Maria Paola Lombardo GGI Firenze March 2014

Size: px
Start display at page:

Download "Maria Paola Lombardo GGI Firenze March 2014"

Transcription

1 Dense matter from lattice QCD (?) Maria Paola Lombardo GGI Firenze March 2014

2 The phases of strong interactions Andronic et al 2010 Tojo et al 2011

3 ..and the experimental programs First proposal: Cabibbo and Parisi, 1975 LHC RHIC NICA /FAIR / RHIC II US NSAC Long RangePlan (adapted)

4 (Dense) matter on the lattice QCD, and the lattice Few body physics, nuclear potential and the nuclear equation of state EoS and condensates from first principles in QCDlike models I: fermionic models EoS and condensates from first principles in QCD-like models II: two color QCD Overview of methods and results in QCD The critical point of QCD

5 Fundamental theory of strong interactions QCD, AND THE LATTICE

6

7 QCD

8 ..on the lattice

9 Designing a simulation Choice of the discretization Input parameters

10 Dimensional transmutation 1/T a L..and check of the continuumlimit

11

12 Option 1:

13 Option 2

14

15 FEW BODY RESULTS

16 Wuppertal- Budapest 2013

17

18

19 H dibaryon

20

21 Nuclear force from Lattice QCD Phenomenological NN forces have fitting parameters. For hyperon nucleon and nucleon nucleon a factor 3 more However in QCD all interactions are controlled only by the scale parameter and the physical quark masses NN potentials are determined from the equal time Nambu-Bethe-Salpeter wave function

22 Wave function, Schroedinger equation and potential

23

24

25 Fits to phenomenological form

26 Overview of the results

27 Three nucleon forces

28 The short distance repulsion among baryons Aoki, Balog, Weisz 2013 The wave function at short distance Diverges at r = 0 if n1 > 0 Vanishes at r = 0 if n1 < 0 Implies for the short distance potential Attractive if n1 > 0 Repulsive if n1 < 0 In some cases a mismatch was observed between the sign of the potential and these estimates, indicating that the asymptotic behaviour has not been reached yet on the lattice

29 September 2013

30 EoS from lattice nuclear forces Input : NN potentials from zero strangeness sector in flavor SU(3) QCD

31 Ground state energies

32 Ground state energies

33 Mass-radius relation

34

35 I. Dense Matter from First Principles QCD-like models and the strong coupling expansion : condensates, equation of state, search for exotic phases II. QCD, and its critical point

36 Observables and EoS

37 GN 2+1, NJL 3+1 FERMIONIC MODELS

38 2+1 Gross-Neveu model Phase diagram in ordinary conditions

39 GN model on the continuum and on the lattice

40 Mean field solution vs lattice results Set S=0 and obtain the critical line Note for T=0 m independence till mc = S0

41 The Phase Diagram of 2+1 GN model : mean field and exact Hands, Kocic, Kogut 1993

42 Condensate and EOS in NJL 3+1 Hands and Walters 2003

43 Diquark condensation

44 From QCD to four fermion models Lattice QCD action with staggered fermions

45 From QCD to four fermion models Cfr Lectures by Massimo Mannarelli Gauge part disappears in the infinite coupling limit

46 From QCD to four fermion models Gauge part disappears in the infinite coupling limit Meson operators

47 Sketch of the calculations (T,m=0) 1) Bosonization Z 2) Mean field Z

48 Results from the strong coupling expansion for finite T and m

49

50 TWO COLOR QCD

51 QCD with two colors Pauli Gursey Symmetry: quarks and antiquarks transform according to equivalent reps.

52 Spectrum and condensates Quark propagator SU(2) matrix Mesons and Baryons are degenerate at T,m=0 The degeneracy is lifted at T,m 0 Hands, Kogut, MpL, Morrison 1999

53 Rotation of condensates

54

55

56 Phases of two color QCD? Hands, Skullerud, Kim 2013

57 QCD

58 The sign problem Complex for real m Possibilities for a real determinant: Four fermion models Imaginary m Wilson fermions Two color, isospin density

59 Features of the phase of the determinant MpL, Splittorff, Verbaarschot 2010

60

61

62

63

64

65 All methods work at high T

66 SEARCHING FOR THE QCD CRITICAL POINT

67

68 Back to the complex m plane

69 The radius of convergence (?)

70 Has the critical point of QCD being found?? Nt=4 Nt = 6 Nt=8

71 Lower bound on the radius of convergence And freezout point Data from RBC Collaboration Courtesy E. Laermann and C. Schmidt. C. Ratti and MpL QM09 Freezout point

72 Use imaginary m to validate radius of convergence Falcone, Meyer, Laermann, MpL I m a g i n a r y Check radius of convergence here! c e m i c a l p o t e n t a l Candidate Critical point Observed radius Of convergence T ay l o r e x p a n s i o n

73 Alternative estimate of the radius of convergence Laermann, MpL, Meyer 2013

74 Falcone, Laermann, Meyer, MpL A proposal for a better control on the QCD critical point

75 LHC RHIC NICA /FAIR / RHIC II US NSAC Long RangePlan (adapted)

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

Recent Progress in Lattice QCD at Finite Density

Recent Progress in Lattice QCD at Finite Density Recent Progress in Lattice QCD at Finite Density Shinji Ejiri (Brookhaven ational Laboratory) Lattice 008, July 14-19, 008 QCD thermodynamics at 0 Heavy-ion experiments (HIC) (low energy RHIC, FAIR) Properties

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

New Frontiers of Lattice Field Theories

New Frontiers of Lattice Field Theories QCD with many flavors at zero and non-zero temperature Maria Paola Lombardo Albert Deuzeman, MPL, Kohtaroh Miura, Tiago Nunes da Silva, Elisabetta Pallante New Frontiers of Lattice Field Theories GGI Firenze

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Strong coupling study of Aoki phase in Staggered-Wilson fermion

Strong coupling study of Aoki phase in Staggered-Wilson fermion Strong coupling study of Aoki phase in Staggered-Wilson fermion T. Z. Nakano (YITP/Kyoto Univ.) Collaborators: T. Misumi (YITP), T. Kimura (Univ. of Tokyo/RIKEN), A. Ohnishi (YITP), M. Creutz (BNL) PoS

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Nuclear Force from Lattice QCD [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Tetsuo Hatsuda (Univ. Tokyo) NFQCD, Feb 17, 2010 The

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Quark Model History and current status

Quark Model History and current status Quark Model History and current status Manon Bischoff Heavy-Ion Seminar 2013 October 31, 2013 Manon Bischoff Quark Model 1 Outline Introduction Motivation and historical development Group theory and the

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

Lattice QCD with Eight Degenerate Quark Flavors

Lattice QCD with Eight Degenerate Quark Flavors Lattice QCD with Eight Degenerate Quark Flavors Xiao-Yong Jin, Robert D. Mawhinney Columbia University Lattice 2008 Outline Introduction Simulations and results Preparations Results Conclusion and outlook

More information

Prospects of the Hadron Physics at J-PARC

Prospects of the Hadron Physics at J-PARC Journal of Physics: Conference Series Prospects of the Hadron Physics at J-PARC To cite this article: Makoto Oka 2011 J. Phys.: Conf. Ser. 302 012052 Related content - Plans for Hadronic Structure Studies

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Kern- und Teilchenphysik II Lecture 1: QCD

Kern- und Teilchenphysik II Lecture 1: QCD Kern- und Teilchenphysik II Lecture 1: QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Marcin Chrzaszcz Dr. Annapaola De Cosa (guest lecturer) www.physik.uzh.ch/de/lehre/phy213/fs2017.html

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

International Workshop on QCD Green s Functions, Confinement and Phenomenology September 7-11, 2009 ECT Trento, Italy

International Workshop on QCD Green s Functions, Confinement and Phenomenology September 7-11, 2009 ECT Trento, Italy Lattice Study of Dense Two Color Matter Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K. E-mail: s.hands@swan.ac.uk I present results from lattice simulations of Two Color

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Properties of Nuclei deduced from the Nuclear Mass

Properties of Nuclei deduced from the Nuclear Mass Properties of Nuclei deduced from the Nuclear Mass -the 2nd lecture- @Milano March 16-20, 2015 Yoshitaka Fujita Osaka University Image of Nuclei Our simple image for Nuclei!? Nuclear Physics by Bohr and

More information

COLOR SUPERCONDUCTIVITY

COLOR SUPERCONDUCTIVITY COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 Outline Motivations Superconductors Color

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

The 1/N expansion method in quantum field theory

The 1/N expansion method in quantum field theory III d International School Symmetry in Integrable Systems and Nuclear Physics Tsakhkadzor, Armenia, 3-13 July 2013 The 1/N expansion method in quantum field theory Hagop Sazdjian IPN, Université Paris-Sud,

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Introduction to Modern Physics Problems from previous Exams 3

Introduction to Modern Physics Problems from previous Exams 3 Introduction to Modern Physics Problems from previous Exams 3 2007 An electron of mass 9 10 31 kg moves along the x axis at a velocity.9c. a. Calculate the rest energy of the electron. b. Calculate its

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

hybrids (mesons and baryons) JLab Advanced Study Institute

hybrids (mesons and baryons) JLab Advanced Study Institute hybrids (mesons and baryons) 2000 2000 1500 1500 1000 1000 500 500 0 0 71 the resonance spectrum of QCD or, where are you hiding the scattering amplitudes? real QCD real QCD has very few stable particles

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Baryon-Baryon Forces from Lattice QCD

Baryon-Baryon Forces from Lattice QCD Baryon-Baryon Forces from Lattice QCD quarks nuclei 1 fm neutron stars Tetsuo Hatsuda (Univ. Tokyo) T(r)opical QCD WS @ Cairns, Oct.1, 2010 [1] Why 10 fmbb forces? [2] NN force from lattice QCD [3] YN,

More information

The high temperature transition and the (quasi)conformal behaviour Albert Deuzeman, MPL, Kohtaroh Miura, Elisabetta Pallante

The high temperature transition and the (quasi)conformal behaviour Albert Deuzeman, MPL, Kohtaroh Miura, Elisabetta Pallante (yet) another extreme direction: QCD with many flavors Maria Paola Lombardo The high temperature transition and the (quasi)conformal behaviour Albert Deuzeman, MPL, Kohtaroh Miura, Elisabetta Pallante

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld QCD thermodynamics Frithjof Karsch, BNL/Bielefeld Key Questions NSAC Long Range Plan 2007 What are the phases of strongly interacting matter, and what role do they play in the cosmos? What does QCD predict

More information

QCD Critical Point : Inching Towards Continuum

QCD Critical Point : Inching Towards Continuum QCD Critical Point : Inching Towards Continuum Rajiv V. Gavai T. I. F. R., Mumbai, India Introduction Lattice QCD Results Searching Experimentally Summary Work done with Saumen Datta & Sourendu Gupta New

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

STRONG INTERACTIONS WITH MANY FLAVORS

STRONG INTERACTIONS WITH MANY FLAVORS GGI Firenze March 23 2015 Workshop on Holographic methods for strongly coupled systems STRONG INTERACTIONS WITH MANY FLAVORS Lattice results Maria Paola Lombardo INFN Based on M.P.L, K. Miura, T. Nunes

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Gert Aarts Saariselkä April 2018 p. 1 Mesons in a medium mesons in a medium very well studied hadronic phase: thermal broadening,

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Exotic Diquark Spectroscopy

Exotic Diquark Spectroscopy Exotic Diquark Spectroscopy JLab November 2003 R.L. Jaffe F. Wilczek hep-ph/0307341 The discovery of the Θ + (1540) this year marks the beginning of a new and rich spectroscopy in QCD.... What are the

More information

Hadron-Hadron Interactions from Lattice QCD

Hadron-Hadron Interactions from Lattice QCD Hadron-Hadron Interactions from Lattice QCD Sinya AOKI Elba XI Workshop Electron-Nucleus Scattering XI June 21-25,2010, Elba, Italy 1. Introduction Nuclear force is a basis for understanding... structure

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Quarkonium-nucleus bound states

Quarkonium-nucleus bound states Quarkonium-nucleus bound states Chromopolarizability and color van der Waals forces Gastão Krein Instituto de Física Teórica, São Paulo Outline Motivation From models (1990) to a lattice simulation (2015)

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Quarks and the Baryons

Quarks and the Baryons Quarks and the Baryons A Review of Chapter 15 of Particles and Nuclei by Povh Evan Phelps University of South Carolina Department of Physics and Astronomy phelps@physics.sc.edu March 18, 2009 Evan Phelps

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models

Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models arxiv:hep-lat/596 v1 19 Sep 25 Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models Department of Mathematical Sciences Brunel University West London Uxbridge UB8 3PH,

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Physics 492 Lecture 28

Physics 492 Lecture 28 Physics 492 Lecture 28 Main points of last lecture: Feynman diagrams. Main points of today s lecture:. Nuclear forces: charge exchange pion exchange Yukawa force deuteron charge independence, isospin symmetry

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Part 7: Hadrons: quarks and color

Part 7: Hadrons: quarks and color FYSH3, fall Tuomas Lappi tuomas.v.v.lappi@jyu.fi Office: FL49. No fixed reception hours. kl Part 7: Hadrons: quarks and color Introductory remarks In the previous section we looked at the properties of

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information