Recent Progress in Lattice QCD at Finite Density

Size: px
Start display at page:

Download "Recent Progress in Lattice QCD at Finite Density"

Transcription

1 Recent Progress in Lattice QCD at Finite Density Shinji Ejiri (Brookhaven ational Laboratory) Lattice 008, July 14-19, 008

2 QCD thermodynamics at 0 Heavy-ion experiments (HIC) (low energy RHIC, FAIR) Properties of QCD at finite density Important roles of Lattice QCD study Critical temperature (c) and Equation of State (EoS) in low density region Important for Hydrodynamic calculations in HIC. Study by Lattice simulations: available Propose interesting observations measureable properties of QCD in HIC Critical point at finite density Large fluctuation in quark number? Large bulk viscosity? SPS RHIC LHC hadron phase AGS quark-gluon plasma phase low-e RHIC FAIR color super nuclear matter conductor? q

3 Lattice QCD at 0 Many interesting results in QCD thermodynamics at =0 Study at 0: in the stage of development. Problem of Complex Determinant at 0 M ( ) 5 M ( ) 5 Boltzmann weight: complex at 0 Monte-Carlo method is not applicable. Configuration cannot be generated. hree approaches aylor expansion in (5-conjugate) * detm ( ) detm ( ) detm ( ) Reweighting method: Simulations at =0, Modify the Boltzmann weight Analytic continuation from imaginary chemical potential simulations

4 Interesting studies in finite density QCD (16 parallel talks, 5 posters, and a lot of s) Equation of State - MILC, RBC-Bielefeld, Hot-QCD, WHO-QCD QCD Critical point P. de Forcrand (Fri), A. Li (ue), X. Meng (ue) Stochastic quantization for QCD at finite G. Aarts (ue); G. Aarts, I.-O. Stamatescu, arxiv: wo Color QCD: Di-quark condensation K. Fukushima (hu), S. Hands, J. Skullerud and S. Kim P. Cea, L. Cosmai, M. D'Elia, A. Papa, Pjys. Rev. D77, (008) M.P. Lombardo, M.L. Paciello, S. Petrarca, B. aglienti, arxiv: Isospin chemical potential - Y. Sasai (ue) W. Detmold, M. Savage, A. orok, S. Beane,. Luu, K. Orginos, A. Parreno, arxiv: High temperature effective theory A. Hietanen and K. Rummukainen, arxiv: Strong coupling limit M. Fromm (Wed), A. Ohnishi (Wed), K. Miura (Pos) Chiral perturbation theory - J. Verbaarschot (ue) Chiral fermions (Domain-Wall, overlap) R. Gavai (ue); arxiv: , P. Hegde (Pos)

5 Plan of talk Introduction Equation of State at finite density aylor expansion method QCD critical point at finite density Quark mass dependence of the critical point Plaquette effective potential Canonical approach Summary and Outlook

6 Equation of State at finite density aylor expansion method (Bielefeld-Swansea Collab., 0-06, Gavai-Gupta, 03-05) Systematic studies using p4-imploved staggered action with rather heavy quark masses. (Bielefeld-Swansea Collab., 0-06) 1. Useful for EoS study for Heavy-ion collisions Low density region is important for HIC. Large fluctuations in the quark number at high density Existence of a critical point: suggested Recent Progress Simulations near physical mass point MILC Collab., RBC-Bielefeld Collab., Hot QCD Collab. Isentropic equation of state, Fluctuations Simulations with a Wilson-type quark action WHO-QCD Collab., Quark number fluctuations (Bielefeld-Swansea Collab., 06)

7 aylor expansion method for EoS Heavy-ion collisions: low density In the heavy-ion collision at RHIC, the interesting regime of q is around q/c 0.1. aylor expansion in at =0. Simulations at 0: Free from the complex determinant problem. Calculation of the derivatives: a basic technique for QCD thermodynamics. e.g. Energy density, Quark number, Quark number susceptibility aylor expansion method Useful for EoS study 6 q 6 4 q 4 q c c c p p : odd for 0 ) ( ln q n n n, ) ( ln 4!, ) ( ln 4 q q 3 3 c c s t s t V p ln 1 3 4, ) ( ln q 3 3 q n s t q 3 3 B q ) ( ln 9 s t, ln ln a p s t

8 Isentropic Equation of State EoS along lines of constant entropy per baryon number (S/B) ero-viscosity hydro calculations explain experimental results. o entropy production in a heavy-ion collisions (in equibilium) S/B 300(RHIC), S/B 45(SPS), S/B 30 (AGS) MILC Collab. S.Gottlieb s talk (Monday) f=+1 Asqtad action, t=4,6, m 0MeV Lattice discretization error: small. (Open: t=4, Filled: t=6)

9 Isentropic Equation of State RBC-Bielefeld Collab. C.Schmidt s talk (Monday) f=+1 p4-imploved staggered, t=4,6, m 0MeV Consistent with Asqtad results. p/ vs is important for hydrodynamic calculations in HIC. Density dependence: small Velocity of sound cs dp d( p ) c s d d p preliminary (Filled: t=4, Open: t=6)

10 Hadronic fluctuations and the QCD critical point RBC-Bielefeld Collab. C.Schmidt s talk (Monday) Hadronic fluctuations at 0 increase with decreasing mass. ( ( B B ) ) B Low : hadron resonance gas High : quark-gluon gas RBC-Bielefeld Collab.: f=+1, m=0mev Bielefeld-Swansea, ( 06).: f=, m=770mev hadron resonance gas quark-gluon gas Fluctuations for m=0mev increase over the hadron resonance gas value at c. preliminary

11 Equation of state by Wilson quark action WHO-QCD Collab. K.Kanaya s poster RG gauge + -flavor Clover quark actions, lattice, m m 0.65 Hybrid method of Reweighting and aylor expansion up to 4 O q Large enhancement in the quark number fluctuations at high density. Critical point at finite

12 QCD critical point in the (,) plane Quark mass dependence of the critical line Reweighting method and Sign problem hadron QGP CSC Plaquette effective potential Canonical approach

13 Quark mass dependence of the critical point ms nd order Physical point 1 st order f= Quenched f=3 Crossover 0 0 mud 1 st order 0 Quark mass dependence near =0 Fodor, Katz, 01-04; Reweighting method Bielefeld-Swansea Collab., 0, 03; Reweighting method de Forcrand, Philipsen, 03-07; Imaginary chemical potential Kogut, Sinclair, 05-07; Phase-quenched approximation Philipsen s plenary talk in Lattice 005 Schmidt s plenary talk in Lattice 006

14 Curvature of the critical surface mc m 0 C 0 Usual expectation Critical point: exists de Forcrand - Philipsen, JHEP01(007)077; PoS(LA007)178 Curvature: slightly negative. (3-flavor, 8 3 x4 lattice) ew result de Forcrand s talk (Friday) ew result by 1 3 x4 lattice is consistent with 8 3 x4 result. Curvature: egative.

15 Imaginary chemical potential approach (de Forcrand, Philipsen, 03-08) Binder cumulant: Critical point ( universality): B4=1.604 [Crossover (m>mc): B4=3, Strong first order (m<mc): B4=1] Simulations: possible for imaginary = ii, detm(ii): real Assumption: Analytic continuation: Fit the simulation results m C b01 b 10 B m m b B b10 c 01 b 0 Curvature: egative b 01 0 t=4 B 4 i Other assumption for analytic continuation, (D Elia, Di Renzo, Lombardo, PRD76,114509(007)) 0 4 s 8 s b 10 0 de Forcrand s talk 1 1 i s

16 Reweighting method for 0 and Sign problem (Ferrenberg-Swendsen Glasgow group, Fodor-Katz) Reweighting method Boltzmann weight: Complex for >0 Monte-Carlo method is not applicable directly. partition function: DU f S g det M e Perform Simulation at =0. O 1 DUO detm ( ), f e S g Oe e i i det det f f M M det M det M det det f f M M 0 0,0,0 e i Sign problem i i If e changes its sign frequently, Oe become smaller than their statistical errors. hen O cannot be computed., and e i,0,0

17 Sign problem and phase fluctuations Complex phase of detm aylor expansion: odd terms of ln det M (Bielefeld-Swansea, PRD66, (00)) Good definition (staggered quarks: 4 th root trick, /4?) f Im ln det M ( ) Im dlndet M 1 d f 5 3 d 3 lndet M 1 d lndet M 3 3! d 5! d 5 5 : O in the range of [-, ] > /: Sign problem happens. i e changes its sign. Gaussian distribution Results for p4-improved staggered aylor expansion up to O( 5 ) Dashed line: fit by a Gaussian function Well approximated W e C histogram of

18 Complex phase distribution he Gaussian distribution is also suggested by chiral perturbation theory. (K. Splittorff and J. Verbaarschot, Phys.Rev.D77, (007)) Assume: Gaussian distribution (S.E., Phys.Rev.D77, (008)) Sign problem: J.Verbaarschot s talk (uesday) Sign problem is avoided. det M f i e F (statistical error) C histogram Gaussian integral: W F, e W ( F ) e i F df d e i FW 1 ( 4 ) F, df e FW ( F ) width F e i F e F F real and positive (o sign problem)

19 Effective potential of plaquette V(P) Plaquette histogram First order phase transition wo phases coexists at c e.g. SU(3) Pure gauge theory SU(3) Pure gauge theory QCDPAX, PRD46, 4657 (199) histogram Gauge action Partition function S g 6 site P, dpw P,, histogram Effective potential W f S P', DU detm e g P P' V ( P) ln W P

20 Distribution function and Effective potential at 0 (S.E., Phys.Rev.D77, (008)) Distributions of plaquette P (1x1 Wilson loop for the standard action) W R dp RP, W P, P DUP-P detm 0 P, DU DU Sg, f e P-P detm P-P detm 0 Effective potential: f detm f detm 0 P-P S g P-P (, 0) f 6 (, 0) site (Weight factor at R(P,): independent of, R(P,) can be measured at any. P, W V ( P) ln R P, =0 crossover non-singular ln W P, ln R P 1 st order phase transition? +? =? P, (Reweight factor

21 -dependence of the effective potential Crossover lnw P, Critical point lnw P, ln R P, QGP + = =0 reweighting Curvature: ero 1 st order phase transition hadron CSC ln W P, ln R P, + = =0 reweighting Curvature: egative

22 Effective potential at (S.E., Phys.Rev.D77, (008)) Results of f= p4-staggared, m/m0.7 [data in PRD71,054508(005)] lnw at =0 V P,, lnwp, lnrp, detm: aylor expansion up to O( 6 ) lnr he peak position of W(P) moves left as increases at =0. Solid lines: reweighting factor at finite /, R(P,) Dashed lines: reweighting factor without complex phase factor.

23 Curvature of the effective potential f= p4-staggared, m/m0.7 d lnw dp at q=0 + =? Critical point:, d V P,, d ln W P, d ln R P dp dp dp First order transition for q/.5 Existence of the critical point: suggested Quark mass dependence: large Study near the physical point is important. 0

24 Slope of lnr(p,) at low density P, ln RP lnw, + = Minimum point moves, P large Same effect as eff 1 6 site (ln R) P -dependence of c Bielefeld-Swansea Collab., PRD66, ( 0) Low phase High phase he phase transition point becomes lower as increases.

25 Canonical approach Canonical partition function (Laplace transformation ) Effective potential as a function of the quark number. At the minimum, First order phase transition: wo phases coexist. C GC W exp,, W V C ), ( ln ) ( ln ) ( 0 ), ( ln ) ( ln ) ( W V C C ) ( ln ( ) V

26 First order phase transition line V ( In the thermodynamic limit, 0, ) cp * ln C (, ) * 3 s cp Mixed state First order transition Inverse Laplace transformation by Glasgow method Kratochvila, de Forcrand, PoS (LA005) 167 (005) f=4 staggered fermions, f=4: First order for all lattice ew results: f= Direct simulations with fixed Inverse Laplace transformation in a Saddle point approximation

27 Simulations with Canonical partition function QCD collab. (Kentucky group), A. Li and X. Meng s talk (uesday) Canonical partition function with fixed (Alexandru, Faber, Horvath and Liu, Phys. Rev. D7, (005)) with Fourier coefficients, C S, det g DU e M f f ii det M d e detmi 1 I I f I 0 0 detm R Integral 0.90c 0.9c 0.83c 0.94c 0.86c f =4: first order transition f =: crossover Wilson quark 6 3 x4 lattice

28 Inverse Laplace transformation with a saddle point approximation (S.E., arxiv: ) Approximations: aylor expansion: ln det M up to O( 6 ) Gaussian distribution: Saddle point approximation Much easier calculations wo states at the same q/ First order transition at /c < 0.83 Study near the physical point important f= p4-staggered, m/m0.7, lattice Solid line: multi- reweighting Dashed line: spline interpolation Dot-dashed line: the free gas limit umber density

29 Summary and outlook Equation of State at finite density Isentropic EoS for heavy-ion collisions Simulations near physical quark mass point: studied Large hadronic fluctuation near c: observed 1. Staggered quark with Small quark mass,. Wilson-type quark QCD critical point at finite density echnical developments Quark mass dependence of the critical line Avoidance of the Sign problem Plaquette effective potential Canonical approach Existence of the QCD critical point: suggested Future studies ew echnique for high density: required ew phenomena at high density

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

arxiv:hep-lat/ v1 25 Jun 2005

arxiv:hep-lat/ v1 25 Jun 2005 TKYNT-05-16, 2005/June Lee-Yang zero analysis for the study of QCD phase structure Shinji Ejiri Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (March 1, 2008) Abstract arxiv:hep-lat/0506023v1

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

arxiv:hep-lat/ v1 7 Jan 2004

arxiv:hep-lat/ v1 7 Jan 2004 BI-TP 2003/38 Remarks on the multi-parameter reweighting method for the study of lattice QCD at non-zero temperature and density Shinji Ejiri Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld,

More information

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Exploring the QCD Phase Diagram through Energy Scans Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Frithjof Karsch Bielefeld University & Brookhaven National Laboratory

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

arxiv: v1 [hep-lat] 13 Jul 2007

arxiv: v1 [hep-lat] 13 Jul 2007 Imaginary chemical potentials and the phase of the fermionic determinant Simone Conradi and Massimo D Elia Dipartimento di Fisica dell Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33,

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ arxiv:hep-ph/0301209v1 23 Jan 2003 QCD PHASE DIAGRAM A SMALL DENSIIES FROM SIMULAIONS WIH IMAGINARY µ PH. DE FORCRAND EH Zürich, CH-8093 Zürich, Switzerland and CERN, CH-1211 Genève 23, Switzerland E-mail:

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

First order transitions in finite temperature and density QCD with two and many flavors

First order transitions in finite temperature and density QCD with two and many flavors First order transitions in inite temperature and density QCD wit two and many lavors Sinji Ejiri (iigata University Collaboration wit Ryo Iwami (iigata, orikazu Yamada (KEK & Hirosi Yoneyama (Saga YITP

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) Collaborators: Paolo Alba, Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Sandor Katz, Stefan

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004 Taylor expansion in chemical potential for flavour QCD with a = /4T Rajiv Gavai and Sourendu Gupta TIFR, Mumbai April, 004. The conjectured phase diagram, the sign problem and recent solutions. Comparing

More information

Constraints for the QCD phase diagram from imaginary chemical potential

Constraints for the QCD phase diagram from imaginary chemical potential CERN-PH-TH/-57 Constraints for the QCD phase diagram from imaginary chemical potential Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt, 648 Frankfurt am Main, Germany E-mail:

More information

Lattice QCD Thermodynamics at zero and nonzero baryon density

Lattice QCD Thermodynamics at zero and nonzero baryon density IN Program 10-2a: Quantifying the Poperties of Hot QCD Matter Institute for Nuclear heory, July 16, 2010, Seattle, WA, USA Lattice QCD hermodynamics at zero and nonzero baryon density Christian Schmidt

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Study of QCD critical point at high temperature and density by lattice simulations

Study of QCD critical point at high temperature and density by lattice simulations Stuy of QCD critical point at high tmpratur an nsity by lattic simulations Shinji Ejiri (Brookhavn ational Laboratory) Canonical partition function an finit nsity phas transition in lattic QCD arxiv:84.7

More information

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density Opportunities for Lattice QCD Thermodynamics Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi (Boston

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

QCD Critical Point : Inching Towards Continuum

QCD Critical Point : Inching Towards Continuum QCD Critical Point : Inching Towards Continuum Rajiv V. Gavai T. I. F. R., Mumbai, India Introduction Lattice QCD Results Searching Experimentally Summary Work done with Saumen Datta & Sourendu Gupta New

More information

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005 MATTER Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee March 13, 2005 1 Can the mass of this system be computed from the standard model of particle physics?

More information

Higher order net baryon number cumulants in the strong coupling lattice QCD

Higher order net baryon number cumulants in the strong coupling lattice QCD Higher order net baryon number cumulants in the strong coupling lattice QCD Terukazu Ichihara in collaborate with Akira Ohnishi and Kenji Morita Department of Physics and YITP, Kyoto U. News! We got an

More information

Maria Paola Lombardo GGI Firenze March 2014

Maria Paola Lombardo GGI Firenze March 2014 Dense matter from lattice QCD (?) Maria Paola Lombardo GGI Firenze March 2014 The phases of strong interactions Andronic et al 2010 Tojo et al 2011 ..and the experimental programs First proposal: Cabibbo

More information

I would like to thank Colleagues in the World for

I would like to thank Colleagues in the World for I would like to thank Colleagues in the World for Encouraging and Warm Voices, and many countries for the help. In West Japan, Osaka, Hiroshima, Fukuoka etc., as far as I know all Universities have no

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

The critical point of QCD: what measurements can one make?

The critical point of QCD: what measurements can one make? The critical point of QCD: what measurements can one make? Sourendu Gupta ILGTI: TIFR Strong Interactions 2010 TIFR, Mumbai February 10, 2010 Lattice measurements The critical point NLS at finite µ B Experimental

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

QCD at Finite Density and the Sign Problem

QCD at Finite Density and the Sign Problem Sign Problem, INT, March 22 p. 1/39 QCD at Finite Density and the Sign Problem Jacobus Verbaarschot jacobus.verbaarschot@stonybrook.edu INT, March 22 Sign Problem, INT, March 22 p. 2/39 Acknowledgments

More information

Fluctuations, Correlations and bound states in the QGP

Fluctuations, Correlations and bound states in the QGP Fluctuations, Correlations and bound states in the QGP Introduction BS correlations Some speculations Work in collaboration with: A. Majumder and J. Randrup Phase diagram Z. Fodor et al., PLB Susceptibilities

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Lattice QCD + Hydro/Cascade Model of Heavy Ion Collisions

Lattice QCD + Hydro/Cascade Model of Heavy Ion Collisions Lattice QCD + Hydro/Cascade Model of Heavy Ion Collisions Michael Cheng Lawrence Livermore National Laboratory 2010 Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2-9, 2010 Outline Calculation

More information

Baryon number distribution in Lattice QCD

Baryon number distribution in Lattice QCD Baryon number distribution in Lattice QCD Keitaro Nagata KEK KN, S. Motoki, Y. Nakagawa, A. Nakamura, T. Saito [PTEP01A103(2012)] A. Nakamura, KN [arxiv:1305.0760] KN, K. Kashiwa, A. Nakamura, S. M. Nishigaki

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Equation of state from N f = 2 twisted mass lattice QCD

Equation of state from N f = 2 twisted mass lattice QCD Equation of state from N f = twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Kirchner, M. Müller-Preussker (HU Berlin), M. P. Lombardo

More information

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Bedanga Mohanty NaConal InsCtute of Science EducaCon and Research (NISER) Outline: ² Phase diagram of QCD

More information

Revisiting the strong coupling limit of lattice QCD

Revisiting the strong coupling limit of lattice QCD Revisiting the strong coupling limit of lattice QCD Philippe de Forcrand ETH Zürich and CERN with Michael Fromm (ETH) Motivation Intro Algorithm Results Concl. 25 + years of analytic predictions: 80 s:

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Exploring finite density QCD phase transition with canonical approach Power of multiple precision computation

Exploring finite density QCD phase transition with canonical approach Power of multiple precision computation Exploring finite density QCD phase transition with canonical approach Power of multiple precision computation Institute of Theoretical Physics, Department of Physics, Rikkyo University, Toshima-ku, Tokyo,

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Complex Langevin dynamics for nonabelian gauge theories

Complex Langevin dynamics for nonabelian gauge theories Complex Langevin dynamics for nonabelian gauge theories Gert Aarts XQCD 14, June 2014 p. 1 QCD phase diagram QCD partition function Z = DUD ψdψe S YM S F = DU detde S YM at nonzero quark chemical potential

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

A field theoretical model for the QCD phase transition in the early universe

A field theoretical model for the QCD phase transition in the early universe A field theoretical model for the QCD phase transition in the early universe Rainer Stiele Institute for Theoretical Physics Heidelberg University International School on QGP and HIC : past, present, future

More information

Cold quarks stars from hot lattice QCD

Cold quarks stars from hot lattice QCD 12.10.2009 Cold quarks stars from hot lattice QCD Robert Schulze TU Dresden, FZ Dresden-Rossendorf with B. Kämpfer 1. hot lattice QCD and quasiparticles 2. quasiparticle model: going to μ > 0 3. cold quark

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Thermodynamics using p4-improved staggered fermion action on QCDOC

Thermodynamics using p4-improved staggered fermion action on QCDOC Thermodynamics using p4-improved staggered fermion action on QCDOC for the RBC-Bielefeld Collaboration Brookhaven National Laboratory and Columbia University, USA E-mail: chulwoo@bnl.gov We present an

More information

Centrality dependence of hadronization and chemical freeze out conditions at the LHC

Centrality dependence of hadronization and chemical freeze out conditions at the LHC F. Becattini University of Florence Centrality dependence of hadronization and chemical freeze out conditions at the LHC F.B., M. Bleicher, E. Grossi, J. Steinheimer and R. Stock, arxiv:1405.0710 OUTLINE

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

The sign problem in Lattice QCD

The sign problem in Lattice QCD The sign problem in Lattice QCD Philippe de Forcrand ETH Zürich & CERN INT-13-2a, Advances in Quantum Monte Carlo, July 18, 2013 Scope of lattice QCD simulations: Physics of color singlets * One-body physics:

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Quark Number Susceptibilities & The Wróblewski Parameter

Quark Number Susceptibilities & The Wróblewski Parameter Quark Number Susceptibilities & The Wróblewski Parameter Rajiv V. Gavai T. I. F. R., Mumbai, India In collaboration with Sourendu Gupta, TIFR, Mumbai Hard Probes 2004, Ericeira, Portugal, November 9, 2004

More information

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld QCD thermodynamics Frithjof Karsch, BNL/Bielefeld Key Questions NSAC Long Range Plan 2007 What are the phases of strongly interacting matter, and what role do they play in the cosmos? What does QCD predict

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information