Probing the Equation of State

Size: px
Start display at page:

Download "Probing the Equation of State"

Transcription

1 Probing the Equation of State with Neutrinos from Core-collapse Supernovae (?) Tobias Fischer University of Wrocław, Poland Dense Phases of Matter INT Workshop, Seattle WA, July 2016

2 Wrocław: 3 rd largest city in Poland, located in the heart of Europe

3 0 miles... at the south-west end of Poland

4 ~ people living here.

5 7 Nobel Prize winners: 1. Theodor Mommsen ( ) 1902 (literature) 2. Phillip Lénàrd ( ) 1905 (physics) 3. Eduard Buchner ( ) 1907 (chemistry) 4. Paul Ehrlich ( ) 1908 (medicine) 5. Gerhart Hauptmann ( ) 1912 (literature) 6. Fritz Haber ( ) 1918 (chemistry) 7. Max Born ( ) 1954 (physics)

6 Probing the Equation of State with Neutrinos from Core-collapse Supernovae (?) Contents: Motivation Modeling core collapse supernovae Supernova phenomenology Equation of state dependence of the neutrino signal Summary

7 Constraints (?) A neutron stars is born in a core-collapse supernova explosion as hot & lepton-rich protoneutron star (PNS) e PNSs develop (deleptonize & cool) towards neutron stars via the emission of neutrinos of all flavors for about 30 s Some insights from SN1987A: Eexpl ~ 51 erg, Ev ~ 3 x 53 erg All current supernova models (that include accurate neutrino transport!!!) are in agreement with SN1987A e e e Blum & Kushnir (2016) ApJ SN1987A (Feb. 23 rd, 1987)

8 Neutrino detection current and future

9 Supernova equation of state Conditions: T ' 2 50 MeV T [MeV] NSE (Nuclear Statistical Equilibrium) µ (A,Z) = Zµ p +(A Z) µ n Y e ' 0 2 n 0 Y e ' (charge fraction/density) Extends beyond a simple relation between pressure and energy Nuclear clustering; 2 H, 3 H, 3 He, 4 He non-nse (time-dependent nuclear processes) [g cm 3 ] T =0.5 MeV n 0 Mott-transition to homogeneous phase Nuclear medium modifies nucleon properties/nuclear masses (binding energy shifts) TF. et al.,(2011) ApJS 194, 39

10 Modeling core-collapse supernovae

11 General picture massive stars (& 9M ) (proto)neutron stars (strong gravity) Core-collapse supernova converts iron-core of massive star into protoneutron star (weak gravity) 4E G ' erg! ( e, e, µ/, µ/ ) B i n d i n g e n e r g y g a i n a v a i l a b l e i n f o r m o f neutrinos of all flavors Strong gravity of PNS requires general relativity R G µ = R µ 2 g µ =8appleT µ (Einstein equation) r ds 2 = (t, a) 2 dt (t, a) + da 2 + r(t, a) 2 d (t, a) matter microphysics T tt = (1 + e + J) T ta = T at = H T aa = p + K T = T = p (J K) Misner & Sharp (1964) PhyRev.136, 571 Lindquist (1966) AnnPhys.37, 487

12 Neutrino transport... Lindquist (1966) AnnPhys.37, 487 Neutrinos are light-like geodesics in curved spacetime; massless ultra-relativistic particles. F (t, ~x, ~v)! F (t, a, µ = cos, E) = f (t, a, µ, E) dn = F (t, a, µ, E) E 2 de (µ, E) 4 r2 F 1 µ 2 @ + µ 1 µ 2 F + µ 1 E E3 F apple µ + 3u coll (µ, E) Liebendörfer et al.,(2004) ApJS 150, 263 u r 1 E3 F propagation of the neutrinos along geodesics with changing local angle µ Doppler shift and the angular aberration between adjacent comoving observers for µ 0 red/blueshift spectra

13 Collision integral Mezzacappa & Bruenn (1993) ApJ 405, 669 Mezzacappa & Bruenn (1993) ApJ (µ, E) collision 1 = j(e) + 1 E 2 Z emissivity c (hc) c 1 c E 2 (hc) 3 1 E 2 F (µ, E) (hc) 3 F (µ, E) 1 (E) F (µ, E) dµ 0 R N (µ 0,µ,E) F (µ 0,E) Z F (µ, E) Z opacity/absorptivity 1 c E 2 F (µ, E) (hc) 3 dµ 0 de 0 E 02 R OUT e ± (µ, µ 0,E,E 0 ) Z dµ 0 R N (µ 0,µ,E) dµ 0 de 0 E 02 R e IN (µ, µ 0,E,E 0 ) F (µ 0,E 0 ) ± 1 F (µ 0,E 0 ) Charged current e + p n + e 8 e + e + + e + ha, Zi ha, Z 1i + e Juodagalvis et al. (20), NPA 848, 454 e + + n p + e >< pair reactions 8 >: + N + N (N = n, p) >< scattering + ha, Zi + ha, Zi N + N N + N + + (N = n, p, ) Hannestadt & Raffelt, (1998), ApJ 507, 339 e + e µ/ + µ/ ha, Zi ha, Zi + + Fuller & Meyer (1991) ApJ 376, 701 TF. et al. (2013), PRC 88, >: + e ± + e ±

14 Collision integral Mezzacappa & Bruenn (1993) ApJ 405, 669 Mezzacappa & Bruenn (1993) ApJ (µ, E) collision 1 = j(e) + 1 E 2 Z c (hc) c 1 c E 2 (hc) 3 1 E 2 F (µ, E) (hc) 3 F (µ, E) 1 (E) F (µ, E) dµ 0 R N (µ 0,µ,E) F (µ 0,E) Z F (µ, E) Z 1 c E 2 F (µ, E) (hc) 3 dµ 0 de 0 E 02 R OUT e ± (µ, µ 0,E,E 0 ) Z dµ 0 R N (µ 0,µ,E) dµ 0 de 0 E 02 R e IN (µ, µ 0,E,E 0 ) F (µ 0,E 0 ) ± 1 F (µ 0,E 0 ) Charged current e + p n + e 8 e + e + + e + ha, Zi ha, Z 1i + e Juodagalvis et al. (20), NPA 848, 454 e + + n p + e >< pair reactions 8 >: + N + N (N = n, p) >< scattering + ha, Zi + ha, Zi N + N N + N + + (N = n, p, ) Hannestadt & Raffelt, (1998), ApJ 507, 339 e + e µ/ + µ/ ha, Zi ha, Zi + + Fuller & Meyer (1991) ApJ 376, 701 TF. et al. (2013), PRC 88, >: + e ± + e ±

15 Neutrino opacity and EoS e + n! e + p Here: S V = S A S(q 0,q) (density and spin response functions) 1/ (E e )= G2 F V ud 2 Z ~c (g2 V +3gA) 2 q 0 = E E e, q = p p e S(q 0,q)=4 E n = Z p2 n 2 m n + m n + U n E p = d 3 p e (2 ~c) 3 (1 p2 p 2 m p + m p + U p F e(e e )) S(q 0,q) d 3 p n (2 ~c) 3 (q 0 + E n E p )f n (E n )(1 f p (E p )) Roberts et al., (2012) PRC 86, Horowitz et al., (2012) PRC 86, Martinez-Pinedo & TF et al., (2012) PRL9, 2514 U n U p / S F (T, ) Reddy et al.,(1998) PRD 58, Charged-current absorption; nucleons are not free gas Lowest order medium modification of the weak rate; depends on the EoS (symmetry energy): 1/λ [s 1 ] 1/λ [s 1 ] ν e ν e E e = E e +(U n U p ) DD2 (U n U p = 9.4 MeV) =2 13 g cm 3 DD2 (U n U p = 5.3 MeV) T =5MeV, DD2 + (U n UY p = 3.7 MeV) e = E e + = E e (U n U p ) DD2 : U n U p =9.4 MeV DD2 : U n U p =5.3 MeV DD2 + : U n U p =3.7 MeV E ν [MeV ]

16 Core-collapse supernova phenomenology

17 Stellar core collapse (Y e = n p /n B ) (Y e < 0.5 : neutron excess ) M core >M Ch ' 1.44 (Y e > 0.5 : neutron de cient ) log( [g cm 3 ]) Density (x-y) Plane [km] Ye Ye Y e Ye M Z Implosion of the stellar core due to pressure loss; triggered from e captures on protons bound in nuclei 9 e + 56 Mn! 56 Fe + e >= e + 56 Fe! 56 Co + e >; Neutrino losses e + 56 Co! 56 Ni + e... e + ha, Zi!hA, Z 1i + e log [g/cm 3 ]=11.97 T=1.95MeV Y e =0.349 log (X N,Z ) N (Hempel & TF et al.,(2012) ApJ 748, 27) Collapsing stellar core neutronizes; electron fraction drops; collapse proceeds adiabatically/ supersonically

18 Stellar core collapse (Y e = n p /n B ) (Y e < 0.5 : neutron excess ) M core >M Ch ' 1.44 (Y e > 0.5 : neutron de cient ) log( [g cm 3 ]) Density (x-y) Plane [km] Ye Ye Y e Ye M Z Implosion of the stellar core due to pressure loss; triggered from e captures on protons bound in nuclei 9 e + 56 Mn! 56 Fe + e >= e + 56 Fe! 56 Co + e >; Neutrino losses e + 56 Co! 56 Ni + e... e + ha, Zi!hA, Z 1i + e log [g/cm 3 ]=11.97 T=1.95MeV Y e =0.349 log (X N,Z ) N (Hempel & TF et al.,(2012) ApJ 748, 27) Collapsing stellar core neutronizes; electron fraction drops; collapse proceeds adiabatically/ supersonically

19 Neutrino signal infall phase L ν [ 52 erg s 1 ] E ν [MeV] ν e νe ν µ/τ e + ha, Zi ve burst! ha, Z 1i + e stellar collapse 0 0 ν e νe 19 ν µ/τ t t bounce [ms] Fuller & Meyer (1991), ApJ 376, TF et al.,(2013) PRC 88, nuclear de-excitations ha, Zi! ha, Zi + + S u p e r n o v a s h o c k propagation across the sphere of last inelastic scattering (v sphere) ve deleptonization burst is generic feature charged current reactions e + p n + e e + + n p + e

20 Supernova evolution in a nutshell 4 He 12 C core collapse Entropy per baryon [kb] bounce post bounce evolution Collapse halts at saturation density where the core bounces back with the formation of shock wave Rapid shock acceleration to radii of about km Still gravitationally unstable outer layers of the stellar core; stellar collapse continues Radius [km] 16 O 28 Si, 32 S Fe - core infalling heavy nuclei R e Shock (n, p, 4 He, e ± ) standing accretion shock (n, p, e ± ) (proto)neutron star t t bounce [s] Shock stalling due to energy losses no prompt explosions Later evolution determined from energy-balance due to: (a) (b) ram pressure from mass accretion; infalling material ahead of shock energy liberation (transport) deposition behind accretion shock

21 Neutrino signal post-bounce L ν [ 52 erg s 1 ] E ν [MeV] ν e νe ν µ/τ e + ha, Zi! ha, Z 1i + e stellar collapse mass accretion 0 0 ν e νe 19 ν µ/ µ/τ e e t t bounce [ms] charged current reactions e + p n + e e + + n p + e pair processes e + e + + N + N N + N + + e + e µ/ + µ/ elastic scattering + N 0 + N inelastic scattering + e ± 0 + e ± Neutrino-energy hierarchy r e fl e c t s s t r e n g t h o f coupling to matter

22 Triggering the explosion onset Entropy per Baryon, s [kb] s/nb infalling low-entropy material ( 56 Fe, 56 Ni ) (x-y) Plane [km] Neutrino heating (& cooling): E v = 3 6 x 53 erg (available) Eexpl ~ erg (kinetic energy of ejecta) (Bethe & Wilson (1985) ApJ 295, 14) Preliminary Ye Electron Fraction, Ye Alternative scenarios: Magnetic fields (Le Banc & Wilson (1970) ApJ 161, 542) Sound waves (Burrows et al.,(2006) ApJ 640, 878) (11.2 M ) High-density phase transition (Sagert & TF et al.,(2009) PRL 2, 0811) General concept: E n e r g y l i b e r a t i o n f r o m c e n t r a l protoneutron star (PNS) to standing shock Continuous energy deposition that drives shock to increasingly larger radii (timescale: ~0 milliseconds) Ejection of the stellar mantle; leaves bare PNS behind Yam & Leonard (2009) Nature 458 A massive hypergiant star as the progenitor of the supernova SN 2005gl... was a single star and that it indeed vanished following the explosion of SN 2005gl... On the basis of its luminosity, such a star is likely to be an extreme member of the group of luminous blue variable stars (LBVs), which are thought to be very massive (>50 M solar ) shortlived stars.

23 Triggering the explosion onset Entropy per Baryon, s [kb] s/nb infalling low-entropy material ( 56 Fe, 56 Ni ) (x-y) Plane [km] Neutrino heating (& cooling): E v = 3 6 x 53 erg (available) Eexpl ~ erg (kinetic energy of ejecta) (Bethe & Wilson (1985) ApJ 295, 14) Preliminary Ye Electron Fraction, Ye Alternative scenarios: Magnetic fields (Le Banc & Wilson (1970) ApJ 161, 542) Sound waves (Burrows et al.,(2006) ApJ 640, 878) (11.2 M ) High-density phase transition (Sagert & TF et al.,(2009) PRL 2, 0811) General concept: E n e r g y l i b e r a t i o n f r o m c e n t r a l protoneutron star (PNS) to standing shock Continuous energy deposition that drives shock to increasingly larger radii (timescale: ~0 milliseconds) Ejection of the stellar mantle; leaves bare PNS behind Yam & Leonard (2009) Nature 458 A massive hypergiant star as the progenitor of the supernova SN 2005gl... was a single star and that it indeed vanished following the explosion of SN 2005gl... On the basis of its luminosity, such a star is likely to be an extreme member of the group of luminous blue variable stars (LBVs), which are thought to be very massive (>50 M solar ) shortlived stars.

24 Neutrino-driven supernova success stories Müller et al.,(2012) ApJ 756, 22 (2D, energy- and angledependent neutrino transport; ray-by-ray approximation) (9.6, 11.2, 15, 27 M ) Sumiyoshi et al.,(2014) ApJS 216, 37 (static field, angle- and energydependent Boltzmann-like transport; comparison with ray-by-ray approximation) (27 M ) Roberts et al.,(2016) astro-ph/arxiv (full 3D, energy-dependent 3D Cartesian grid) Pan et al.,(2016) ApJ 817, 33 (2D, energydependent isotropic diffusion source approximation) (15, 20 M ) Bruenn et al.,(2013) ApJ 767, L6 (2D, energy-dependent multi-group flux-limited diffusion approximation) (12, 13, 15, 20, 25 M ) Suwa et al.,(2013) ApJ 764, L6 (2D, energy-dependent isotropic diffusion source approximation) (11.2, 13, 15 M ) Not complete story yet supernova problem not fully solved!

25 Magnetically-driven supernova explosions Burrows et al.,(2007) ApJ 669, 585 Rapid rotation and amplification of magnetic field (Le Banc & Wilson (1970) ApJ 161, 542) Energetic bi-polar explosions M a y e x p l a i n e x i s t e n c e o f magnetars Caveat: requires very high core spin and/or initial magnetic field of stellar core Perhaps few rare events Associated with production of r-process elements: 2 Winteler et al.,(2013) ApJ 750, L22 Ejected Mass [M ] Mass Number

26 PNS deleptonization Beyond supernova explosion onset once the stellar mantle is ejected... The supernova story continues for more than seconds! Mildly independent from details of the supernova explosion mechanism Can be modeled in spherical symmetry <!!! 6 14 [g cm 3 ] (> 4 km) ( 0 km) e + n! p + e e + p! n + e + PNS ( km) T =5 30 MeV E 53 erg low-mass outflow: v-driven wind (mass ejection from PNS surface)! neutrino heating at PNS surface PNS deleptonization (neutrino diffusion) Pons et al., (1999) ApJ 513, 780

27 PNS deleptonization proton rich (Ye > 0.5) vp process neutron rich (Ye < 0.5) neutron-capture process formation of heavy nuclei?! <!!! 6 14 [g cm 3 ] (> 4 km) ( 0 km) ( -rich freeze out) e + n! p + e e + p! n + e + PNS ( km) T =5 30 MeV E 53 erg formation of seed nuclei! low-mass outflow: v-driven wind (mass ejection from PNS surface)! neutrino heating at PNS surface PNS deleptonization (neutrino diffusion)

28 PNS deleptonization Nucleosynthesis is determined at v decoupling proton rich (Ye > 0.5) vp process Deleptonization timescale: t = 30 s neutron rich (Ye < 0.5) neutron-capture process formation of heavy nuclei?! <!!! 6 14 [g cm 3 ] (> 4 km) ( 0 km) ( -rich freeze out) e + n! p + e e + p! n + e + PNS ( km) T =5 30 MeV E 53 erg formation of seed nuclei! low-mass outflow: v-driven wind (mass ejection from PNS surface)! neutrino heating at PNS surface PNS deleptonization (neutrino diffusion)

29 TF et al.,(2016) PRD (submitted) L ν [ 52 erg s 1 ] E ν [MeV] ν e burst Neutrino signal mass accretion t t bounce [s] t t bounce [s] deleptonization ν ē νe ν µ/τ ν ē νe ν µ/τ ν µ/τ Roberts et al., (2012) PRC 86, Hüdepohl et al.,(20) PRL 4, Martinez-Pinedo & TF et al., (2014) JPG 41, Current models predict small spectral difference; Y e ' h" e i Integrated Abundances Qian et al., (1996) ApJ 471, " e 2Q +1.2Q 2 /" e " e 2Q +1.2Q 2 /" e (similar neutrino luminosities) h" e i 8 >< >: h" i = he 2 i/he i ) 1 & 5 MeV (Y e < 0.5) neutron rich < 5 MeV (Y e > 0.5) proton rich Light neutron-capture elements 38<Z<45: Zn (gauged to 60 Zn) Sr Zr HD standard weak rates +% ν e spectral differences % ν e spectral differences Ba Pb La Eu Atomic Number, Z (integrated nucleosynthesis)

30 Equation of state dependence of the neutrino signal

31 Excluded volume approach S.Typel (2016) EPJA 52, n B [fm 3 ] HS(DD2 EV) (v = +8.0) HS(DD2) ref. EOS (v=0) HS(DD2 EV) (v = 3.0) Geometric approach; modifying the available volume: V i = V i X i = 1 v j n j j P [MeV fm 3 ] c s [c] ρ 0 stiff ref. EOS soft Excluded volume parameter: v v n =v p ( ;v)=exp v v 2 ( 0) 2 (Gauss-functional) 2 T =3MeV Y e = ρ [ 14 g cm 3 ] DD2 RMF parameters: K = 243 MeV S = MeV L = MeV

32 Excluded volume approach TF (2016) EPJA 52, ρ central [ g cm ] (Evolution of central density and temperature) HS(DD2 EV) (v = +8.0) HS(DD2) ref. case (v=0) HS(DD2 EV) (v = 3.0) T central [MeV] soft ref. EOS stiff Geometric approach; modifying the available volume: V i = V i X i = 1 v j n j Excluded volume parameter: v v n =v p ( ;v)=exp j v v 2 ( 0) 2 (Gauss-functional) t t bounce [s]

33 Excluded volume approach TF (2016) EPJA 52, 54 L ν [ 52 erg s 1 ] ν e ν e ν µ/τ t tbounce [s] ν µ/τ HS(DD2 EV) (v = +8.0) HS(DD2) ref. case (v=0) HS(DD2 EV) (v = 3.0) Supernova neutrino signal is insensitive to supra-saturation ν µ/τ density EOS Geometric approach; modifying the available volume: V i = V i X i = 1 v j n j Excluded volume parameter: v v n =v p ( ;v)=exp j v v 2 ( 0) 2 (Gauss-functional) A f f e c t s o n l y s u p e r - saturation density EoS; all o t h e r n u c l e a r m a t t e r p r o p e r t i e s r e m a i n unchanged

34 L ν [1 E ν [MeV] 3 Excluded volume approach ν µ/τ ν µ/τ ν µ/τ ν e ν e t ttbounce [s] Supernova neutrino signal is insensitive to supra-saturation density EOS TF (2016) EPJA 52, 54 Geometric approach; modifying the available volume: V i = V i X i = 1 v j n j Excluded volume parameter: v v n =v p ( ;v)=exp j v v 2 ( 0) 2 (Gauss-functional) A f f e c t s o n l y s u p e r - saturation density EoS; all o t h e r n u c l e a r m a t t e r p r o p e r t i e s r e m a i n unchanged

35 Quark-hadron phase transition Pressure [MeV/fm 3 ] P [MeV fm 3 ] Baryon Density, ρ [ 14 g/cm 3 ] Extended transition region of instability Onset of quarkhadron mixed phase [ 14 g cm 3 ] s = 1 k B /baryon s = 2 k B /baryon s = 3 k B /baryon s = 4 k B /baryon Baryon Density, n B [fm 3 ] n B [fm 3 ] Pure quarkmatter phase Sagert & TF et al.,(2009) PRL 2, 0811 TF et al., (2011) ApJS 194, 28 Quark matter EoS: bag model with fixed bag pressure Transition from some nuclear model (TM1) Hadron-quark transition region: extended phase of instability; large latent heat

36 Quark-hadron phase transition Sagert & TF et al. (2009), PRL 2, 0811 Mean Energy [MeV] Luminosity [ 52 erg s 1 ] deleptonization burst form core bounce Signal from strong 1st order phase transition at high densities ν ēνe ν µ/τ ν ēνe ν µ/τ time [s] Dasgupta & TF et al. (20), PRC 81 log(density [g/cm 3 ]) Velocity [ 4 km/s] Ye XQ 0 00 Radius [km] 0 00 Radius [km] 0 00 Radius [km] Time After Core Bounce [s]

37 Quark-hadron phase transition Sagert & TF et al. (2009), PRL 2, 0811 Mean Energy [MeV] Luminosity [ 52 erg s 1 ] deleptonization burst form core bounce Signal from strong 1st order phase transition at high densities ν ēνe ν µ/τ ν ēνe ν µ/τ time [s] Dasgupta & TF et al. (20), PRC 81 log(density [g/cm 3 ]) Velocity [ 4 km/s] Ye XQ 0 00 Radius [km] 0 00 Radius [km] 0 00 Radius [km] Time After Core Bounce [s]

38 Summary

39 Summary Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS Great progress in modeling, in particular in view of multidimensional nature

40 Summary Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS Great progress in modeling, in particular in view of multidimensional nature Massive star explosions (canonical) cannot explain galactic enrichment of heavy neutron-capture elements; 38<Z<45 Puzzle at low metallicity (?) chemical evolution models: (a) Core-collapse supernovae (SNe) rate ~ -2 yr -1 (b) Neutron star merger (NSM) rate ~ -5 yr -1 Elemental abundances Electron fraction, Y e sim. data HD [28] Charge number Z S t t bounce [s] Consistent with metal-poor star observations (HD ) Y e Entropy per baryon, S [k B ] Argast et al., (2004) A&A 416, 997 Yuan et al.,(2016) MNRAS 456, 3253

41 Massive 3 ν e star explosions (canonical) cannot explain galactic 2 H pp e (a) ν 3 e H 3 He e enrichment 2 ν e n pe of heavy neutron-capture elements; 38<Z<45 σ [ 42 cm 2 ] σ [ 42 cm 2 ] ν 0 2 (b) 1 e H nn e + ν 3 e He 3 He + ν 3 e H nnn e + ν e p ne + ( /A i ) Summary Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS Great progress in modeling, in particular in view of multidimensional nature Puzzle at low metallicity (?) chemical evolution models: Role of light nuclear clusters (?) Requires consideration of 0 associated weak processes consistent with EoS TF. et al.,(2016) EPJWC F 1 0 E [MeV] ν Nakamura et al.,(2001) PRC63, Furusawa et al.,(2013) ApJ 774, 13 Nasu et al.,(2015) ApJ 801, 12 Baryon Density, log (ρ [g/cm 3 ]) Mass Fractions E ν [MeV] complete v-trapping n p 2 e H ppe 2 e H nne + e nn 2 H e e pp 2 H e + 3 e H nppe 3 e H nnne + 3 e H 3 He e 3 e He 3 H e + 2 H pn 2 H 2 H 3 H 3 H 3 He 3 He ν spheres 1 2 Y e 4 He cooling heating 3 H 2 H 1 2 Radius [km] supernova shock position T ρ Temperature [MeV] Electron Fraction

42 5 4 Summary Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS Great progress in modeling, in particular in view of multidimensional nature Massive star explosions (canonical) cannot explain galactic enrichment of heavy neutron-capture elements; 38<Z<45 Puzzle at low metallicity (?) chemical evolution models: Role of light nuclear clusters (?) Requires consideration of associated weak processes consistent with EoS Any chance for quark matter (???) Develop more sophisticated (microscopic) quark matter EoS; chiral physics, finite temperatures and isospin asymmetry T [MeV] B 1/4 dc [MeV] µ B,χ [MeV] 2 1 µ B,χ 1/4 B dc M max ' 2M T [MeV] 150 n B, n B, χ Klähn & TF (2015) ApJ 8, n B [fm ]

43 Summary Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS Great progress in modeling, in particular in view of multidimensional nature Massive star explosions (canonical) cannot explain galactic enrichment of heavy neutron-capture elements; 38<Z<45 Puzzle at low metallicity (?) chemical evolution models: Role of light nuclear clusters (?) Requires consideration of associated weak processes consistent with EoS Any chance for quark matter (???) Develop more sophisticated (microscopic) quark matter EoS; chiral physics, finite temperatures and isospin asymmetry In collaboration with: D. Blaschke M. Hempel T. Klähn M. Liebendörfer K. Langanke A. Lohs G. Martínez-Pinedo G. Röpke F.-K. Thielemann Y. Suwa S. Typel M. R. Wu Thanks for your attention

44

45

46 Neutrino detection Neutrino cross section in a water target detector (G.G.Raffelt)

47 >; 9 >= The end of a massive star (& 9M ) ~1 billion km Jupiter orbit Implosion of the stellar core due to pressure loss; triggered from e captures on protons bound in nuclei hydrogen envelope (dilute) e + 56 Mn! 56 Fe + e e + 56 Fe! 56 Co + e e + 56 Co! 56 Ni + e... e + ha, Zi!hA, Z 1i + e C o l l a p s i n g s t e l l a r c o r e neutronizes; electron fraction drops (Y e = n p /n B ) Stellar core Y e > 0.5 : neutron rich Y e > 0.5 : proton rich M Core > M CH

48 Stellar core collapse Entropy per baryon [kb] 50 ν e νe ν µ/τ Radius [km] 4 He 12 C 16 O 28 Si, 32 S Fe - core core collapse neutrino freestreaming regime bounce post bounce evolution nuclear electron captures e + ha, Zi!hA, Z 1i + e nuclear de-excitations ha, Zi! ha, Zi + + Fuller & Meyer (1991), ApJ 376, 701 TF et al.,(2013) PRC 88, (suppressed) (n, p, e ± ) (n, p, 4 He, e ± ) (proto)neutron star t t bounce [s] L ν [ 52 erg s 1 ] E ν [MeV] stellar collapse ν e 50 0 νe 18 ν µ/τ t t tt bounce bounce [s] [ms

49 Stellar core collapse Entropy per baryon [kb] 50 ν e νe ν µ/τ Radius [km] 4 He 12 C 16 O 28 Si, 32 S Fe - core core collapse neutrino freestreaming regime bounce R e neutrino trapping post bounce evolution nuclear electron captures e + ha, Zi!hA, Z 1i + e nuclear de-excitations ha, Zi! ha, Zi + + Fuller & Meyer (1991), ApJ 376, 701 TF et al.,(2013) PRC 88, (suppressed) (n, p, 4 He, e ± ) elastic scattering on nuclei e + ha, (n, Zi p, e ±!ha, ) Zi + e (determines (proto)neutron neutrino star trapping) t t bounce [s] L ν [ 52 erg s 1 ] E ν [MeV] stellar collapse ν e 50 0 νe 18 ν µ/τ t t tt bounce bounce [s] [ms

50 Core bounce and shock formation Radius [km] 4 He 12 C 16 O 28 Si, 32 S Fe - core core collapse Entropy per baryon [kb] neutrino freestreaming regime bounce R e Shock neutrino trapping post bounce evolution nuclear electron captures e + ha, Zi!hA, Z 1i + e nuclear de-excitations ha, Zi! ha, Zi + + Fuller & Meyer (1991), ApJ 376, 701 TF et al.,(2013) PRC 88, S u p e r n o v a s h o c k propagation across the sphere of last inelastic scattering (n, p, (v sphere) 4 He, e ± ) ve deleptonization burst (is generic feature) charged (n, p, current e ± ) reactions (proto)neutron e + p starn + e e + + n p + e t t bounce [s] L ν [ 52 erg s 1 ] E ν [MeV] ν e νe ν µ/τ ve burst stellar collapse ν e 50 0 νe 18 ν µ/τ t t tt bounce bounce [s] [ms

51 Post bounce mass accretion 50 ν e Entropy per baryon [kb] νe ν µ/τ e 5 4 charged current reactions e + p n + e e + + n p + e pair processes e + e + + L ν [ 52 erg s 1 ] bounce ν e νe 19 infalling 18 heavy ν µ/τ nuclei µ/ R e 14 (n, p, 4 He, e ± ) neutrino decoupling e e 9 (n, p, e ± ) 9 8 complete neutrino trapping (proto)neutron star t t bounce [s] t t bounce [ms] t t bounce [s] N + N N + N + + e + e µ/ + µ/ elastic scattering + N 0 + N inelastic scattering + e ± 0 + e ± E ν [MeV] Shock post bounce evolution e µ/ mass accretion 3 2 1

52 vbag approach to quark matter 400 M [MeV] P[MeV fm -3 ] P [MeV fm -3 ] µ * [MeV] TM1 NJL BM χ BM χ-dc 1/4 B eff = MeV 1/4 = MeV B eff µ dc = µ χ µ dc > µ χ µ B [MeV] µ χ

53 Neutrino signal in multi-dim l simulations L [ 52 erg s 1 ] he i [MeV] ( e, e, µ/ ) Müller & Janka (2014) ApJ 788, 82 Presence of millisecond variations of the neutrino signal Induced from convection and associated shock oscillations Persist even in detection on Earth May allow distinction of strong bipolar explosions t t bounce [s]

54 Production of heavy-element Evolution of massive stars Core-collapse supernovae (SN Ib,c II) vs. (too late, not frequent enough) Neutron star mergers Anders & Grevesse (1989) Argast et al.(2004) AA416,997 slow (s) process (n-capture << decay) Stellar evolution neutron - capture processes rapid (r) process (n-capture >> decay) Explosive environment neutrino-induced (intermediate mass elements?)

55 Some relevant current equation of state constraints S... nuclear symmetry energy L... slope of the symmetry energy (Astronomy/Astrophysics; neutron stars) Each EoS has a unique Mass-Radius relation Steiner et al., (20) ApJ 722 (low-mass X-ray binary source analysis) Lattimer & Lim (2013) ApJ 771, 14 Demorest et al.,(20) Nature Antoniadis et al.,(2013) Science 340, 448

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Tobias Fischer University of Wroclaw (Poland) Bonn workshop on Formation and Evolution of Neutron Stars

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Institute for Theoretical Physics, University of Wroclaw, Plac Maksa Borna 9, 50-204 Wroclaw, Poland

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Solar system abundances Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed. Contribution of all nucleosynthesis

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Low Energy Neutrinos from Black Hole - Accretion Disks

Low Energy Neutrinos from Black Hole - Accretion Disks Low Energy Neutrinos from Black Hole - Accretion Disks Gail McLaughlin North Carolina State University General remarks about neutrinos from hot dense environments Detection of accretion disk neutrinos

More information

Integrated nucleosynthesis in neutrino-driven winds

Integrated nucleosynthesis in neutrino-driven winds Integrated nucleosynthesis in neutrino-driven winds L. Huther 1, T. Fischer 1, G. Martínez-Pindeo 1,2 & K. Langanke 2,3 1 TU Darmstadt, 2 GSI Helmholtzzentrum für Schwerionenforschung, 3 Frankfurt Institute

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Nuclear robustness of the r process in neutron-star mergers

Nuclear robustness of the r process in neutron-star mergers Nuclear robustness of the r process in neutron-star mergers Gabriel Martínez Pinedo International Nuclear Physics Conference Adelaide, Australia, September 11-16, 2016 Nuclear Astrophysics Virtual Institute

More information

Neutrinos in supernova evolution and nucleosynthesis

Neutrinos in supernova evolution and nucleosynthesis Neutrinos in supernova evolution and nucleosynthesis Gabriel Martínez Pinedo International School of Nuclear Physics 39th Course Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice,

More information

Nucleosynthesis in core-collapse supernovae

Nucleosynthesis in core-collapse supernovae INT Program INT-12-2a Core-Collapse Supernovae: Models and Observable Signals Workshop: Nuclear and neutrino physics Nucleosynthesis in core-collapse supernovae Almudena Arcones Z Big Bang: H, He 20 28

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu 0 Metal-poor

More information

Nobuya Nishimura Keele University, UK

Nobuya Nishimura Keele University, UK 7. Aug. 2014 @INT Studies of r-process nucleosynthesis based on recent hydrodynamical models of NS-NS mergers Nobuya Nishimura Keele University, UK The r-process: observational request - many r-rich Galactic

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Friday, April 29, 2011

Friday, April 29, 2011 Lecture 29: The End Stages of Massive Stellar Evolution & Supernova Review: Elemental Abundances in the Solar System Review: Elemental Abundances in the Solar System Synthesized by S and R-processes Review:

More information

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae, Basel University Frankfurt, AstroCoffee, 24.11.2015 Motivation: core-collapse supernovae how do massive stars

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown Friedrich-K. Thielemann Dept. of Physics University of Basel Radioactivity Diagnostics of SN1987A: 56Ni/Co, 57Ni/Co, 44Ti total/photon decay

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Life of a High-Mass Stars

Life of a High-Mass Stars Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

More information

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University The r-process of nucleosynthesis: overview of current status Gail McLaughlin North Carolina State University The popular press says that the gold and platinum in wedding bands is made in neutron star mergers

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

Re-research on the size of proto-neutron star in core-collapse supernova

Re-research on the size of proto-neutron star in core-collapse supernova Vol 17 No 3, March 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(03)/1147-05 Chinese Physics B and IOP Publishing Ltd Re-research on the size of proto-neutron star in core-collapse supernova Luo Zhi-Quan(

More information

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger Supernovae and Nucleosynthesis in Zero and Low Metal Stars Stan Woosley and Alex Heger ITP, July 6, 2006 Why believe anything I say if we don t know how any star (of any metallicity) blows up? The physics

More information

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Nuclear Physics and Supernova Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Tribute to Gerry - Stony Brook, November 26, 2013 Hans Bethe s Centennial at Caltech

More information

Neutrinos Probe Supernova Dynamics

Neutrinos Probe Supernova Dynamics Neutrinos Probe Supernova Dynamics Irene Tamborra GRAPPA Institute, University of Amsterdam Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 18, 2014 Outline Supernova explosion

More information

New Results from 3-D supernova models with spectral neutrino diffusion

New Results from 3-D supernova models with spectral neutrino diffusion New Results from 3-D supernova models with spectral neutrino diffusion Stuart C. Whitehouse and Matthias Liebendörfer Department of Physics, University of Basel, Switzerland Overview Introduction The Isotropic

More information

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop,

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop, Present status of modeling the supernova EOS, Basel University Numazu Workshop, 1.09.2015 The general purpose supernova EOS neutron stars core-collapse supernovae MH Liebendörfer Crab nebula, Hubble Space

More information

Improving gradient evaluation in Smoothed Particle Hydrodynamics

Improving gradient evaluation in Smoothed Particle Hydrodynamics Improving gradient evaluation in Smoothed Particle Hydrodynamics Domingo García Senz José A. Escartín Antonio Relaño Ruén M. Caezón Alino Perego Matthias Lieendörfer Gradients in SPH < f r > = f r W r

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

Neutrinos from Black Hole Accretion Disks

Neutrinos from Black Hole Accretion Disks Neutrinos from Black Hole Accretion Disks Gail McLaughlin North Carolina State University General remarks about black hole accretion disks Neutrinos and nucleosynthesis - winds Neutrino flavor transformation

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

Supernovae, Gamma-Ray Bursts, and Stellar Rotation

Supernovae, Gamma-Ray Bursts, and Stellar Rotation Supernovae, Gamma-Ray Bursts, and Stellar Rotation When Massive Stars Die, How Do They Explode? Neutron Star + Neutrinos Neutron Star + Rotation Black Hole + Rotation Colgate and White (1966) Arnett Wilson

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Weak Interaction Physics in Core-Collapse Supernova Simulation

Weak Interaction Physics in Core-Collapse Supernova Simulation Weak Interaction Physics in Core-Collapse Supernova Simulation Bronson Messer Oak Ridge Leadership Computing Facility & Theoretical Astrophysics Group Oak Ridge National Laboratory MICRA 2011 Department

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

Isotopic yields from supernova light curves

Isotopic yields from supernova light curves Isotopic yields from supernova light curves Astrophysics and Nuclear Structure Hirschegg, January 29, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

arxiv:astro-ph/ v1 27 Jul 2004

arxiv:astro-ph/ v1 27 Jul 2004 1 Prospects for obtaining an r process from Gamma Ray Burst Disk Winds arxiv:astro-ph/0407555v1 27 Jul 2004 G. C. McLaughlin a, and R. Surman b a Department of Physics, North Carolina State University,

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

Formation and evolution of BH and accretion disk in Collapsar

Formation and evolution of BH and accretion disk in Collapsar Formation and evolution of BH and accretion disk in Collapsar Yuichiro Sekiguchi National Astronomical Observatory of Japan arxiv : 1009.5303 Motivation Collapsar model of GRB Central engine : Black hole

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Explosive nucleosynthesis of heavy elements:

Explosive nucleosynthesis of heavy elements: Explosive nucleosynthesis of heavy elements: an astrophysical and nuclear physics challenge Gabriel Martínez Pinedo NUSPIN 2017 GSI, Darmstadt, June 26-29, 2017 32 30 28 34 36 38 40 42 46 44 48 26 28 60

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae Franziska Treffert (Matrikelnummer: 2044556) Seminar zur Kernstruktur und nuklearen Astrophysik Prof.

More information

Ultra-stripped Type Ic supernovae generating double neutron stars

Ultra-stripped Type Ic supernovae generating double neutron stars Ultra-stripped Type Ic supernovae generating double neutron stars Yudai Suwa Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U. Collaboration with: T. Yoshida (U. Tokyo),

More information

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Invisible13 Workshop Lumley Castle, 15-19 July 2013 PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Alessandro MIRIZZI (Hamburg University) OUTLINE Supernova neutrino flavor oscillations Observables

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

The Ledoux Criterion for Convection in a Star

The Ledoux Criterion for Convection in a Star The Ledoux Criterion for Convection in a Star Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook August 2, 2012 Contents 1 Mass Distribution and Gravitational Fields

More information

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn bruenn@fau.edu Core Collapse Supernovae 101 1 2 neutrinos 3 4 5 shock 6 7 Core Collapse Supernovae

More information

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers.

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. S. Ning, H. Gerling-Dunsmore, L. Roberts 1 Abstract. Recent research 1 has shown that

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport F.O.E Conference June 3rd, 2015 Raleigh NC Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport Kuo-Chuan Pan Universität Basel, Switzerland (arxiv:1505.02513) The

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Lecture 15. Explosive Nucleosynthesis and the r-process

Lecture 15. Explosive Nucleosynthesis and the r-process Lecture 15 Explosive Nucleosynthesis and the r-process As the shock wave passes through the star, matter is briefly heated to temperatures far above what it would have experienced in hydrostatic equilibrium.

More information

ν-driven wind in the Aftermath of Neutron Star Merger

ν-driven wind in the Aftermath of Neutron Star Merger ν-driven wind in the Aftermath of Neutron Star Merger Albino Perego in collaboration with A. Arcones, R. Cabezon, R. Käppeli, O. Korobkin, M. Liebendörfer, D. Martin, S. Rosswog albino.perego@physik.tu-darmstadt.de

More information

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física White dwarf dynamical interactions Enrique García-Berro Jornades de Recerca, Departament de Física CONTENTS 1. Introduction 2. Smoothed Particle Hydrodynamics 3. White dwarf mergers 4. White dwarf collisions

More information

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012 January 25, 2012 Overview Supernovae Supernovae Supernova types Core collapse model Neutrino properties Detection of neutrinos Data and analysis Experiment results Comparison with results Possible neutrino

More information

Neutrino emission, Equation of State and the role of strong gravity

Neutrino emission, Equation of State and the role of strong gravity Neutrino emission, Equation of State and the role of strong gravity O. L. Caballero 1,a) The EoS connects the macroscopic thermodynamical variables to the microphysics of the neutron star. Observables

More information

r-process nucleosynthesis in neutron star mergers and associated macronovae events

r-process nucleosynthesis in neutron star mergers and associated macronovae events r-process nucleosynthesis in neutron star mergers and associated macronovae events Oleg Korobkin Stockholm University, Oskar Klein Centre, Sweden March 14, 2014 O. Korobkin () r-process in neutron star

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics Stellar evolution, core-collapse supernova and explosive nucleosynthesis Karlheinz Langanke GSI & TU Darmstadt & FIAS Tokyo, December 2, 2009 arlheinz Langanke ( GSI & TU Darmstadt

More information