Strange nuclear matter in core-collapse supernovae

Size: px
Start display at page:

Download "Strange nuclear matter in core-collapse supernovae"

Transcription

1 Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany -2 October 22

2 Phase diagram of strongly interacting matter Fig.: Fredrik Sandin

3 Hyperons in neutron stars Large uncertainties in YY interaction, TBF with hyperons Microcsopic calculations: Inclusion of hyperons softens the EoS (BHF, Schulze & Rijken PRC 84 (2)) Low maximum masses of hyperon stars (<.4 M ) Gravitational Mass [M ] Radius R [km] PSR J PSR J Hulse-Taylor 2.5 Quark meson-coupling model ( Rikovska-Stone et al., NPA, Vol 792 (27); Whittenbury et al., arxiv:24.264) 2 2 SU(3) non-linear sigma model (Dexheimer and Schramm, PRC, Vol. 8 (2)) Relativistic Mean Field (Bednarek and Manka, J. Phys. G, 36 (29), Weissenborn et al. NPA, Vol. 88 (22)) Figures: top: I. Vidana et al., EPL, Vol. 94, 2, bottom: J. Rikovska Stone et al., NPA, Vol 792, 27 M g [solar mass].5.5 F-QMC7 F-QMC!4 N-QMC7 N-QMC! R [km}.5.5 8

4 Quark matter in neutron stars Bag models: Ozel et al., ApJL 724 (2), Weissenborn et al., ApJL 74 (2) Nambu-Jona-Lasinio models: Bonnano & Sedrakhian, Astron. & Astrophys. 539 (22), Blaschke et al. Phys. Rev. C 8 (29) O(α 2 s ) Perturbative QCD: Kurkela et al. Phys. Rev. D 8 (2) Dyson-Schwinger: Klaehn et al. (Phys. Rev C 82 (2 ), Chen et al. (Phys. Rev. D 84, (2) ρ tr /ρ M O.97 M O.9 M O 2SC STARS CFL STARS Figures: Ozel et al., ApJL 724 (2), Bonnano & Sedrakhian, Astron. & Astrophys. 539 (22) M O δ = G v /G s

5 Quark matter in neutron stars - EoS 2 Gibbs Maxwell Hadronic model: RMF TM (M 2.2 M ) Quark model: Bag model p = ( Ω QM = ) i Ω i + 3µ4 4π 2 ( a 4 ) + B eff ( ) a 4 = 2αs π T q = T h, p q = p h, µ i q = µ i h µ s = µ d Local charge neutrality: Maxwell transition Global charge neutrality: Gibbs transition Mixed phase with quark fraction χ = V Q V Q +V H, < χ < pressure [MeV/fm 3 ] pressure [MeV/fm 3 ] Quark Hadronic Gibbs Maxwell Baryochemical potential µ b [fm -3 ] Hadronic density [fm -3 ] Quark

6 Hybrid star maximum masses with RMF TM a 4 =.4 Maximum Mass [M solar ] a 4 =.5 a 4 = M solar Maxwell, hybrid stars Maxwell, quark core.6 Gibbs, mixed core Gibbs, quark core.5.44 M solar n c ~. /fm 3 n c ~.2 /fm 3 n c ~.3 /fm 3.4 n c ~.4 /fm 3 n c ~.5 /fm 3 n c ~.6 /fm B eff /4 [MeV] PSR J For hadronic RMF TM: Massive hybrid stars with low n crit contain only a mixed phase S. Weissenborn, I. S., G. Pagliara, M. Hempel, J. Schaffner-Bielich, ApJL 74 (2)

7 Hybrid star maximum masses with RMF NL a 4 =.4 Maximum Mass [M solar ] M solar.44 M solar a 4 = B eff /4 [MeV] a 4 =. PSR J Maxwell hybrid stars Maxwell, quark core Gibbs, mixed core Gibbs, quark core n c ~. /fm 3 n c ~.2 /fm 3 n c ~.3 /fm 3 n c ~.4 /fm 3 n c ~.5 /fm 3 For hadronic RMF NL3: Massive hybrid stars with low n crit can contain a pure quark matter core S. Weissenborn, I. S., G. Pagliara, M. Hempel, J. Schaffner-Bielich, ApJL 74 (2)

8 Massive hybrid stars 2 Demorest et al. (2) Gibbs Quark fraction χ Mass [solar mass].5 Freire et al. (28) Hulse-Taylor PSR a 4 =. a 4 =.55 TM pressure [MeV/fm 3 ] Hadronic Quark density [fm -3 ] Stiff quark EoSs can be very similar to stiff nucleonic EoSs (Alford et al., ApJ 629 (25)) Not only the stars masses but also their radii are similar How to distinguish hybrid stars from neutron stars? Cooling? Viscosity? Supernovae p = f(n b, Y p, T)!

9 Conditions in a core collapse supernova - 5 M Baryon density, log (! [g/cm 3 ]) Typical conditions after core-bounce: T MeV Y p.3 n b n Typical supernova EoSs cover: T : ( ) MeV Y p :..5 n b : ( 5 5 g ) cm 3 Temperature, T [MeV] Figure: Fischer et al., ApJS 94, 39 (2): Phase space covered in a core collapse simulation for a 5 M progenitor Baryon density, n [fm 3 Y e ] B

10 Conditions in a core collapse supernova - 4 M Baryon density, log (! [g/cm 3 ]) Typical conditions after core-bounce: T MeV Y p.3 n b n Typical supernova EoSs cover: T : ( ) MeV Y p :..5 n b : ( 5 5 g ) cm 3 Temperature, T [MeV] Figure: Fischer et al., ApJS 94, 39 (2): Phase space covered in a core collapse simulation for a 4 M progenitor Baryon density, n [fm 3 Y e ] B

11 Supernova observables Neutrino signal, gravitational waves, impact on nucleosynthesis,... SN987A: Supernova explosion of 2M progenitor Detection of 24 neutrinos during ca. 3 s Estimated for emitted energy: 2 53 erg Next galactic supernova: IceCube and Superkamiokande will observe 3 neutrinos Figures: Hirata et al., Phys. Rev. D, Vol. 38, 2 (988)

12 Quark and hyperon matter in core collapse supernovae Migdal, Chernoustan, Mishustin, Phys. Lett. B 83 (979) Takahara and Sato, Astrophys. and Space Science 9 (986) Drago and Tambini, Journal of Phys. G 25 (999) Gentile et al., Astrophys. Journal 44 (993) Pons et al., ApJ 53 (999), Pons et al., Phys.Rev.Lett. 86 (2) Nakazato et al., Phys. Rev. D 77 (28) Sumiyoshi et al., ApJL, 69 (29) I.S. Fischer et al., Phys. Rev. Lett. 2 (29)... Ishizuka et al., Journal of Phys. G 35 (28) Shen et al., Astrophys. Journal Suppl. 97 (2) Oertel, Fantina, and Novak, Phys. Rev. C 85 (22)

13 Hyperons in core-collapse of light progenitor stars E/B-M N (MeV) µ-m N (MeV) TM EOSY EOSY! n p Neutron Star Shen EOS EOSY n T= MeV, Y C =.4 p " B (fm -3 ) " B (fm -3 ) Shen et al. supernova EoS (RMF TM, M max 2.M ) extended to hyperons and thermal pions (M max.6m ) (U (N) Λ, U(N) Σ, U(N) Ξ ) =(-3MeV, +3MeV, -5MeV) Figure: Ishizuka et al., JPG. 35 (28)

14 Hyperons in core-collapse of light progenitor stars T (MeV) EOSY, Y C =.4 S/B= 5 Y/B= % % 2. % ρ B (fm -3 ) Simulation an adiabatic collapse of an iron core from 5 M progenitor No neutrino transport Small hyperon fraction. % has no effect on the supernova dynamics Figure: Ishizuka et al., JPG. 35 (28)

15 Hyperons in core-collapse SNe of massive progenitor stars 5 4 < E! > [MeV] 3 2 2x 53 L! [erg/s]..5. time after bounce [sec].5 Core-collapse supernova simulation of 4M progenitor with hyperon EoS from Ishizuka et al., JPG. 35 (28) Comparison to H.Shen EoS and Lattimer-Swesty EoS (K = 8 MeV) Hyperons appear around 5ms after core bounce and accelerate black hole production Figure: Sumiyoshi et al., ApJL, 69 (29)

16 Hyperons in core-collapse SNe of massive progenitor stars Variation of stiffness in hyperon EoS via Σ hyperon potential A = U (N) Σ =-3MeV; R = U(N) Σ =+3MeV Softening due to appearance of hyperons (M max.6m ) earlier black hole formation Figure: Nakazato et al. ApJ, 745 (22)

17 Quark matter in core-collapse SNe of massive progenitor stars Shen et al. EoS with strange quark matter and thermal pions Quark bag model: B /4 29 MeV (M max.8 M ) Core-collapse supernova simulation of 4M progenitor Black hole formation.7ms after onset of phase transition Nakazato et al., Astrophys. J. 72 (2), Ohnishi et al., Phys. Lett. B 74 (2)

18 Quark matter in core-collapse SNe of light progenitors - Stiff EoS Onset Mixed Phase 55 5 Pure Quark Phase! central evolution Baryon Density,! [ 4 g/cm 3 ] 2 Baryon Density,! [ 4 g/cm 3 ] Y p =.5 Temperature [MeV] Y p =.3 Y p =.2 Pressure [MeV/fm 3 ] 5 5 s =. k /baryon B s =.5 k B /baryon s = 2. k B /baryon Baryon Density [fm 3 ] Baryon Density, n B [fm 3 ] Shen EoS & phase transition to quark matter with PNJL model (M max 2 M ) Deconfinement to up and down quark matter, strangeness appears later D Supernova simulation of a 5 M progenitor GR hydrodynamics and Boltzmann neutrino transport in D (Liebendoerfer et al. 24) Due to high critical density no phase transition during post-bounce accretion phase Fischer et al., Physics of Atomic Nuclei 75 (22)

19 Quark matter in core-collapse SNe of light progenitors - Soft EoS 2 Steiner et al. 22 TM Demorest et al. 2 Mass [solar mass].5 B55α s 3 B62 B65 Freire et al. (28) Hulse-Taylor PSR Pressure [MeV/fm 3 ] Y p =.3, s=2 k B Quark fraction B /4 =62MeV,α s =. B /4 =65MeV,α s =. B /4 =55MeV,α s = Density [fm -3 ] Shen et al. EoS with quark bag model Ω QM = i=u,d,s,e Ω µ i + α 4 s + 4π 3 B Progenitors:.8 M, 3 M, and 5 M D GR hydrodynamics and Boltzmann neutrino transport (Liebendoerfer et al. 24) B /4 = 62MeV, 65MeV and B /4 = 55MeV & α s =.3 Sagert et al., PRL 2, 8 (29); Fischer et al., ApJS 94, 39 (2)

20 Second Shock Wave from Phase Transition Velocity [ 4 km/s] ms ms ms ms ms 26.2 ms 2 3 Mixed phase is present after core-bounce Collapse of the proto neutron star due to transition to pure quark matter 2ms - 4ms after core bounce Formation of second shock wave which leads to the explosion of the star Figure: I.S, T.Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, F.K. Thielemann, M. Liebendoerfer, PRL 2 (29)

21 First and Second Neutrino Bursts Luminosity [ 53 erg/s] ! e anti! e! µ/" Time after bounce [s] rms Energy [MeV] ! e anti! e! µ/" Time after bounce [s] Second shock wave passes neutrinospheres second neutrino burst dominated by antineutrinos For B /4 =65MeV second neutrino burst is 2 ms later than for B /4 =62MeV Fig: T.Fischer, Neutrino luminosities and rms neutrino energies, at 5km for M progenitor

22 Parameter study (Fischer et al., ApJS 94, 39 (2)) Prog. B /4 t pb ρ c T c M pns E expl M max M MeV ms 4 g/cm 3 MeV M 5 erg M u , α s = Higher critical density: More massive proto neutron star with deeper gravitational potential Stronger second shock and larger explosion energies Second neutrino burst later with larger peak luminosities More massive progenitor: earlier onset of phase transition and more massive proto neutron star

23 Quark matter in core-collapse SN of light progenitors - stiff EoS Mass [solar mass] 2.5 Steiner et al. 22 B55α s 3 B62 B65 TM Demorest et al. 2 Freire et al. (28) Hulse-Taylor PSR B45α s 7 B39α s 7 Temperature T [MeV] ms - 5ms post-bounce B /4 = 62 MeV B /4 = 65 MeV B /4 = 55 MeV, α s =.3 B /4 = 45 MeV, α s =.7 B /4 = 39 MeV, α s = Density n b [fm -3 ] For B /4 = 45 MeV & Collapse of 5 M and 3 M progenitors Phase transition too late s after bounce No second collapse For B /4 = 39 MeV: Earlier phase transition, but no second collapse

24 Quark matter in core-collapse SN of light progenitors - stiff EoS 2 Steiner et al. 22 TM Demorest et al. 2 Mass [solar mass].5.5 B55α s 3 B62 B65 Freire et al. (28) Hulse-Taylor PSR B45α s 7 B39α s 7 Pressure [MeV/fm 3 ] Y p =.3, s=2 k B Quark fraction Density [fm -3 ] For B /4 = 45 MeV & Collapse of 5 M and 3 M progenitors Phase transition too late s after bounce No second collapse For B /4 = 39 MeV: Earlier phase transition, but no second collapse

25 Second collapse & stiff hybrid EoS (?) NL3 Mass [solar mass] 2.5 Demorest et al. 2 Freire et al. (28) Hulse-Taylor PSR TM B45α s 7 Steiner et al. 22 B39α s 7.5 NL3, B43α s Choose stiffer hadronic EoS (NL3) Stronger phase transition and pure quark matter Caution : NL3 parameter set is too stiff with regard to heavy-ion data Caution 2: Mass-Radius relation for relevant density region look very similar

26 Second collapse & stiff hybrid EoS (?) Y p T=.MeV T=25.MeV T=52.4MeV T=MeV... n b [/fm 3 ] E/V B (MeV fm 3 ) c) BHF, x p =.4 B =2, "=.4 B =4, "=.7 B =4 (ws) B =2, "=.4 B =4, "=.7 B =4 (ws) B as = ! (fm 3 ) Quark EoS that is more flexible at higher densities and can stiffen Density dependent Bag constant [ (Burgio et al. Phys.Lett. B526 (22)) ( ) ] 2 B(ρ) = B as + (B B as) exp β ρ ρ Soft mixed phase and stiff high density quark EoS Right Figure: Burgio et al. Phys.Lett. B526 (22)

27 Summary & Conclusion Variety of studies for quark matter and hyperons in neutron stars and core-collapse supernovae Need more input on high density nuclear matter and hyperon interactions from heavy ion experiments Softening of the quark or hyperon EoS impacts the duration and spectrum of the supernova neutrino signal But: EoSs have to be stiff at high density! Only a few studies use EoSs which reproduce a neutron star mass of M NS =.97 ±.4M Will we be able to distinguish between effects from (stiff) hyperonic, quark,or hadronic EoSs? All supernova EoSs containing hyperons or quarks assume weak equilibrium with respect to strangeness production Is this a valid assumption? If not - how do we evolve strangeness in astrophysical simulations? With T. Fischer M. Hempel M. Liebendoerfer A. Mezzacappa G. Pagliara J. Schaffner-Bielich F.-K. Thielemann

28 Low critical density - Neutron stars vs. heavy ion collision 6 5 u,d,s quark matter, B /4 =65MeV, m s =MeV, a 4 =. Y p =. Y p =.3 Y p = Y p =.3, uds Y p ~.5, ud 4 4 T [MeV] 3 T [MeV] n b [fm -3 ] n b [fm -3 ] Neutron stars & supernovae Heavy ion collisions Proton Fraction Y p.3.5 Strangeness production weak interaction: d s s s Phase transition to uds quark matter ud quark matter

29 Low critical density - Neutron stars vs. heavy ion collision 8 u,d,s quark matter, B /4 =39MeV, m s =MeV, a 4 =.55 Y p =. Y p =.3 Y p = Y p =.3, uds Y p ~.5, ud 4 T [MeV] 6 4 T [MeV] n b [fm -3 ] n b [fm -3 ] Neutron stars & supernovae Heavy ion collisions Proton Fraction Y p.3.5 Strangeness production weak interaction: d s s s Phase transition to uds quark matter ud quark matter

30 Core-collapse and second shock Mixed phase of quarks and hadrons appears at core bounce in the center Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction!4! x (a) (b)!!spheres 2 3 (c) 443 ms Quark Flag Fig: T.Fischer, B /4 = 65 MeV, M progenitor

31 Core-collapse and second shock Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction!4! x (a) (b)!!spheres 2 3 (c) 443 ms 448.s ms Quark Flag Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction!4! x (a) (b)!!spheres 2 3 (c) 443 ms ms ms Quark Flag Fig: T.Fischer, B /4 = 65 MeV, M progenitor

32 Core-collapse and second shock Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction!4!!4 x (a) (b)!!spheres 2 3 (c) ms ms Quark Flag Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction!4!!4 x (a) (b)!!spheres 2 3 (c) ms ms ms Quark Flag Fig: T.Fischer, B /4 = 65 MeV, M progenitor

33 Core-collapse and second shock Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction x (a) !.4!! (b)!!spheres 2 3 (c) Quark Flag Velocity [km/s] log (Baryon Density [g/cm 3 ]) Electron Fraction x (a) !.4!! /aius [km] (b)!!sfgeres 2 3 /aius [km] (c) J e increase 2 3 /aius [km].5 Kuark Flag Fig: T.Fischer, B /4 = 65 MeV, M progenitor

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae, Basel University Frankfurt, AstroCoffee, 24.11.2015 Motivation: core-collapse supernovae how do massive stars

More information

High density EoS for (core-collapse) supernovae and neutron stars

High density EoS for (core-collapse) supernovae and neutron stars High density EoS for (core-collapse) supernovae and neutron stars Micaela Oertel micaela.oertel@obspm.fr Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot Trento

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop,

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop, Present status of modeling the supernova EOS, Basel University Numazu Workshop, 1.09.2015 The general purpose supernova EOS neutron stars core-collapse supernovae MH Liebendörfer Crab nebula, Hubble Space

More information

Relativistic EOS of Supernova Matter with Hyperons 1

Relativistic EOS of Supernova Matter with Hyperons 1 Relativistic EOS of Supernova Matter with Hyperons 1 A. Ohnishi, C. Ishizuka, K. Tsubakihara, H. Maekawa, H. Matsumiya, K. Sumiyoshi and S. Yamada Department of Physics, Faculty of Science Hokkaido University,

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Relativistic EOS for Supernova Simulations

Relativistic EOS for Supernova Simulations Relativistic EOS for Supernova Simulations H. Shen Nankai University, Tianjin, China 申虹 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology, Japan K. Oyamatsu

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Maximum pulsar mass and strange neutron-star cores

Maximum pulsar mass and strange neutron-star cores Maximum pulsar mass and strange neutron-star cores P. Haensel Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl PAC2012 Beijing, China October 19-21, 2012 P. Haensel (CAMK) Maximum

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹 In collaboration with 南開大学 天津 H. Toki RCNP, Osaka University, Japan 中国 K. Sumiyoshi Numazu College

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

Astrophysical and cosmological explorations of the QCD phase diagram

Astrophysical and cosmological explorations of the QCD phase diagram Astrophysical and cosmological explorations of the QCD phase diagram Jürgen Schaffner-Bielich Institute for Theoretical Physics and Heidelberg Graduate School for Fundamental Physics and ExtreMe Matter

More information

arxiv: v1 [astro-ph] 2 Sep 2008

arxiv: v1 [astro-ph] 2 Sep 2008 Formation of quark phases in compact stars and SN explosion A. Drago, G. Pagliara, G. Pagliaroli, F.L. Villante and F. Vissani arxiv:0809.0518v1 [astro-ph] 2 Sep 2008 Dipartimento di Fisica, Univ. Ferrara

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Strangeness in Neutron Stars

Strangeness in Neutron Stars Strangeness in Neutron Stars Jürgen Schaffner-Bielich Institut für Theoretische Physik Laboratori Nazionali di Frascati, Italy, March 28, 2013 HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Neutron Star Core Equations of State and the Maximum Neutron Star Mass

Neutron Star Core Equations of State and the Maximum Neutron Star Mass PORTILLO 1 Neutron Star Core Equations of State and the Maximum Neutron Star Mass Stephen K N PORTILLO Introduction Neutron stars are the compact remnants of massive stars after they undergo core collapse.

More information

Hybrid Quark Stars With Strong Magnetic Field

Hybrid Quark Stars With Strong Magnetic Field Hybrid Quark Stars With Strong Magnetic Field Department of Physics,Kyoto University, Kyoto 606-8502, Japan E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp Hajime Sotani Division of Theoretical Astronomy, National

More information

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Tobias Fischer University of Wroclaw (Poland) Bonn workshop on Formation and Evolution of Neutron Stars

More information

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi RIKEN Nishina Center, RIKEN Collaborators: E. Hiyama (RIKEN), M. Takano (Waseda University)

More information

Hyperons & Neutron Stars

Hyperons & Neutron Stars Hyperons & Neutron Stars Isaac Vidaña CFC, University of Coimbra HYP2012 The 11 th International Conference on Hypernuclear & Strange Particle Physics Barcelona, October 1 st - 5 th 2012 In this talk I

More information

Quark matter in compact stars: the Constant Sound Speed parameterization

Quark matter in compact stars: the Constant Sound Speed parameterization Quark matter in compact stars: the Constant Sound Speed parameterization Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà,

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

Estimates of thermal nucleation of quark matter during bounce

Estimates of thermal nucleation of quark matter during bounce Estimates of thermal nucleation of quark matter during bounce Bruno Mintz 1 Eduardo Fraga 1, Giuseppe Pagliara 2 and Jürgen Schaffner Bielich 2 (1) Universidade Federal do Rio de Janeiro (2) Ruprecht Karls

More information

Proto-neutron star in generalized thermo-statistics

Proto-neutron star in generalized thermo-statistics Proto-neutron star in generalized thermo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract The proto-neutron star (PNS) is investigated for the rst time in the generalized thermo-statistics.

More information

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications D. Blaschke (Wroclaw & Dubna) PSR J0737 3039 Collaboration (incomplete): D.E. Alvarez Castillo (Dubna), S. Benic

More information

An EOS implementation for astrophyisical simulations

An EOS implementation for astrophyisical simulations Introduction Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A S Schneider 1, L F Roberts 2, C D Ott 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI East

More information

Nobuya Nishimura Keele University, UK

Nobuya Nishimura Keele University, UK 7. Aug. 2014 @INT Studies of r-process nucleosynthesis based on recent hydrodynamical models of NS-NS mergers Nobuya Nishimura Keele University, UK The r-process: observational request - many r-rich Galactic

More information

Strangeness in Compact Stars

Strangeness in Compact Stars Strangeness in Compact Stars Jürgen Schaffner-Bielich Institut für Theoretische Physik The Structure and Signals of Neutron Stars, from Birth to Death, Firenze, Italia, March 24-28, 2014 HGS-HIRe Helmholtz

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

Hadron-Quark Crossover and Hot Neutron Stars at Birth

Hadron-Quark Crossover and Hot Neutron Stars at Birth Prog. Theor. Exp. Phys. 2012, 00000 (10 pages) DOI: 10.1093/ptep/0000000000 Hadron-Quark Crossover and Hot Neutron Stars at Birth arxiv:1506.00984v2 [nucl-th] 17 Jun 2015 Kota Masuda 1,2,, Tetsuo Hatsuda

More information

Neutron star in the presence of strong magnetic field

Neutron star in the presence of strong magnetic field PRAMANA c Indian Academy of Sciences Vol. 82, No. 5 journal of May 2014 physics pp. 797 807 Neutron star in the presence of strong magnetic field K K MOHANTA 1, R MALLICK 2, N R PANDA 2, L P SINGH 3 and

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Probing the Equation of State

Probing the Equation of State Probing the Equation of State with Neutrinos from Core-collapse Supernovae (?) Tobias Fischer University of Wrocław, Poland Dense Phases of Matter INT Workshop, Seattle WA, July 2016 Wrocław: 3 rd largest

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

arxiv: v1 [astro-ph.sr] 11 Jul 2013

arxiv: v1 [astro-ph.sr] 11 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 12-15, 2012, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Dark matter effect on the mass measurement of neutron stars arxiv:1307.2956v1

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan The strangeness quark mean field theory Jinniu Hu School of Physics, Nankai

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Maximum pulsar mass, equation of state and structure of neutron-star cores

Maximum pulsar mass, equation of state and structure of neutron-star cores Journal of Physics: Conference Series PAPER OPEN ACCESS Maximum pulsar mass, equation of state and structure of neutron-star cores To cite this article: P Haensel and J L Zdunik 2016 J. Phys.: Conf. Ser.

More information

The surface gravitational redshift of the neutron star PSR B

The surface gravitational redshift of the neutron star PSR B Bull. Astr. Soc. India (2013) 41, 291 298 The surface gravitational redshift of the neutron star PSR B2303+46 Xian-Feng Zhao 1 and Huan-Yu Jia 2 1 College of Mechanical and Electronic Engineering, Chuzhou

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

From supernovae to neutron stars

From supernovae to neutron stars From supernovae to neutron stars Yudai Suwa 1,2 1 Yukawa Institute for Theoretical Physics, Kyoto University 2 Max Planck Institute for Astrophysics, Garching Yudai Suwa, NUFRA215 @ Kemer, Turkey 2 /25

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Kaon Condensation in Neutron Stars & Related Issues

Kaon Condensation in Neutron Stars & Related Issues HIM2011@muju.11.2.27 Kaon Condensation in Neutron Stars & Related Issues Chang-Hwan Lee @ 1 Contents Motivations : why Neutron Stars? Kaon Condensation & Issues in Hadronic Physics Observations & Astrophysical

More information

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter Nuclear phase transition and thermodynamic instabilities in dense nuclear matter A. Lavagno a 1 Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy 2 Istituto Nazionale

More information

Can newly born neutron star collapse to low-mass black hole?

Can newly born neutron star collapse to low-mass black hole? Can newly born neutron star collapse to low-mass black hole?. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract We investigate for the rst time the newly born neutron star (NS) containing both hyperons

More information

b - stable matter of protoneutron star

b - stable matter of protoneutron star Mean-field study of the hot b - stable matter of protoneutron star Dao Tien Khoa INST Hanoi, VINATOM EOS of hot nuclear matter with a high neutron-proton asymmetry. EOS of hot b - stable baryon-lepton

More information

The Constant-Sound-Speed parameterization of the quark matter EoS

The Constant-Sound-Speed parameterization of the quark matter EoS The Constant-Sound-Speed parameterization of the quark matter EoS Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arxiv:1501.07902

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Effects of hadron-quark phase transition on properties of Neutron Stars arxiv:1811.07434v1 [nucl-th] 19 Nov 2018 Debashree Sen, and T.K. Jha BITS-Pilani, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726,

More information

4. Effects of hyperon mixing on NS-EOS

4. Effects of hyperon mixing on NS-EOS 4. Effects of hyperon mixing on NS-EOS Hyperons in NSs --- Earlier works Suggestion for Y-mixing in NSs A.G.W. Cameron, Astrophys. J., 130 (1959) 884. Attempts for Y-mixing calculation S. Tsuruta and A.G.W.

More information

Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model

Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model Kaon Condensation in Neutron Star using Modified Quark-Meson Coupling Model C. Y. Ryu, C. H. Hyun, and S. W. Hong Sung Kyun Kwan University Suwon, Korea Outline Introduction (Strangeness in neutron star)

More information

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California Fridolin Weber San Diego State University and University of California at San Diego San Diego, California INT Program INT-16-2b The Phases of Dense Matter, July 11 August 12, 2016 EMMI Rapid Reaction Task

More information

Relativistic Mean Field Model for finite nuclei and infinite matter

Relativistic Mean Field Model for finite nuclei and infinite matter Relativistic Mean Field Model for finite nuclei and infinite matter Hiroshi Toki (RCNP/Osaka) in collaboration with H. Shen (Nankai/China) L. Geng (Beijing/China) K. Sumiyoshi (Numazu) Supernova explosion

More information

Compact Stars within a SU(3) chiral Quark Meson Model

Compact Stars within a SU(3) chiral Quark Meson Model Compact Stars within a SU(3) chiral Quark Meson Model Andreas Zacchi Matthias Hanauske,3 Laura Tolos Jürgen Schaffner-Bielich Institute for Theoretical Physics Goethe University Frankfurt Institut de Ciencies

More information

Supernova Explosion Mechanisms

Supernova Explosion Mechanisms SFB-TR7 SFB-TR27 International Conference Physics of Neutron Stars 2011 St. Petersburg, Russia, July 11-15, 2011 Supernova Explosion Mechanisms Advancing to the 3rd Dimension: Supernova Models Confronting

More information

Neutrino emission, Equation of State and the role of strong gravity

Neutrino emission, Equation of State and the role of strong gravity Neutrino emission, Equation of State and the role of strong gravity O. L. Caballero 1,a) The EoS connects the macroscopic thermodynamical variables to the microphysics of the neutron star. Observables

More information

Diffuse SN Neutrino Background (DSNB)

Diffuse SN Neutrino Background (DSNB) Diffuse SN Neutrino Background (DSNB) What can we learn? Ideas under construction Cecilia Lunardini Arizona State University RIKEN BNL Research Center O introduction: motivation and facts O detection potential

More information

Evolution of newborn neutron stars: role of quark matter nucleation

Evolution of newborn neutron stars: role of quark matter nucleation Journal of Physics: Conference Series Evolution of newborn neutron stars: role of quark matter nucleation To cite this article: Ignazio Bombaci et al 2011 J. Phys.: Conf. Ser. 336 012021 Related content

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Clusters in Nuclear Matter

Clusters in Nuclear Matter Clusters in Nuclear Matter Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke (Universität Rostock) Thomas

More information

Constraints on Neutron Star Properties from KaoS Heavy-Ion Data

Constraints on Neutron Star Properties from KaoS Heavy-Ion Data Constraints on Neutron Star Properties from KaoS Heavy-Ion Data Jürgen Schaffner-Bielich Institute for Theoretical Physics and Heidelberg Graduate School for Fundamental Physics and ExtreMe Matter Institute

More information

Manual for the supernova EOS tables v1.04

Manual for the supernova EOS tables v1.04 Manual for the supernova EOS tables v1.04 Matthias Hempel Department of Physics, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland (Dated: October 24, 2014) I. MODEL This is the manual for

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

!"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.:

!#$%&%'()*%+),#-./(0)+1,-.%'#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56,$%+)-+7-.$,$(-859.: !"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.: Kei Kotake!National Astronomical Observatory of Japan" NuSYM11 @ Smith college, Northampton 18 th June 2011 The supernova

More information

arxiv: v1 [nucl-th] 23 Dec 2017

arxiv: v1 [nucl-th] 23 Dec 2017 International Journal of Modern Physics D c World Scientific Publishing Company arxiv:1712.08860v1 [nucl-th] 23 Dec 2017 The properties of the massive neutron star Xian-Feng Zhao 1,2 1 School of Sciences,

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

[= (π 2 ρ f ) 1/3, with ρ f as the quarks density of flavour f ] E V = B + f. where x f = k (f )

[= (π 2 ρ f ) 1/3, with ρ f as the quarks density of flavour f ] E V = B + f. where x f = k (f ) Physics Letters B 526 (2002) 19 26 www.elsevier.com/locate/npe Maximum mass of neutron stars with a quark core G.F. Burgio a,m.baldo a,p.k.sahu a, A.B. Santra b, H.-J. Schulze c a Istituto Nazionale di

More information

Improving gradient evaluation in Smoothed Particle Hydrodynamics

Improving gradient evaluation in Smoothed Particle Hydrodynamics Improving gradient evaluation in Smoothed Particle Hydrodynamics Domingo García Senz José A. Escartín Antonio Relaño Ruén M. Caezón Alino Perego Matthias Lieendörfer Gradients in SPH < f r > = f r W r

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information