1

6 Impact parameter dependent quark distributions 6 proton polarized in +ˆx direction no axial symmetry! d 2 q(x, b ) = (2π) 2 H q(x,0, 2 )e ib 1 d 2 2M b y (2π) 2 E q(x,0, 2 )e ib Physics: relevant density in DIS is j + j 0 + j 3 and left-right asymmetry from j 3 intuitive explanation moving Dirac particle with anomalous magnetic moment has electric dipole moment to p and magnetic moment γ sees flavor dipole moment of oncoming nucleon

7 Impact parameter dependent quark distributions 6 proton polarized in +ˆx direction no axial symmetry! d 2 q(x, b ) = (2π) 2 H q(x,0, 2 )e ib 1 d 2 2M b y (2π) 2 E q(x,0, 2 )e ib Physics: relevant density in DIS is j + j 0 + j 3 and left-right asymmetry from j 3

8 Impact parameter dependent quark distributions 7 proton polarized in +ˆx direction d 2 q(x, b ) = (2π) 2 H q(x,0, 2 )e ib 1 d 2 2M b y (2π) 2 E q(x,0, 2 )e ib sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: b q y dx d 2 b q(x, b )b y = 1 2M dxeq (x, 0, 0) = κq 2M

9 Impact parameter dependent quark distributions 7 sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: b q y dx d 2 b q(x, b )b y = 1 2M dxeq (x, 0, 0) = κq 2M κ p = = 2 3 κp u 1 3 κp d +... u-quarks: κ p u = 2κ p + κ n = shift in +ŷ direction d-quarks: κ p u = 2κ n + κ p = shift in ŷ direction b q y = O (±0.2fm)!!!!

10 GPD Single Spin Asymmetries (SSA) 8 confirmed by Hermes & Compass data example: γp πx u, d distributions in polarized proton have left-right asymmetry in position space (T-even!); sign determined by κ u & κ d attractive final state interaction (FSI) deflects active quark towards the center of momentum FSI translates position space distortion (before the quark is knocked out) in +ŷ-direction into momentum asymmetry that favors ŷ direction chromodynamic lensing κ p, κ n sign of SSA!!!!!!!! (MB,2004)

11 Sign of Boer-Mulders Function 9 q with polarization unpolarized target all q polns. equally likely q in ground state orbit counterclockwise current from lower component q distribution shifted to top

12 Sign of Boer-Mulders Function 9 q with polarization unpolarized target q with pol. shifted to left q in ground state orbit counterclockwise current from lower component q distribution shifted to top

13 Sign of Boer-Mulders Function 9 q with polarization unpolarized target q with pol. shifted to right q in ground state orbit counterclockwise current from lower component q distribution shifted to top

14 Sign of Boer-Mulders Function 9 q with polarization unpolarized target q with pol. shifted to top q in ground state orbit counterclockwise current from lower component q distribution shifted to top

15 Sign of Boer-Mulders Function 9 q with polarization unpolarized target q with pol. shifted to bottom q in ground state orbit counterclockwise current from lower component q distribution shifted to top

16 Sign of Boer-Mulders Function 9 q with polarization unpolarized target lattice calculations (QCDSF) transversity distribution in unpol. target described by chirally odd GPD ĒT Ē T > 0 for u & d (QCDSF) connection h 1 (x, k ) ĒT similar to f 1T (x, k ) E. h 1 (x, k ) < 0 for u/p, d/p, u/π, d/π,..(mb+bh, 2008) different valence quarks add coherently h 1 > f 1 (MB+BH; Musch)

17 Calculating TMDs in Lattice QCD 10 challenge TMDs in lattice QCD B. Musch, P. Hägler, M. Engelhardt? v + ` 0 TMDs/Wigner functions relevant for SIDIS require (near) light-like Wilson lines on Euclidean lattice, all distances are space-like calculate space-like staple-shaped Wilson line pointing in ẑ direction; length L momentum projected nucleon sources/sinks remove IR divergences by considering appropriate ratios extrapolate/evolve to P z

18 Quasi Light-Like Wilson Lines from Lattice QCD 11 f 1T,SIDIS = f 1T,DY (Collins) f 1T (x, k ) is k -odd term in quark-spin averaged momentum distribution in polarized target

19 Quasi Light-Like Wilson Lines from Lattice QCD 11 f 1T,SIDIS = f 1T,DY (Collins) f 1T (x, k ) is k -odd term in quark-spin averaged momentum distribution in polarized target

20 Average force on quarks in DIS 12 d 2 average force on quark in DIS from pol target polarized DIS: σ LL g 1 2Mx ν g 2 σ LT g T g 1 + g 2 clean separation between g 2 and 1 Q 2 corrections to g 1 g 2 = g2 W W + ḡ 2 with g2 W W (x) g 1 (x) + 1 dy x y g 1(y) d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)γ + gf +y (0)q(0) P, S 2MP +2 S x color Lorentz Force on ejected quark (MB, PRD 88 (2013) ) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1) matrix element defining d 2 1 st integration point in QS-integral d 2 force QS-integral impulse sign of d 2 deformation of q(x, b ) sign of d q 2 : opposite Sivers magnitude of d 2 F y = 2M 2 d 2 = 10 GeV fm d 2 F y σ 1 GeV fm d 2 = O(0.01)

21 Average force on quarks in DIS 12 d 2 average force on quark in DIS from pol target polarized DIS: σ LL g 1 2Mx ν g 2 σ LT g T g 1 + g 2 clean separation between g 2 and 1 Q 2 corrections to g 1 g 2 = g2 W W + ḡ 2 with g2 W W (x) g 1 (x) + 1 dy x y g 1(y) d 2 3 dx x 2 1 ḡ 2 (x) = P, S q(0)γ + gf +y (0)q(0) P, S 2MP +2 S x color Lorentz Force on ejected quark (MB, PRD 88 (2013) ) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1) sign of d 2 deformation of q(x, b ) sign of d q 2 : opposite Sivers magnitude of d 2 F y = 2M 2 d 2 = 10 GeV fm d 2 F y σ 1 GeV fm d 2 = O(0.01) consitent with experiment (JLab,SLAC), model calculations (Weiss), and lattice QCD calculations (Göckeler et al., 2005)

22 Angular Momentum Carried by Quarks 13 L x = yp z zp y if state invariant under rotations about ˆx axis then yp z = zp y L x = 2 yp z GPDs provide simultaneous information about p z & b use quark GPDs to determine angular momentum carried by quarks Jq x = 1 2 dx x [H(x, 0, 0) + E(x, 0, 0)] (X.Ji, 1996) interpretation in terms of 3D distribution (MB,2001,2005)

23 Angular Momentum Carried by Quarks 14 lattice: (lattice hadron physics collaboration - LHPC) no disconnected quark loops chiral extrapolation QCD evolution J q = 1 2 dx x [H(x, 0, 0) + E(x, 0, 0)] L q = J q 1 2 Σq

24 Photon Angular Momentum in QED 15 QED with electrons J γ = = = ( ) d 3 r r E B = d 3 r d 3 r [ ( )] d 3 r r E A [ ( E j r ) A j r ( E ) A ] [ ( E j r ) ( A j + r A ) ] E + E A replace 2 nd term (eq. of motion E = ej 0 = eψ ψ), yielding [ J γ = d 3 r ψ r eaψ ( + E j x ) A j + E A ] ψ r e Aψ cancels similar term in electron OAM ψ r ( p e A)ψ decomposing J γ into spin and orbital also shuffles angular momentum from photons to electrons!

25 The Nucleon Spin Pizzas 16 Ji decomposition Jaffe-Manohar decomposition 1 2 = q 1 2 q + L q + J g 1 2 q = 2 1 d 3 x P, S q ( x)σ 3 q( x) P, S L q = ( 3q( x) P,S d 3 x P,S q ( x) x id) J g = [ )] 3 d 3 x P, S x ( E B P, S i D = i g A light-cone framework & gauge A + = = q 1 2 q + L q + G + L g L q = d 3 r P,S q( r)γ + ( r i ) zq( r) P,S G=ε + ij d 3 r P, S TrF +i A j P, S L g =2 d 3 r P,S TrF +j ( x i ) za j P,S manifestly gauge inv. def. for each term exists (Lorcé, Pasquini; Hatta)

26 The Nucleon Spin Pizzas 17 Ji decomposition 1 2 = q 1 2 q + L q + J g 1 2 q = 2 1 d 3 x P, S q ( x)σ 3 q( x) P, S L q = ( 3q( x) P,S d 3 x P,S q ( x) x id) J g = [ )] 3 d 3 x P, S x ( E B P, S i D = i g A GPDs L q p p G L i q,g Li Jaffe-Manohar decomposition light-cone framework & gauge A + = = q 1 2 q + L q + G + L g L q = d 3 r P,S q( r)γ + ( r i ) zq( r) P,S G=ε + ij d 3 r P, S TrF +i A j P, S L g =2 d 3 r P,S TrF +j ( x i ) za j P,S manifestly gauge invariant definitions for each term exist ( Hatta) QED: L e L e [M.B. + Hikmat BC, PRD 79, (2009)] L q L q =? can we calculate/predict/measure the difference? what does it represent?

27 OAM from Wigner Distributions 18 Wigner Functions (Belitsky, Ji, Yuan; Lorcé, Pasquini; Metz et al.) W (x, b, d 2 q d 2 ξ dξ k ) (2π) 2 (2π) 3 e ik ξ e i q b P S q(0)γ + q(ξ) P S. TMDs: f(x, k ) = d 2 b W (x, b, k ) GPDs: q(x, b ) = d 2 k W (x, b, k ) L z = dx d 2 b d 2 k W (x, b, k )(b x k y b y k x ) ( need to include Wilson-line gauge link U 0ξ exp i g ξ A d r) 0 to connect 0 and ξ crucial for SSAs in SIDIS et al. straight line straigth Wilson line from 0 to ξ yields Ji-OAM: L q = ( zq( x) P,S d 3 x P,S q ( x) x id) Light-Cone Staple for U ±LC 0ξ light-cone staple yields L Jaffe Manohar

28 Quark OAM from Wigner Distributions 19 straight line ( Ji) 1 2 = q 1 2 q + L q + J g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) 1 2 = q 1 2 q + L q + G + L g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A i D = i g A(x =, x ) difference L q L q L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x x dr F + (r, x ) ] z q( x) P,S 2F +y = F 0y + F zy = E y + B x

29 Quark OAM from Wigner Distributions 19 straight line ( Ji) 1 2 = q 1 2 q + L q + J g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) 1 2 = q 1 2 q + L q + G + L g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A id j = i j ga j (x, x ) g x dr F +j difference L q L q L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x x dr F + (r, x ) ] z q( x) P,S color Lorentz Force on ejected quark (MB, PRD 88 (2013) ) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1)

30 Quark OAM from Wigner Distributions 19 straight line ( Ji) 1 2 = q 1 2 q + L q + J g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S light-cone staple ( Jaffe-Manohar) 1 2 = q 1 2 q + L q + G + L g L q = d 3 x P,S q( x)γ + ( x i D) zq( x) P,S i D = i g A id j = i j ga j (x, x ) g x dr F +j difference L q L q L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x x dr F + (r, x ) ] z q( x) P,S color Lorentz Force on ejected quark (MB, PRD 88 (2013) ) ( ) y 2F +y = F 0y + F zy = E y + B x = E + v B for v = (0, 0, 1) Torque along the trajectory of q Change in OAM [ ( )] z T z = x E ˆ z B L z = ( )] z dr [ x E x ˆ z B

31 Quark OAM 20 difference L q L q L q JM Lq Ji = Lq F SI = change in OAM as quark leaves nucleon example: torque in magnetic dipole field QED - effect from e in its own dipole field L e F SI = α 3π > 0 (MB+H.BC, PRD 2009)

32 Quark OAM 21 difference L q L q L q JM Lq Ji = Lq F SI = change in OAM as quark leaves nucleon L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x dr F + (r, x x ) ] z q( x) P,S local torque d 2 x P,S q( x)γ +[ x F + (x, x ) ] z q( x) P,S = 0 formal argument: PT intuitive: front vs. back cancellation in ensemble average lowest nontrivial moment d 2 x P,S q( x)γ +[ x F + (x, x ) ] z q( x) P,S = 0 off-forward matrix element of qγ 5 γ D 3 q

33 Quark OAM - sign of L q L q 22 difference L q L q L q JM Lq Ji = Lq F SI = change in OAM as quark leaves nucleon L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x dr F + (r, x x ) ] z q( x) P,S e + moving through dipole field of e consider e polarized in +ẑ direction µ in ẑ direction (Figure) e + moves in ẑ direction net torque negative sign of L q L q in QCD color electric force between two q in nucleon attractive same as in positronium spectator spins positively correlated with nucleon spin expect L q L q < 0 in nucleon

34 Quark OAM - sign of L q L q 22 difference L q L q L q JM Lq Ji = Lq F SI = change in OAM as quark leaves nucleon L q JM Lq Ji = g d 3 x P,S q( x)γ +[ x dr F + (r, x x ) ] z q( x) P,S e + moving through dipole field of e consider e polarized in +ẑ direction µ in ẑ direction (Figure) e + moves in ẑ direction net torque negative sign of L q L q in QCD color electric force between two q in nucleon attractive same as in positronium spectator spins positively correlated with nucleon spin expect L q L q < 0 in nucleon lattice QCD (M.Engelhardt) L staple vs. staple length L q Ji for length = 0 L q JM for length shown L u staple Ld staple similar result for each L q F SI

35 Quark OAM - G 2 Sum Rule 23 Leader & Lorcé - Phys. Repts. Twist-3 GPD Angular momentum Sum Rule - Polyakov Scalar diquark model sum rule not satisfied issue not Ji vs. JM as L Ji = L JM in that model origin of violation still under investigation...

36 Digression: Aharonov Bohm Effect in SSAs? 24 Aharonov Bohm effect double slit experiment with solenoid between beams no magnetic field at beam vector( potential A modifies QM phase ) ( ) exp i e A d r = exp i e B ds B 0 shifts interference pattern

37 Digression: Aharonov Bohm Effect in SSAs? 25 Aharonov Bohm effect double slit experiment with solenoid between beams no magnetic field at beam vector( potential A modifies QM phase ) ( ) exp i e A d r = exp i e B ds B 0 shifts interference pattern transverse SSA Wilson( line phase factor exp i g ) A d r crucial for SSAs in SIDIS et al. However, contrary to SSAs in SIDIS, AB-effect does NOT generate a net (average), k example for Ehrenfest s theorem: k = dt F No net momentum f(k ) f dbl f sgl f sgl sin2 ( ) k a 2 (k a) 2 ) f dbl cos ( 2 k d+φ 2 a width of each slit d center-to-center distance of slits Φ = e A( r) d r dk I(k )k = 0

38 Summary 26 GPDs F T q(x, b ) 3d imaging polarization deformation nucleon anomalous magnetic moment deformation sign of SSAs d 2 : force on quarks in DIS sign and magnitude of d 2 L q JM Lq Ji = change in OAM as quark leaves nucleon (due to torque from FSI) SSAs not a pure Aharonov-Bohm effect

39 Calculating Jaffe-Monohar OAM in Lattice QCD 27 challenge TMDs in lattice QCD B. Musch, P. Hägler, M. Engelhardt? v + ` 0 TMDs/Wigner functions relevant for SIDIS require (near) light-like Wilson lines on Euclidean lattice, all distances are space-like calculate space-like staple-shaped Wilson line pointing in ẑ direction; length L momentum projected nucleon sources/sinks remove IR divergences by considering appropriate ratios extrapolate/evolve to P z

40 Quasi Light-Like Wilson Lines from Lattice QCD 28 f 1T,SIDIS = f 1T,DY (Collins) f 1T (x, k ) is k -odd term in quark-spin averaged momentum distribution in polarized target

41 Quasi Light-Like Wilson Lines from Lattice QCD 28 f 1T,SIDIS = f 1T,DY (Collins) f 1T (x, k ) is k -odd term in quark-spin averaged momentum distribution in polarized target

42 Calculating Jaffe-Monohar OAM in Lattice QCD 29 TMDs in lattice QCD B. Musch, P. Hägler, M. Engelhardt calculate space-like staple-shaped Wilson line pointing in ẑ direction; length L momentum projected nucleon sources/sinks remove IR divergences by considering appropriate ratios extrapolate/evolve to P z next: Orbital Angular Momentum same operator as for TMDs, only nonforward matrix elements: momentum transfer provides position space information ( r k ) staple with long side in ẑ direction (large) nucleon momentum in ẑ direction small momentum transfer in ŷ direction generalized TMD F 14 (Metz et al.) quark OAM renormalization same as f 1T study ratios...

43 Angular Momentum Carried by Quarks 30 lattice: (lattice hadron physics collaboration - LHPC) no disconnected quark loops chiral extrapolation QCD evolution J q = 1 2 dx x [H(x, 0, 0) + E(x, 0, 0)] L q = J q 1 2 Σq

44 Connection with Jaffe-Manohar-Bashinsky 31 PT (Hatta) PT L + = L (different from SSAs due to factor x in OAM) alternative: Bashinsky-Jaffe A + = 0 x i x A ( x ) = antisymm. boundary condition A + = 0 fix residual gauge inv. A µ A µ + µ φ( x ) by imposing A (, x ) = A (, x ) A (, x ) A (, x ) = dx F + gauge inv. L + involves i D + = i g A(, x ) L involves i D = i g A(, x ) L + = L no contribution from A(, x ) naive JM OAM L JM = L + = L [ i ga( x ] ) dx A (x, x ) dx

45 Connection with Jaffe-Manohar-Bashinsky 31 PT (Hatta) PT L + = L (different from SSAs due to factor x in OAM) alternative: Bashinsky-Jaffe A + = 0 x i x A ( x ) = antisymm. boundary condition A + = 0 fix residual gauge inv. A µ A µ + µ φ( x ) by imposing A (, x ) = A (, x ) A (, x ) A (, x ) = dx F + gauge inv. L + involves i D + = i g A(, x ) L involves i D = i g A(, x ) L + = L no contribution from A(, x ) naive JM OAM L JM = L + = L [ i ga( x ] ) dx A (x, x ) dx = 1 2 ( A (, x ) + A (, x ) L JB = 1 2 (L + + L ) = L + = L )

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt New Mexico State University August 31, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation L q JM Lq Ji = change in OAM as quark leaves

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

Nucleon Structure & GPDs

Nucleon Structure & GPDs Nucleon Structure & GPDs Matthias Burkardt New Mexico State University August 15, 2014 Outline 2 GPDs: Motivation impact parameter dependent PDFs angular momentum sum rule physics of form factors DVCS

More information

Nucleon Structure at Twist-3

Nucleon Structure at Twist-3 Nucleon Structure at Twist-3 F. Aslan, MB, C. Lorcé, A. Metz, B. Pasquini New Mexico State University October 10, 2017 Outline 2 Motivation: why twist-3 GPDs twist-3 GPD G q 2 Lq twist 3 PDF g 2(x) force

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

Information Content of the DVCS Amplitude

Information Content of the DVCS Amplitude Information Content of the DVCS Amplitude DVCS? GPDs Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab Information Content of the DVCS Amplitude p.1/25 Generalized Parton

More information

The g 2 Structure Function

The g 2 Structure Function The g 2 Structure Function or: transverse force on quarks in DIS Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. The g 2 Structure Function p.1/38 Motivation

More information

What is Orbital Angular Momentum?

What is Orbital Angular Momentum? What is Orbital Angular Momentum? Matthias Burkardt burkardt@nmsu.edu New Mexico State University What is Orbital Angular Momentum? p.1/22 Motivation polarized DIS: only 30% of the proton spin due to quark

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

What is Orbital Angular Momentum?

What is Orbital Angular Momentum? What is Orbital Angular Momentum? Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab What is Orbital Angular Momentum? p.1/23 Motivation polarized DIS: only 30% of the proton

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

arxiv: v1 [hep-ph] 9 Jul 2013

arxiv: v1 [hep-ph] 9 Jul 2013 Nuclear Physics B Proceedings Supplement Nuclear Physics B Proceedings Supplement (3) 5 Distribution of Angular Momentum in the Transverse Plane L. Adhikari and M. Burkardt Department of Physics, New Meico

More information

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.)

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.) Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) Outline Ji decomposition Complete decomposition Canonical orbital angular momentum Twist analysis Transversely polarized

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015 Twist Three Generalized Parton Distributions For Orbital Angular Momentum Abha Rajan University of Virginia HUGS, 2015 Simonetta Liuti, Aurore Courtoy, Michael Engelhardt Proton Spin Crisis Quark and gluon

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Quark Orbital Angular Momentum in the Model

Quark Orbital Angular Momentum in the Model Quark Orbital Angular Momentum in the Model Barbara Pasquini, Feng Yuan Pavia, INFN, Italy LBNL and RBRC-BNL, USA Ref: Pasquini, Yuan, work in progress 9/22/2010 1 Proton Spin Sum Quark spin ~30% DIS,

More information

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.)

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.) Nucleon spin and tomography Yoshitaka Hatta (Yukawa institute, Kyoto U.) Outline Nucleon spin decomposition Jaffe-Manohar vs. Ji Complete gauge invariant decomposition Orbital angular momentum Relation

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

陽子スピンの分解 八田佳孝 ( 京大基研 )

陽子スピンの分解 八田佳孝 ( 京大基研 ) 陽子スピンの分解 八田佳孝 ( 京大基研 ) Outline QCD spin physics Proton spin decomposition: Problems and resolution Orbital angular momentum Twist analysis Transverse polarization Method to compute G on a lattice 1101.5989

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan Twist Three Generalized Parton Distributions for Orbital Angular Momentum arxiv:160.00160v1 [hep-ph] 30 Jan 016 University of Virginia E-mail: ar5xc@virginia.edu Simonetta Liuti University of Virginia

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Nucleon tomography at small-x

Nucleon tomography at small-x Nucleon tomography at small-x Yoshitaka Hatta (Yukawa inst. Kyoto U.) Contents Introduction: Wigner distribution in QCD Measuring Wigner (unpolarized case) Wigner distribution and orbital angular momentum

More information

arxiv: v1 [hep-ph] 13 Nov 2017

arxiv: v1 [hep-ph] 13 Nov 2017 Using Light-Front Wave Functions arxiv:7.0460v [hep-ph] 3 Nov 07 Department of Physics, Indian Institute of Technology Bombay; Powai, Mumbai 400076, India E-mail: asmita@phy.iitb.ac.in We report on some

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

arxiv: v3 [hep-ph] 30 Jun 2014

arxiv: v3 [hep-ph] 30 Jun 2014 Quark Wigner Distributions and Orbital Angular Momentum in Light-front Dressed Quark Model Asmita Mukherjee, Sreeraj Nair and Vikash Kumar Ojha Department of Physics, Indian Institute of Technology Bombay,

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 7 TH GHP WORKSHOP FEBRUARY 1-3, 2017 WASHINGTON, DC Simonetta Liuti University of Virginia 2/1/17 2 and A. Rajan et al., soon to be posted 2/1/17 3 Outline 1. Definitions

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation?

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation? Geometric Interpretation of Generalized Parton Distributions or: what DVCS has to do with the distribution of partons in the transverse plane PRD 62, 7153 (2). M.Burkardt New Mexico State Univ. & TU Munchen

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Transverse (Spin) Structure of Hadrons

Transverse (Spin) Structure of Hadrons Transverse (Spin) Structure of Hadrons Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Transverse (Spin) Structure of Hadrons p.1/138 Outline electromagnetic

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Transverse momentum distributions inside the nucleon from lattice QCD

Transverse momentum distributions inside the nucleon from lattice QCD Transverse momentum distributions inside the nucleon from lattice QCD The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Update on the Hadron Structure Explored at Current and Future Facilities

Update on the Hadron Structure Explored at Current and Future Facilities 3D Nucleon Tomography Workshop Modeling and Extracting Methodology Update on the Hadron Structure Explored at Current and Future Facilities Jianwei Qiu September 25-29, 2017 Salamanca, Spin Atomic Structure

More information

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser.

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. Journal of Physics: Conference Series OPEN ACCESS Nucleon tomography To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. 527 012025 View the article online for updates and enhancements. This content

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Meson Structure with Dilepton Production

Meson Structure with Dilepton Production Meson Structure with Dilepton Production Jen-Chieh Peng University of Illinois at Urbana-Champaign 9 th Workshop on Hadron Physics in China and Opportunities Worldwide Nanjing University, July 24-28, 2017

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Spin physics at Electron-Ion Collider

Spin physics at Electron-Ion Collider Spin physics at Electron-Ion Collider Jianwei Qiu Brookhaven National Laboratory Workshop on The Science Case for an EIC November 16-19, 2010; INT, University of Washington, Seattle, WA Outline of my talk

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti Observability of Partonic Orbital Angular Momentum Abha Rajan PhD Advisor Dr Simonetta Liuti From Nucleons to Partons Scattering experiments probe internal structure of matter. By increasing energy we

More information

Parton Physics and Large Momentum Effective Field Theory (LaMET)

Parton Physics and Large Momentum Effective Field Theory (LaMET) Parton Physics and Large Momentum Effective Field Theory (LaMET) XIANGDONG JI UNIVERSITY OF MARYLAND INT, Feb 24, 2014 Outline Wilson s unsolved problem Large-momentum effective field theory (LaMET) An

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture Four Hadron properties the mass? q How does QCD generate the nucleon mass? The vast majority

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics? Gluon Spin Basics hvordan man bruger astrologi med tibetanske medicin Winter 2004 R.L. Jaffe The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Singular Charge Density at the Center of the Pion?

Singular Charge Density at the Center of the Pion? Singular Charge Density at the Center of the Pion? Gerald A. Miller University of Washington arxive:0901.11171 INT program Jlab-12 Fall 09 www.int.washington.edu/programs/09-3.html Why study the pion?

More information

Husimi distribution for nucleon tomography

Husimi distribution for nucleon tomography Husimi distribution for nucleon tomography Yoshitaka Hatta (Yukawa institute, Kyoto U.) Nucl.Phys. A940 (2015) 158 (arxiv:1412.4591) with Yoshikazu Hagiwara Outline Wigner distribution in Quantum Mechanics

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering QCD Evolution 2017, JLab, May 22-26, 2017 Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering Marc Schlegel Institute for Theoretical Physics University of Tübingen in collaboration

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Drell-Yan experiments at Fermilab/RHIC/J-PARC QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Outline Fermilab Drell-Yan experiments Unpolarized program Flavor asymmetry of sea-quark

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon? What do g 1 (x) and g (x) tell us about the spin and angular momentum content in the nucleon? Franz Gross -- JLab cake seminar, Dec. 7 011 Introduction DIS hadronic tensor Spin puzzle in DIS Part I - covariant

More information

Imaging Hadrons using Lattice QCD

Imaging Hadrons using Lattice QCD Imaging Hadrons using Lattice QCD David Richards Jefferson Laboratory 2nd Nov 2017 Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions Introduction Measures of Hadron Structure

More information

Quasi-PDFs and Pseudo-PDFs

Quasi-PDFs and Pseudo-PDFs s and s A.V. Radyushkin Physics Department, Old Dominion University & Theory Center, Jefferson Lab 2017 May 23, 2017 Densities and Experimentally, one works with hadrons Theoretically, we work with quarks

More information

季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland

季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland 季向东 (Xiangdong Ji) Shanghai Jiao Tong University University of Maryland 1. Gauge symmetry and Feynman parton distributions 2. TMDs in light of gauge symmetry 3. Wigner distributions and angular momentum

More information

arxiv: v2 [hep-ph] 11 Mar 2015

arxiv: v2 [hep-ph] 11 Mar 2015 Justifying the Naive Partonic Sum Rule for Proton Spin Xiangdong Ji a,b,c, Jian-Hui Zhang a, Yong Zhao c arxiv:1409.6329v2 [hep-ph] 11 Mar 2015 a INPAC, Department of Physics and Astronomy, Shanghai Jiao

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment A Dissertation By Hidekazu Tanaka February 25 Department of Physics Tokyo Institute of Technology Abstract

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information