Equation of state for hybrid stars with strangeness

Size: px
Start display at page:

Download "Equation of state for hybrid stars with strangeness"

Transcription

1 Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International Nuclear Physics Conference Adelaide, Australia September 12, 2016 T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 1/11

2 Table of contents 1 Introduction 2 Hadronic EoS for neutron stars 3 Hadron-quark phase transition in a neutron star 4 Summary T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 2/11

3 Introduction The equations of state (EoSs) for neutron stars should be satisfied with the nuclear properties and the astrophysical constrains. Since the discovery of massive neutron stars, the discrepancy between the observations and theories becomes a big problem (2M problem). PSR J with 1.97 ± 0.04M : P. B. Demorest et al., Nature 467 (2010) and PSR J with 2.01 ± 0.04M : J. Antoniadis et al., Science 340 (2013) Other exotic degrees of freedom are expected in the core of a neutron star: hyperons, quark matter, some unusual condensations of boson-like matter, dark matter etc. The EoS for neutron stars with hyperons and quark matter T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 3/11

4 Hadronic EoS for neutron stars 1 The variation in internal (quark) structure of baryons in matter using the chiral quark-meson coupling (C) model [ g σb (σ) = g σb b B 1 a ] [ ] B 2 (g σnσ), g σ B(σ ) = g σ Bb B 1 a B 2 (g σ Λσ ). T. M., M. K. Cheoun, and K. Saito, Phys. Rev. C 88 (2013) Hidden strange (σ and ϕ) mesons in SU(3) flavor symmetry SU(6) symmetry based on quark model: θ v = and z = 1/ 6 SU(3) flavor symmetry: θ v = and z = T. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185 (2010) Relativistic many-body calculation: Hartree approximation: Hartree-Fock approximation: Σ Baryon self-energy tadpole exchange T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 4/11

5 Lagrangian density Lagrangian density for uniform hadronic matter: L H = L B + L M + L int. We consider the octet baryons (B): proton (p), neutron (n), Λ, Σ +0, and Ξ 0. In addition, not only the mesons which is composed of light quarks (σ, ω, π, and ρ) but also the strange quarks (σ and ϕ) are taken into account. L int = [ field-dependent C.C. using the C model ψ B g σb (σ) σ + g σ B (σ ) σ g ωb γ µ ω µ + f ωb 2M σ µν ν ω µ B g ϕb γ µ ϕ µ + f ϕb 2M σ µν ν ϕ µ g ρb γ µ ρ µ I B + f ρb 2M σ µν ν ρ µ I B f ] πb m γ 5γ µ µ Hartree-Fock approximation π I B ψ B, (tensor couplings) pion contribution (pseudovector) with M being the scale mass (= M p ). T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 5/11

6 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

7 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

8 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) +OGE+OPE Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

9 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) +OGE+OPE Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

10 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) SU(3) +OGE+OPE Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

11 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O C (RHF) C (RH-SU3) C (RH) Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

12 EoS for neutron stars 1 Baryon-structure variation in matter using the C model 2 SU(3) flavor symmetry 3 Relativistic many-body calculation Hartree approximation Hartree-Fock approximation These effects make the EoS stiff and the maximum mass can reach the 2M constraint. P (MeV/fm 3 ) P = ε C (RHF) C (RH-SU3) C (RH) ε (MeV/fm 3 ) K 0 (MeV) 269 M / M O RHF RH C (RHF) C (RH-SU3) C (RH) Radius (km) Hyperons are taken into account. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 6/11

13 Quark matter description EoS for quark matter MIT bag model with the density-dependent bag constant Nambu Jona-Lasinio (NJL) model: HK-type parameter set L = q ( iγ µ µ m ) q G S [( qλ a q) 2 + ( qiγ 5 λ a q) 2] a=0 [ G D detf ( q(1 + γ 5 )q) + det f ( q(1 γ 5 )q) ] 1 2 g V ( qγ µ q) 2, with a universal repulsion among different flavors, 0 g V 1.5G S. K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP 2013 (2013) no.7, 073D01. Hadron-quark phase transition First-order phase transition under Gibbs criterion Hadron-quark crossover T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 7/11

14 First-order phase transition (Gibbs) Particle Fraction Y i p e µ n P HP (µ n, µ e) = P QP (µ n, µ e) = P MP (µ n, µ e) Λ Ξ u ρ (fm -3 ) d s M max = 1.98M µ c = 1334 MeV T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 8/11

15 Hadron-quark crossover Energy density - baryon density interpolation Pressure - baryon density interpolation Pressure - energy density interpolation P-ρ interpolation e.g. P(ϵ) = P HP (ϵ)f (ϵ) + P QP (ϵ)f + (ϵ), dρ ρ = dϵ P(ϵ)+ϵ. Particle Fraction Y i T. Hell and W. Weise, Phys. Rev. C 90 (2014) µ n e Λ p Ξ d u ρ (fm -3 ) Nuclear physics Crossover region moves to higher densities. Astrophysics The 2M constant s T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 9/11

16 Pressure-energy density interpolation Particle Fraction Y i d n p e µ Λ Ξ u s Ξ (g V = 1.5G S ) ρ (fm -3 ) T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 10/11

17 Particle Fraction Y i Outline Introduction Hadronic EoS Hadron-quark phase transition Summary 1.0 Pressure-energy density interpolation 0.8 d n p e µ Λ Ξ u s Ξ (g V = 1.5G S ) ρ (fm -3 ) T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 10/11 dp / d ε ε - = 1100 (MeV fm -3 ), Γ = 110 (MeV fm -3 ) ε - = 1430 (MeV fm -3 ), Γ = 190 (MeV fm -3 ) ε - = 1790 (MeV fm -3 ), Γ = 270 (MeV fm -3 ) ρ (fm -3 )

18 Particle Fraction Y i Outline Introduction Hadronic EoS Hadron-quark phase transition Summary 1.0 Pressure-energy density interpolation 0.8 n p e µ Λ Ξ u s d Ξ 0 dp / d ε ε - = 1100 (MeV fm -3 ), Γ = 110 (MeV fm -3 ) ε - = 1430 (MeV fm -3 ), Γ = 190 (MeV fm -3 ) ε - = 1790 (MeV fm -3 ), Γ = 270 (MeV fm -3 ) ρ (fm -3 ) (g ρ (fm -3 V = 1.5G S ) ) Radius (km) M / M O only hadron core 1st order phase transition (β = 0.025) ε - = 1100 (MeV fm -3 ), Γ = 110 (MeV fm -3 ) ε - = 1430 (MeV fm -3 ), Γ = 190 (MeV fm -3 ) ε - = 1790 (MeV fm -3 ), Γ = 270 (MeV fm -3 ) T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 10/11

19 Summary Hadronic EoS: 1 The variation in internal (quark) structure of baryons in matter using the chiral quark-meson coupling (C) model 2 Hidden strange (σ and ϕ) mesons in SU(3) flavor symmetry 3 Relativistic Hartree-Fock approximation The EoS with hyperons can support 2M neutron stars. Hybrid stars: Hadron-quark phase transition: first-order phase transition under Gibbs criterion and hadron-quark crossover In order to suppress the amount of quarks at low densities, the center of crossover moves to higher densities. If the stiff Hadronic and quark EoSs are taken into account, the pressure-energy density interpolation can satisfy the constrains from nuclear physics and astrophysics. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 11/11

20 Thank You for Your Attention. T. Miyatsu et.al. Equation of state for hybrid stars with strangeness 11/11

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan The strangeness quark mean field theory Jinniu Hu School of Physics, Nankai

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Effects of hadron-quark phase transition on properties of Neutron Stars arxiv:1811.07434v1 [nucl-th] 19 Nov 2018 Debashree Sen, and T.K. Jha BITS-Pilani, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726,

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Relativistic EOS of Supernova Matter with Hyperons 1

Relativistic EOS of Supernova Matter with Hyperons 1 Relativistic EOS of Supernova Matter with Hyperons 1 A. Ohnishi, C. Ishizuka, K. Tsubakihara, H. Maekawa, H. Matsumiya, K. Sumiyoshi and S. Yamada Department of Physics, Faculty of Science Hokkaido University,

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

The surface gravitational redshift of the neutron star PSR B

The surface gravitational redshift of the neutron star PSR B Bull. Astr. Soc. India (2013) 41, 291 298 The surface gravitational redshift of the neutron star PSR B2303+46 Xian-Feng Zhao 1 and Huan-Yu Jia 2 1 College of Mechanical and Electronic Engineering, Chuzhou

More information

Prospects of the Hadron Physics at J-PARC

Prospects of the Hadron Physics at J-PARC Journal of Physics: Conference Series Prospects of the Hadron Physics at J-PARC To cite this article: Makoto Oka 2011 J. Phys.: Conf. Ser. 302 012052 Related content - Plans for Hadronic Structure Studies

More information

4. Effects of hyperon mixing on NS-EOS

4. Effects of hyperon mixing on NS-EOS 4. Effects of hyperon mixing on NS-EOS Hyperons in NSs --- Earlier works Suggestion for Y-mixing in NSs A.G.W. Cameron, Astrophys. J., 130 (1959) 884. Attempts for Y-mixing calculation S. Tsuruta and A.G.W.

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹 In collaboration with 南開大学 天津 H. Toki RCNP, Osaka University, Japan 中国 K. Sumiyoshi Numazu College

More information

Relativistic EOS for Supernova Simulations

Relativistic EOS for Supernova Simulations Relativistic EOS for Supernova Simulations H. Shen Nankai University, Tianjin, China 申虹 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology, Japan K. Oyamatsu

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model ---

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- Quarks and Compact Stars (QCS2014) KIAA, Peking Univ., Oct.20-22.2014 Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- T. Takatsuka (RIKEN; Prof.

More information

arxiv: v1 [nucl-th] 23 Dec 2017

arxiv: v1 [nucl-th] 23 Dec 2017 International Journal of Modern Physics D c World Scientific Publishing Company arxiv:1712.08860v1 [nucl-th] 23 Dec 2017 The properties of the massive neutron star Xian-Feng Zhao 1,2 1 School of Sciences,

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Hybrid Quark Stars With Strong Magnetic Field

Hybrid Quark Stars With Strong Magnetic Field Hybrid Quark Stars With Strong Magnetic Field Department of Physics,Kyoto University, Kyoto 606-8502, Japan E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp Hajime Sotani Division of Theoretical Astronomy, National

More information

Neutron star properties from an NJL model modified to simulate confinement

Neutron star properties from an NJL model modified to simulate confinement Nuclear Physics B (Proc. Suppl.) 141 (25) 29 33 www.elsevierphysics.com Neutron star properties from an NJL model modified to simulate confinement S. Lawley a W. Bentz b anda.w.thomas c a Special Research

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

arxiv: v1 [nucl-th] 18 Jun 2015

arxiv: v1 [nucl-th] 18 Jun 2015 October 17, 2018 Equation of state for neutron stars with hyperons and quarks in relativistic Hartree-Fock approximation arxiv:1506.05552v1 [nucl-th] 18 Jun 2015 Tsuyoshi Miyatsu and Myung-Ki Cheoun Department

More information

arxiv: v1 [nucl-th] 6 Jan 2018

arxiv: v1 [nucl-th] 6 Jan 2018 Massive neutron star with strangeness in a relativistic mean field model with a high-density cut-off Ying Zhang Department of Physics, Faculty of Science, Tianjin University, Tianjin 300072, China arxiv:1801.01984v1

More information

Hadron-Quark Crossover and Hot Neutron Stars at Birth

Hadron-Quark Crossover and Hot Neutron Stars at Birth Prog. Theor. Exp. Phys. 2012, 00000 (10 pages) DOI: 10.1093/ptep/0000000000 Hadron-Quark Crossover and Hot Neutron Stars at Birth arxiv:1506.00984v2 [nucl-th] 17 Jun 2015 Kota Masuda 1,2,, Tetsuo Hatsuda

More information

INTERPLAY BETWEEN PARTICLES AND HYPERONS IN NEUTRON STARS

INTERPLAY BETWEEN PARTICLES AND HYPERONS IN NEUTRON STARS INTERPLAY BETWEEN PARTICLES AND HYPERONS IN NEUTRON STARS Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Àngels Ramos Abstract: We analyze the effects of including

More information

arxiv: v2 [nucl-th] 4 Apr 2019

arxiv: v2 [nucl-th] 4 Apr 2019 Constraining the Hadron-Quark Phase Transition Chemical Potential via Astronomical Observation Zhan Bai 1,2, and Yu-xin Liu 1,2,3, arxiv:1904.01978v2 [nucl-th] 4 Apr 2019 1 Department of Physics and State

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Hyperons and Resonances in Nuclei and Neutron Stars H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Agenda: Hyperon interactions and hypernuclei Neutron star matter The hyperonization

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California Fridolin Weber San Diego State University and University of California at San Diego San Diego, California INT Program INT-16-2b The Phases of Dense Matter, July 11 August 12, 2016 EMMI Rapid Reaction Task

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

Quark matter subject to strong magnetic fields: phase diagram and applications

Quark matter subject to strong magnetic fields: phase diagram and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Quark matter subject to strong magnetic fields: phase diagram and applications To cite this article: Débora P Menezes et al 215 J. Phys.: Conf. Ser.

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

Compact Stars within a SU(3) chiral Quark Meson Model

Compact Stars within a SU(3) chiral Quark Meson Model Compact Stars within a SU(3) chiral Quark Meson Model Andreas Zacchi Matthias Hanauske,3 Laura Tolos Jürgen Schaffner-Bielich Institute for Theoretical Physics Goethe University Frankfurt Institut de Ciencies

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

arxiv: v1 [hep-ph] 12 Jun 2018

arxiv: v1 [hep-ph] 12 Jun 2018 Hybrid stars from the NJL model with a tensor-interaction Hiroaki Matsuoka Graduate School of Integrated Arts and Science, Kochi University, Kochi 780-8520, Japan Yasuhiko Tsue Department of Mathematics

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Crab nebula in X-ray GSI 22 November2016 Compress the sun (radius 700,000 km) down to a radius of 10-12 km Neutron star over

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars *

Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars * Chinese Physics C Vol. 41, No. 7 (217) 7511 Neutrino emissivity of the nucleon direct URCA process for rotational traditional and hyperonic neutron stars * Nai-Bo Zhang( ) 1 Shou-Yu Wang( ) 1;1) Bin Qi(

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The role of stangeness in hadronic matter (in)stability: from hypernuclei to compact stars

The role of stangeness in hadronic matter (in)stability: from hypernuclei to compact stars The role of stangeness in hadronic matter (in)stability: from hypernuclei to compact stars James R. Torres (former Ph.D. student), Francesca Gulminelli and DPM Universidade Federal de Santa Catarina (Brazil)

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter Nuclear phase transition and thermodynamic instabilities in dense nuclear matter A. Lavagno a 1 Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy 2 Istituto Nazionale

More information

Structure of Hypernuclei and Eos with Hyperon

Structure of Hypernuclei and Eos with Hyperon Structure of Hypernuclei and Eos with Hyperon Hiroyuki Sagawa University of Aizu/RIKEN 1. IntroducCon 2. Hyperon- Nucleon interaccon and Hypernuclei 3. Structure study of hypernuclei 4. EoS with strange

More information

arxiv: v1 [nucl-th] 11 Jun 2018

arxiv: v1 [nucl-th] 11 Jun 2018 YITP-18-56 Quark matter symmetry energy effects on hadron-quark coexistence in neutron star matter Xuhao Wu, 1,, Akira Ohnishi,, and Hong Shen 1, 1 School of Physics, Nankai University, Tianjin 371, China

More information

Maximum pulsar mass and strange neutron-star cores

Maximum pulsar mass and strange neutron-star cores Maximum pulsar mass and strange neutron-star cores P. Haensel Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl PAC2012 Beijing, China October 19-21, 2012 P. Haensel (CAMK) Maximum

More information

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report 67th Annual Meeting of the Physical Society of Japan 25 March 2012 Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report Wolfram Weise Low-energy QCD: symmetries and symmetry

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

arxiv: v1 [nucl-th] 17 Apr 2010

arxiv: v1 [nucl-th] 17 Apr 2010 JLAB-THY-1-1165 Hypernuclei in the quark-meson coupling model K. Tsushima and P. A. M. Guichon Thomas Jefferson Lab., 12 Jefferson Ave., ewport ews, VA 2 366, USA SPh-DAPIA, CEA Saclay, F91191 Gif sur

More information

Neutron star in the presence of strong magnetic field

Neutron star in the presence of strong magnetic field PRAMANA c Indian Academy of Sciences Vol. 82, No. 5 journal of May 2014 physics pp. 797 807 Neutron star in the presence of strong magnetic field K K MOHANTA 1, R MALLICK 2, N R PANDA 2, L P SINGH 3 and

More information

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256.

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256. Selected Publications Wolfram Weise status: December 2017 A. Monographs Pions and Nuclei (with T.E.O. Ericson) International Series of Monographs in Physics Oxford University Press Clarendon, Oxford 1988

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Universities Research Journal 2011, Vol. 4, No. 4 Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Myaing Thi Win 1 and Kouichi Hagino 2 Abstract Self-consistent mean-field theory

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) H-dibaryon in Holographic QCD Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) 1. Aug. 2016 1 Contents 1. Introduction 2. Chiral Soliton Model 3. Holographic QCD 4. Results

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Influence of Entropy on Composition and Structure of Massive Protoneutron Stars

Influence of Entropy on Composition and Structure of Massive Protoneutron Stars Commun. Theor. Phys. 66 (216) 224 23 Vol. 66, No. 2, August 1, 216 Influence of Entropy on Composition and Structure of Massive Protoneutron Stars Bin Hong ( Ê), Huan-Yu Jia ( ), Xue-Ling Mu (½ ), and

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example

Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example Akira Ohnishi, Kouji Kashiwa, Kenji Morita YITP, Kyoto U. Seminar at Hokkaido U.,

More information

Baryon-Baryon interaction and neutron-star EOS. Y. Yamamoto

Baryon-Baryon interaction and neutron-star EOS. Y. Yamamoto 2017/3/14 SNP2017 Baryon-Baryon interaction and neutron-star EOS Y. Yamamoto RIKEN Nishina center RMF ours Lagrangian in Baryon-Meson system R F Fitting for saturation parameters Ad hoc parameters to stiffen

More information

Spin-Orbit Interactions in Nuclei and Hypernuclei

Spin-Orbit Interactions in Nuclei and Hypernuclei Ab-Initio Nuclear Structure Bad Honnef July 29, 2008 Spin-Orbit Interactions in Nuclei and Hypernuclei Wolfram Weise Phenomenology Aspects of Chiral Dynamics and Spin-Orbit Forces Nuclei vs. -Hypernuclei:

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

arxiv:hep-ph/ v4 10 Dec 2005

arxiv:hep-ph/ v4 10 Dec 2005 1 The mass of the nucleon in a chiral quark-diquark model arxiv:hep-ph/0408312v4 10 Dec 2005 Keitaro Nagata 1, Atsushi Hosaka 1 and Laith. J. Abu-Raddad 2 1 Research Center for Nuclear Physics (RCNP),

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

arxiv:nucl-th/ v1 21 Aug 2000

arxiv:nucl-th/ v1 21 Aug 2000 Application of the density dependent hadron field theory to neutron star matter F. Hofmann, C. M. Keil, H. Lenske Institut für Theoretische Physik, Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen,

More information

Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model

Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model C. Y. Ryu, C. H. Hyun, and S. W. Hong Sung Kyun Kwan University Suwon, Korea Outline Introduction (Strangeness in neutron star)

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Equations of State of different phases of dense quark matter

Equations of State of different phases of dense quark matter Journal of Physics: Conference Series PAPER OPEN ACCESS Equations of State of different phases of dense quark matter To cite this article: E J Ferrer 217 J. Phys.: Conf. Ser. 861 122 View the article online

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas Origin of the Nuclear EOS in Hadronic Physics and QCD Anthony W. Thomas XXX Symposium on Nuclear Physics - Cocoyoc: Jan 5 th 2007 Operated by Jefferson Science Associates for the U.S. Department of Energy

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Neutron Star Core Equations of State and the Maximum Neutron Star Mass

Neutron Star Core Equations of State and the Maximum Neutron Star Mass PORTILLO 1 Neutron Star Core Equations of State and the Maximum Neutron Star Mass Stephen K N PORTILLO Introduction Neutron stars are the compact remnants of massive stars after they undergo core collapse.

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Neutron and quark stars in f (R) gravity

Neutron and quark stars in f (R) gravity 9th A. Friedmann International Seminar and 3rd Casimir Symposium 05 International Journal of Modern Physics: Conference Series Vol. 4 (06) 66030 (9 pages) c The Author(s) DOI: 0.4/S00945660307 Neutron

More information

arxiv:nucl-th/ v3 24 Nov 2002

arxiv:nucl-th/ v3 24 Nov 2002 Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter Bao-Xi Sun,2, Xiao-Fu Lu 2,3,6, Peng-ian Shen 6,,2, En-Guang Zhao 2,4,5,6 Institute of High Energy

More information

Deconfinement transition at neutron star cores: the role of fluctuations

Deconfinement transition at neutron star cores: the role of fluctuations Deconfinement transition at neutron star cores: the role of fluctuations Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Santa Adélia 166, 0910-170, Santo André, Brazil E-mail:

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

arxiv:nucl-th/ v1 24 Sep 2001

arxiv:nucl-th/ v1 24 Sep 2001 Hyperon-nucleon scattering and hyperon masses in the nuclear medium C. L. Korpa Department of Theoretical Physics, University of Pecs, Ifjusag u. 6, H-7624 Pecs, Hungary arxiv:nucl-th/0109072v1 24 Sep

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

Hyperons & Neutron Stars

Hyperons & Neutron Stars Hyperons & Neutron Stars Isaac Vidaña CFC, University of Coimbra HYP2012 The 11 th International Conference on Hypernuclear & Strange Particle Physics Barcelona, October 1 st - 5 th 2012 In this talk I

More information

Evidence for the Strong Interaction

Evidence for the Strong Interaction Evidence for the Strong Interaction Scott Wilbur Scott Wilbur Evidence for the Strong Interaction 1 Overview Continuing search inside fundamental particles Scott Wilbur Evidence for the Strong Interaction

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information