The QCD phase diagram at real and imaginary chemical potential

Size: px
Start display at page:

Download "The QCD phase diagram at real and imaginary chemical potential"

Transcription

1 Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase transition? Imaginary chemical potential: rich phase structure, benchmarks, constraints Original work with Ph. de Forcrand (ETH/CERN) 1

2 The QCD phase diagram established by experiment: Nuclear liquid gas transition, Z(2) end point B 2

3 QCD phase diagram: theorist s conjectures ~17 MeV T early universe T c heavy ion collisions QGP confined compact stars? Color superconductor µ B ~1 GeV? QGP and colour SC at asymptotic T and densities by asymptotic freedom Until 21: no finite density lattice calculations, sign problem Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models,... 3

4 Phase boundary from hadron freeze-out?? 4

5 Theory: how to calculate p.t., critical temperature = crit. exponent 5

6 How to identify the critical surface: Binder cumulant How to identify the order of the phase transition B 4 ( ψψ) (δ ψψ) 4 (δ ψψ) 2 2 V d Ising 1 first order 3 crossover µ = : B 4 (m, L) = bl 1/ν (m m c ), ν = V 1 V 2 > V 1 V 3 > V 2 > V 1 V=$$" Crossover B First order x x c parameter along phase boundary, T = T c (x) 1.5 L=8 1.4 L=12 L= Ising am 6

7 Order of p.t., arbitrary quark masses µ = chiral p.t. m s m s tric 2nd order O(4)? N = 2 f N = 3 f phys. crossover point 1st 2nd order Z(2) m, m u 2nd order Z(2) d 1st Pure Gauge deconf. p.t. N = 1 f chiral critical line am s Nf=2+1 physical point tric m s - C 2/5 mud am u,d physical point: crossover in the continuum Aoki et al 6 chiral critical line on N t =4,a.3 fm de Forcrand, O.P. 7 consistent with tri-critical point at m u,d =,m tric s 2.8T But: N f =2chiral O(4) vs. 1st still open Di Giacomo et al 5, Kogut, Sinclair 7 U A (1) anomaly Chandrasekharan, Mehta 7 7

8 How to The identify sign the problem critical is surface: a phase Binder problemcumulant How to identify the order of the phase transition Z = B 4 ( ψψ) (δ ψψ) 4 DU [det M(µ)] f e S g[u] (δ ψψ) 2 2 V d Ising 1 first order 3positive crossover weights importance sampling requires µ = : B 4 (m, L) = bl 1/ν (m m c ), ν =.63 Dirac operator: D/ (µ) = γ 5 D/ ( µ )γ 5 det(m) complex for SU(3), µ real positive for SU(2), µ = iµ i V 1 V > V 1 V 3 > V 2 > V 1 V=$$" 1.8 Crossover 3 N.B.: all expectation values real, imaginary parts 1.7 cancel, B 4 real positive for but importance sampling config. by config. impossible 1.6 µ u = µ d 1.5 Same problem in many condensed matter systems 1.5 First order 1.5 L=8 1.4 L=12 L= Ising SU(2) -1 Simon -.5 Hands, RMT Jaques.5 Bloch, 1 Langevin Nucu Stamatescu x x c parameter along phase boundary, T = T c (x) am 8

9 Finite density: methods to evade the sign problem Reweighting: Z = ~exp(v) statistics needed, overlap problem DU det M() use for MC det M(µ) det M() e S g calculate integrand S µ= finite µ Optimal: use det in measure, reweight in phase Taylor expansion: O (µ) = O () + k=1 c k ( µ πt ) 2k U coefficients one by one, convergence? Imaginary µ = iµ i : no sign problem, fit by polynomial, then analytically continue O (µ i )= N k= c k ( µi πt ) 2k, µi iµ requires convergence for analytic continuation All require µ/t < 1 9

10 Test of methods: comparing T c (µ) 1

11 The calculable region of the phase diagram QGP T c T confined Color superconductor µ need µ/t < 1 (µ = µ B /3) Upper region: equation of state, screening masses, quark number susceptibilities etc. under control 11

12 The (pseudo-) critical temperature T c (µ) T c () =1 κ(n f,m q ) ( µ T ) Curvature rather small κ N f N c Toublan 5 de Forcrand, O.P. 3 D Elia, Lombardo 3 12

13 Pseudo-critical temperature Curvature of crit. line from Taylor expansion 2+1 flavours, Nt=4, 8 improved staggered Extrapolation to chiral limit assuming O(4),O(2) scaling of magn. EoS hotqcd 11 κ( ψψ) =.59(2)(4) Endrödi et al. 11 Curvature of crit. line from Taylor expansion 2+1 flavours, Nt=6,8,1 improved staggered Observables ψψ r, χ s Continuum extrapolation: 13

14 Comparison with freeze-out curve freeze-out 14

15 Finite density: chiral critical line critical surface Much harder: is there a QCD critical point? 2nd order O(4)? N f = 2 2nd order Z(2) 1st Pure Gauge Real world Heavy quarks Real world Heavy quarks m tric s m s phys. point 1st 2nd order Z(2) m, m u N f = 3 crossover d N f = 1 m u,d * QCD critical point X crossover 1rst m s m u,d QCD critical point DISAPPEARED X crossover 1rst m s m c (µ) m c () = 1 + ( µ c k πt k=1 ) 2k m > > m c () m > m c () QGP QGP T T c T T c confined Color superconductor confined Color superconductor µ 15

16 Much harder: is there a QCD critical point? 16

17 Much harder: is there a QCD critical point? 1 16

18 Much harder: is there a QCD critical point?

19 Approach 1a: CEP from reweighting Fodor, Katz 4 Critical point from reweighting Fodor,Katz JHEP 4 N t = 4, N f = physical quark masses, unimproved staggered fermions Lee-Yang zero: abrupt change: physics caused by or baryon problem or of pion the condensation? method? Splittorff 5; Han, Stephanov 8 Splittorf 5, Stephanov 8 17

20 Approach 1b: CEP from Taylor expansion p T 4 = n= Nearest singularity=radius of convergence ( µ ) 2n c 2n (T ) T µ E T E = lim n c 2n c 2n+2, lim n c c 2n 1 2n Different definitions agree only for not n=1,2,3,... control of systematics? n (p/t 4 ) 4 (p/t 4 ) 2 (" B ) 4 (" B ) C.Schmidt, hotqcd 9 Hadron resonance gas T/T c () Radius of convergence necessary condition for CEP, but can it proof its existence? 18

21 Approach 2: follow chiral critical line surface chiral p.t. chiral p.t. m c (µ) m c () = 1 + ( µ c k πt k=1 ) 2k hard/easy de Forcrand, O.P. 8,9 19

22 Curvature of the chiral critical surface B4/µ i B4(pbp) finite µ i, fit (µ 2 +µ 4 ) fit µ 2 fit (µ 2 +µ 4 ) µ i Nf=3: a) fit to imaginary chemical potential b) calculation of coefficient by finite differences Importance of higher order terms? de Forcrand, O.P. 8,9 2

23 On coarse lattice exotic scenario: no chiral critical point at small density µ Real world Heavy quarks QCD critical point DISAPPEARED X crossover 1rst m u,d m s Weakening of p.t. with chemical potential also for: -Heavy quarks de Forcrand, Kim, Takaishi 5 -Light quarks with finite isospin density Kogut, Sinclair 7 -Electroweak phase transition with finite lepton density Gynther 3 21

24 Towards the continuum: N t =6,a.2 fm 2nd order O(4)? N = 2 f 2nd order Z(2) 1st Pure Gauge 6 4 B4/(aµ i ) 2 m tric s N = 3 f phys. crossover point N = 1 f 2-2 m s 1st Nt=6 2nd order Z(2) m, m u d Nt= B4(pbp) fit µ 2 fit (µ 2 +µ 4 ) (aµ i ) 2 m c π(n t = 4) m c π(n t = 6) 1.77 N f =3 de Forcrand, Kim, O.P. 7 Endrödi et al 7 Physical point deeper in crossover region as a Cut-off effects stronger than finite density effects Preliminary: curvature of chiral crit. surface remains negative de Forcrand, O.P. 11 No chiral critical point at small density 22

25 Same statement with different methods Study suitably defined width of crossover region strengthening of transition Endrödi et al.11 find weakening of crossover continuum extrapolated Nt=6,8,1 23

26 Understanding the curvature from imaginary µ Nf=4: D Elia, Di Renzo, Lombardo 7 Nf=2: D Elia, Sanfilippo 9 Nf=3: de Forcrand, O.P. 1 Strategy: fix µ i T = π 3, π, measure Im(L), order parameter at determine order of Z(3) branch/end point as function of m µ i T = π ordered ordered T disordered disordered µ i T /( π 3 ) 24

27 Results: m=.4 L=8 L=12 L= m=.4 L=8 L=12 L=16 ν =.33 B4(Im(L)) 2 B4(Im(L)) (- c )L 1/" B 4 (β,l)=b 4 (β c, )+C 1 (β β c )L 1/ν + C 2 (β β c ) 2 L 2/ν... B4 at intersection has large finite size corrections (well known), ν more stable 25

28 ν =.33,.5,.63 for 1st order, tri-critical, 3d Ising scaling.65.6 Second order.55.5 Tricritical First order quark mass 26

29 ν =.33,.5,.63 for 1st order, tri-critical, 3d Ising scaling.65.6 Second order.55.5 Tricritical First order quark mass On infinite volume, this becomes a step function, smoothness due to finite L 26

30 Details of RW-point: distribution of Im(L).25.2 m=.5 m=.1 m=.2 m= Small+large masses: three-state coexistence Intermediate masses: middle peak disappears triple point Ising distribtion in magn. direction tri-critical point in between 27

31 Phase diagram at µ = i πt 3 triple line 3d Ising triple line Nf=2, light and intermediate masses:1st and 3d Ising behaviour D Elia, Sanfilippo 9 28

32 Critical lines at imaginary µ m s m s tric 2nd order O(4)? phys. point 1st N = 2 f 2nd order Z(2) m, m u 2nd order Z(2) N = 3 crossover d f 1st Pure Gauge N = 1 f m_s x 2.O 3d Ising 1.O. x triple? x 1.O triple tricritical m_u,d x pure gauge µ = µ = i πt 3 -Connection computable with standard Monte Carlo -Here: heavy quarks in eff. theory 29

33 Heavy quarks: 3d 3-state Potts and strong coupling Potts: QCD, Nt=1, strong coupling series: Langelage, O.P Imag. mu Real mu (mu 2 + (pi/3) 2 ) 2 / M/T 8 m c (mu/t) (µ/t) 2 tri-critical scaling: m c T (µ2 )= m tric T + K [ (π 3 ) 2 + ( µ T ) 2 ] 2/5 exponent universal 3

34 Deconfinement critical surface: tric. scaling shape determined by tric. scaling tricritical lines 31

35 Conclusions Reweighting, Taylor, canonical: indications for critical point on coarse lattices Chiral crit. surface, deconfinement crit. surface: Transitions weaken with chemical potential, decreasing lattice spacing No chiral critical point for µ/t < 1 Still possible: chiral critical point at large chemical potential non-chiral critical point(s)? 32

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

Constraints for the QCD phase diagram from imaginary chemical potential

Constraints for the QCD phase diagram from imaginary chemical potential CERN-PH-TH/-57 Constraints for the QCD phase diagram from imaginary chemical potential Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt, 648 Frankfurt am Main, Germany E-mail:

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential

The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential Claudio Bonati, Massimo D Elia Dipartimento di Fisica, Università di Pisa and INFN, Sezione di Pisa, Largo Pontecorvo

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ arxiv:hep-ph/0301209v1 23 Jan 2003 QCD PHASE DIAGRAM A SMALL DENSIIES FROM SIMULAIONS WIH IMAGINARY µ PH. DE FORCRAND EH Zürich, CH-8093 Zürich, Switzerland and CERN, CH-1211 Genève 23, Switzerland E-mail:

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Surprises in the Columbia plot

Surprises in the Columbia plot Surprises in the Columbia plot Philippe de Forcrand ETH Zürich & CERN Fire and Ice, Saariselkä, April 7, 2018 Fire and Ice Launch Audio in a New Window BY ROBERT FROST (1874-1963) Some say the world will

More information

Recent Progress in Lattice QCD at Finite Density

Recent Progress in Lattice QCD at Finite Density Recent Progress in Lattice QCD at Finite Density Shinji Ejiri (Brookhaven ational Laboratory) Lattice 008, July 14-19, 008 QCD thermodynamics at 0 Heavy-ion experiments (HIC) (low energy RHIC, FAIR) Properties

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004 Taylor expansion in chemical potential for flavour QCD with a = /4T Rajiv Gavai and Sourendu Gupta TIFR, Mumbai April, 004. The conjectured phase diagram, the sign problem and recent solutions. Comparing

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

arxiv:hep-lat/ v1 25 Jun 2005

arxiv:hep-lat/ v1 25 Jun 2005 TKYNT-05-16, 2005/June Lee-Yang zero analysis for the study of QCD phase structure Shinji Ejiri Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (March 1, 2008) Abstract arxiv:hep-lat/0506023v1

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Revisiting the strong coupling limit of lattice QCD

Revisiting the strong coupling limit of lattice QCD Revisiting the strong coupling limit of lattice QCD Philippe de Forcrand ETH Zürich and CERN with Michael Fromm (ETH) Motivation Intro Algorithm Results Concl. 25 + years of analytic predictions: 80 s:

More information

QCD phase diagram from the lattice at strong coupling

QCD phase diagram from the lattice at strong coupling CERN-PH-TH-25-67 QCD phase diagram from the lattice at strong coupling Philippe de Forcrand Institute for Theoretical Physics, ETH Zürich, CH-893 Zürich, Switzerland and CERN, Physics Department, TH Unit,

More information

QCD Critical Point : Inching Towards Continuum

QCD Critical Point : Inching Towards Continuum QCD Critical Point : Inching Towards Continuum Rajiv V. Gavai T. I. F. R., Mumbai, India Introduction Lattice QCD Results Searching Experimentally Summary Work done with Saumen Datta & Sourendu Gupta New

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

The sign problem in Lattice QCD

The sign problem in Lattice QCD The sign problem in Lattice QCD Philippe de Forcrand ETH Zürich & CERN INT-13-2a, Advances in Quantum Monte Carlo, July 18, 2013 Scope of lattice QCD simulations: Physics of color singlets * One-body physics:

More information

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Exploring the QCD Phase Diagram through Energy Scans Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Frithjof Karsch Bielefeld University & Brookhaven National Laboratory

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Freeze-out parameters: lattice meets experiment

Freeze-out parameters: lattice meets experiment Freeze-out parameters: lattice meets experiment Claudia Ratti Università degli Studi di Torino and INFN, Sezione di Torino In collaboration with R. Bellwied, S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, K.

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

arxiv: v1 [hep-lat] 13 Jul 2007

arxiv: v1 [hep-lat] 13 Jul 2007 Imaginary chemical potentials and the phase of the fermionic determinant Simone Conradi and Massimo D Elia Dipartimento di Fisica dell Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33,

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

The critical point of QCD: what measurements can one make?

The critical point of QCD: what measurements can one make? The critical point of QCD: what measurements can one make? Sourendu Gupta ILGTI: TIFR Strong Interactions 2010 TIFR, Mumbai February 10, 2010 Lattice measurements The critical point NLS at finite µ B Experimental

More information

QCD at Finite Density and the Sign Problem

QCD at Finite Density and the Sign Problem Sign Problem, INT, March 22 p. 1/39 QCD at Finite Density and the Sign Problem Jacobus Verbaarschot jacobus.verbaarschot@stonybrook.edu INT, March 22 Sign Problem, INT, March 22 p. 2/39 Acknowledgments

More information

QCD at T > 0 and B > 0. Kalman Szabo Bergische Universitat, Wuppertal

QCD at T > 0 and B > 0. Kalman Szabo Bergische Universitat, Wuppertal QCD at T > 0 and B > 0 Kalman Szabo Bergische Universitat, Wuppertal Fairly well established (continuum, physical mass, staggered): Crossover T c EoS Crossover [Wuppertal-Budapest,WB, 06] volume dependence

More information

arxiv:hep-lat/ v2 7 Sep 2004

arxiv:hep-lat/ v2 7 Sep 2004 DFCAL-TH 04/1 January 2004 Real and imaginary chemical potential in 2-color QCD P. Giudice and A. Papa arxiv:hep-lat/0401024v2 7 Sep 2004 Dipartimento di Fisica, Università della Calabria & Istituto Nazionale

More information

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany)

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany) The pressure of hot QCD Mikko Laine (Bielefeld, Germany) 1 I. What is it? 2 QCD: Quantum field theory describing strong interactions. L QCD = 1 4g 2 N 2 c 1 a=1 F a µνf a µν + N f i=1 ψ i [γ µ D µ + m

More information

New results in QCD at finite µ

New results in QCD at finite µ New results in QCD at finite µ Rajiv Gavai and Sourendu Gupta ILGTI: TIFR XQCD 28, Duke University July 23, 28 sg (ILGTI: TIFR) New results at finite µ XQCD 8 1 / 37 Outline 1 The finite temperature transition

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

PoS(LAT2009)010. Simulating QCD at finite density. Philippe de Forcrand

PoS(LAT2009)010. Simulating QCD at finite density. Philippe de Forcrand Simulating QCD at finite density Institute for Theoretical Physics, ETH Zürich, CH-893 Zürich, Switzerland and CERN, Physics Department, TH Unit, CH-1211 Geneva 23, Switzerland E-mail: forcrand@phys.ethz.ch

More information

Maria Paola Lombardo GGI Firenze March 2014

Maria Paola Lombardo GGI Firenze March 2014 Dense matter from lattice QCD (?) Maria Paola Lombardo GGI Firenze March 2014 The phases of strong interactions Andronic et al 2010 Tojo et al 2011 ..and the experimental programs First proposal: Cabibbo

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) Collaborators: Paolo Alba, Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Sandor Katz, Stefan

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

A Fugue in Two Colors

A Fugue in Two Colors A Fugue in Two Colors Simon Hands (Swansea U.) Why two colors? Equation of state for µ Quark number susceptibility Topology Quarkonia Collaborators: Seyong Kim, Jon-Ivar Skullerud, Phil Kenny, Peter Sitch,

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

The critical end point of QCD: lattice and experiment

The critical end point of QCD: lattice and experiment The critical end point of QCD: lattice and experiment Sourendu Gupta ILGTI: TIFR Patnitop 2009 January 2, 2010 SG (ILGTI: TIFR) CEP: lattice and experiment Patnitop 09 1 / 28 Outline 1 On lattice 2 In

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Massimo D Elia Dipartimento di Fisica and INFN Genova, Via Dodecaneso 33, I Genova, ITALY

Massimo D Elia Dipartimento di Fisica and INFN Genova, Via Dodecaneso 33, I Genova, ITALY A test of first order scaling of the N f =2 QCD phase transition Guido Cossu SNS and INFN Pisa, Piazza dei Cavalieri 7, I-56127 Pisa, ITALY g.cossu@sns.it Massimo D Elia Dipartimento di Fisica and INFN

More information

Landau Levels in Lattice QCD in an External Magnetic Field

Landau Levels in Lattice QCD in an External Magnetic Field Landau Levels in Lattice QCD in an External Magnetic Field Matteo Giordano Eötvös Loránd University (ELTE) Budapest xqcd 2017 Pisa, 27/06/2017 Based on F. Bruckmann, G. Endrődi, MG, S. D. Katz, T. G. Kovács,

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Freeze-out parameters Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti University of Houston, Texas (USA) S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. R.,

More information

Complex Langevin dynamics for nonabelian gauge theories

Complex Langevin dynamics for nonabelian gauge theories Complex Langevin dynamics for nonabelian gauge theories Gert Aarts XQCD 14, June 2014 p. 1 QCD phase diagram QCD partition function Z = DUD ψdψe S YM S F = DU detde S YM at nonzero quark chemical potential

More information

Lattice QCD Thermodynamics at zero and nonzero baryon density

Lattice QCD Thermodynamics at zero and nonzero baryon density IN Program 10-2a: Quantifying the Poperties of Hot QCD Matter Institute for Nuclear heory, July 16, 2010, Seattle, WA, USA Lattice QCD hermodynamics at zero and nonzero baryon density Christian Schmidt

More information

The QCD pseudocritical line from imaginary chemical potentials

The QCD pseudocritical line from imaginary chemical potentials The QCD pseudocritical line from imaginary chemical potentials Claudio Bonati Dipartimento di Fisica dell Università di Pisa and INFN - Sezione di Pisa, I-56127 Pisa, Italy E-mail: bonati@df.unipi.it Dipartimento

More information

arxiv:hep-lat/ v1 7 Jan 2004

arxiv:hep-lat/ v1 7 Jan 2004 BI-TP 2003/38 Remarks on the multi-parameter reweighting method for the study of lattice QCD at non-zero temperature and density Shinji Ejiri Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld,

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005 MATTER Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee March 13, 2005 1 Can the mass of this system be computed from the standard model of particle physics?

More information

arxiv: v1 [hep-lat] 25 Feb 2012

arxiv: v1 [hep-lat] 25 Feb 2012 The critical line of two-flavor QCD at finite isospin or baryon densities from imaginary chemical potentials Paolo Cea Dipartimento di Fisica dell Università di Bari and INFN - Sezione di Bari, I-70126

More information

WIMP Dark Matter and the QCD Equation of State

WIMP Dark Matter and the QCD Equation of State Doktoratskolleg Graz Karl-Franzens-Universität, May 2006 WIMP Dark Matter and the QCD Equation of State Owe Philipsen Universität Münster Motivation + overview Cosmology I: expansion and contents of the

More information

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi The phases of hot/dense/magnetized QCD from the lattice Gergely Endrődi Goethe University of Frankfurt EMMI NQM Seminar GSI Darmstadt, 27. June 2018 QCD phase diagram 1 / 45 Outline relevance of background

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal Motivation Effective Polyakov loop potential

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Phase of the Fermion Determinant and the Phase Diagram of QCD

Phase of the Fermion Determinant and the Phase Diagram of QCD Phase of the Fermion Determinant p. 1/48 Phase of the Fermion Determinant and the Phase Diagram of QCD Jacobus Verbaarschot jacobus.verbaarschot@stonybrook.edu INT, August 2008 Phase of the Fermion Determinant

More information

Probing QCD Phase Diagram in Heavy Ion Collisions

Probing QCD Phase Diagram in Heavy Ion Collisions LQCD LHC Probing QCD Phase Diagram in Heavy Ion Collisions QCD Phase Diagram from LQCD Fluctuations of conserved charges as probe of thermalization and QCD phase boundary Linking LQCD results to HIC data

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

QCD at finite density on the lattice

QCD at finite density on the lattice QCD at finite density on the lattice Philippe de Forcrand ETH Zürich & CERN YITP, Kyoto, June, 208 otivation What happens to matter when it is heated and/or compressed? phase transitions non-perturbative

More information

Large-N c universality of phases in QCD and QCD-like theories

Large-N c universality of phases in QCD and QCD-like theories Large-N c universality of phases in QCD and QCD-like theories Masanori Hanada Department of Physics University of Washington Seattle, WA 98195-1560, USA 1 Introduction QCD with a finite baryon chemical

More information

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Bedanga Mohanty NaConal InsCtute of Science EducaCon and Research (NISER) Outline: ² Phase diagram of QCD

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information