Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Size: px
Start display at page:

Download "Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization"

Transcription

1 Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization of deleptonization three-dimensional simulations of collapse and bounce

2 Core collapse and bounce Velocity [km/s] 0 x t pb = -0.4 ms t pb = -0.2 ms t pb = -0.1 ms t pb = 0.0 ms Enclosed Mass [Msol] homologous core, subsonic infall, causal connection outside ~free infall, supersonic velocities, no outgoing waves bounce at nuclear densities shock formation at transition to supersonic infall

3 Core collapse and bounce log 10 (Density [g/cm 3 ]) Within 2-4 milliseconds after bounce: cool, bulk nuclear matter (1) shock formation hot, dissociated matter (2) infalling heavy nuclei neutrino losses Enclosed Mass [Ms] x Velocity [km/s] size of inner core determines initial shock strength dissociation losses neutrino losses shock turns into accretion front accretion front continues to expand due to accumulated hot matter

4 Deleptonization in collapse 10 2 m e m e - m n +m p t = 100 electrons provide pressure Energy [MeV] 10 1 t = 1 E n E equil. t = 10 free streaming diffusion trapped thermalization * average neutrino production most probable neutrino escape trajectory baryons subject to gravity electrons/baryon=:ye determines inner core size Ye evolves by diffusion/thermalization process in density/energy space Density [g/cm 3 ] (Martinez-Pinedo, Liebendörfer, Frekers 2004) it is a fairly 'local' transport problem

5 Postbounce phase Luminosity Accretion front accretion controls >50% of luminosity up- or downflow absorb and emit neutrinos differently Neutron star sphere Accretion Fluid instabilities luminosity controls the accretion rate => 3D nonlocal transport problem: leakage schemes beware! Buras et al. ( ) Livne et al. (2004) Walder et al. (2004) Cardall & Mezzacappa (2005) Fryer & Warren (2004) Myra & Swesty (2005)

6 Boltzmann neutrino transport Comparison of spherically symmetric simulations: Oak Ridge/Basel group and Garching group Liebendörfer, Rampp, Janka, Mezzacappa, ApJ 620 (2005) electronic edition: datafiles.tar.gz of simulations. excellent agreement: No explosions for progenitors >11 Msol! -> Transport approximations and GR effects not responsible for failures (Liebendörfer et al. 2001, Rampp & Janka 2002, Thompson et al. 2003) -> Technically complete and accurate GR solution in spherical symmetry (Bruenn et al., Rampp & Janka, Liebendörfer et al.) -> Useful to evaluate new input physics and transport approximations (Marek et al., A&A 2006)

7 Parameterization of neutrinos But the parameterization of the thermalization/diffusion in the collapse phase could be successful: Electron fraction model G15 in Liebendörfer et al Density [g/cm 3 ] r c = g/cm 3 r c = g/cm 3 r c = g/cm 3 r c = g/cm 3 r c = g/cm 3 r c = max the time dependence of the Ye-profile is very small! Electron fraction fitting formula: N13 data fit Density [g/cm 3 ] force hydrodynamics to follow given Yeprofile?

8 Parameterization of neutrinos Electron fraction ms ms 0ms +2ms Enclosed mass [M sol ] differences of 5% correlate with differences between bounce template and intermediate stages nice agreement at bounce neutrino burst not captured (Liebendörfer, ApJ 2005)

9 Parameterization of neutrinos Entropy per Baryon [k B ] ms -2ms 0ms +2ms (~10MeV) Enclosed mass [M sol ] information about deleptonization allows estimate for entropy changes at densities < 2x10^12 g/cm^3 trapping assumed at higher density similar agreement in evolution of entropy: cooling by neutrino burst not captured (Liebendörfer, ApJ 2005)

10 Parameterization of neutrinos x 10 4 influence of neutrino stress somewhat more difficult to estimate: 0 1 trapped neutrinos -> gas component Velocity [km/s] ms 2ms 0.2ms 0ms +2ms deleptonization gives luminosity estimate deleptonization in template at trapping density contains opacity information -> neutrino stress Enclosed mass [M ] sol (Liebendörfer, ApJ 2005)

11 More degrees of freedom Leblanc & Wilson 1979, Symbalisty 1984: Unphysically strong magnetic field leading to jets Akiyama et al. 2003, Ardeljan et al. 2004: Magnetic field growth until magnetic pressure becomes relevant Thompson, Quataert, Burrows 2005: Magneto-Rotational Instability as source of viscosity, leading to additional heating how restrictive is axisymmetry? convective turnover is always toroidal narrow downflow restricted to cones instead of tubes Kotake et al. 2004: Magentic field leading to asymmetries in the propagation of the shock front Burrows et al. 2005: Excitation of neutron star g-modes and shock heating by acoustic waves Shijie Zhong 2005

12 More degrees of freedom 3D MHD (Pen, Arras, Wong 2003) new parallelization: cubic domain decomposition divergence free magnetic field spherical effective general relativistic potential (Marek et al. 2006) ~10'000km 1D 600km 3D explicit MHD with neutrino parameterization 600x600x600 zones implicit hydro: Agile comparison with Boltzmann transport: Velocity [cm/s] x GR effective potential, no rotation, no magnetic fields 1D 3D Enclosed mass [Ms] velocity profiles electron fraction Lattimer-Swesty EOS Parameterization of weak interactions (Liebendörfer 2005) compare resolution to pixels on 600 laptop screens! Y e parameterization misses neutrino burst 1D Boltzmann 3D Enclosed mass [Ms]

13 Simulation setup Abs. magnetic field [G] 13 Msol progenitor (Nomoto & Hashimoto 1988) imposed rotation: Omega = 31 rad/s Ro = 100km poloidal qualitative! Density [g/cm 3 ] 0ms 10ms 20ms Abs. magnetic field [G] rather large initial magnetic field -poloidal -toroidal Bo ~ 10^12 G toroidal 0ms 10ms 20ms Density [g/cm 3 ] less winding qualitative! the following results belong to improved models 15 Msol Progenitor (Woosley & Weaver 1995) accurate collapse physics as described poloidal initial field rotation setup should be improved

14 3D MHD & parameterized n's

15 3D MHD & parameterized n's

16 3D MHD & parameterized n's

17 3D MHD without n-burst

18 3D MHD, incomplete n-cooling

19 3D MHD, incomplete n-cooling

20 Summary the deleptonization in the collapse phase is a fairly local thermalization/diffusion process it can be parameterized as a function of density from accurate simulations with Boltzmann neutrino transport implemented in 3D hydrodynamics, the collapse and bounce phase in spherical symmetry is accurately reproduced due to the new efficiency, 3D collapse simulations with magnetic fields become feasible the postbounce phase is more difficult to approximate, but a good glimpse at 3D dynamics with magnetic fields seems in reach (Hirschegg 2006)

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution M. Liebendörfer, O. E. B. Messer, A. Mezzacappa, G. Martinez-Pinedo, W. R. Hix, F.-K. Thielemann University of Tennessee, Oak

More information

Core-Collapse Supernovae and Neutrino Transport

Core-Collapse Supernovae and Neutrino Transport Core-Collapse Supernovae and Neutrino Transport SFB TR7 Gravitational Wave Astronomy Video Seminar B.Müller 5.7.2010 Core Collapse Supernovae, General Relativity & Gravitational Waves Core collapse supernova

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

New Results from 3-D supernova models with spectral neutrino diffusion

New Results from 3-D supernova models with spectral neutrino diffusion New Results from 3-D supernova models with spectral neutrino diffusion Stuart C. Whitehouse and Matthias Liebendörfer Department of Physics, University of Basel, Switzerland Overview Introduction The Isotropic

More information

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn bruenn@fau.edu Core Collapse Supernovae 101 1 2 neutrinos 3 4 5 shock 6 7 Core Collapse Supernovae

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

POSTBOUNCE EVOLUTION OF CORE-COLLAPSE SUPERNOVAE: LONG-TERM EFFECTS OF THE EQUATION OF STATE

POSTBOUNCE EVOLUTION OF CORE-COLLAPSE SUPERNOVAE: LONG-TERM EFFECTS OF THE EQUATION OF STATE The Astrophysical Journal, 629:922 932, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. POSTBOUNCE EVOLUTION OF CORE-COLLAPSE SUPERNOVAE: LONG-TERM EFFECTS

More information

Re-research on the size of proto-neutron star in core-collapse supernova

Re-research on the size of proto-neutron star in core-collapse supernova Vol 17 No 3, March 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(03)/1147-05 Chinese Physics B and IOP Publishing Ltd Re-research on the size of proto-neutron star in core-collapse supernova Luo Zhi-Quan(

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Supernovae, Gamma-Ray Bursts, and Stellar Rotation

Supernovae, Gamma-Ray Bursts, and Stellar Rotation Supernovae, Gamma-Ray Bursts, and Stellar Rotation When Massive Stars Die, How Do They Explode? Neutron Star + Neutrinos Neutron Star + Rotation Black Hole + Rotation Colgate and White (1966) Arnett Wilson

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Integrated nucleosynthesis in neutrino-driven winds

Integrated nucleosynthesis in neutrino-driven winds Integrated nucleosynthesis in neutrino-driven winds L. Huther 1, T. Fischer 1, G. Martínez-Pindeo 1,2 & K. Langanke 2,3 1 TU Darmstadt, 2 GSI Helmholtzzentrum für Schwerionenforschung, 3 Frankfurt Institute

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

Weak Interaction Physics in Core-Collapse Supernova Simulation

Weak Interaction Physics in Core-Collapse Supernova Simulation Weak Interaction Physics in Core-Collapse Supernova Simulation Bronson Messer Oak Ridge Leadership Computing Facility & Theoretical Astrophysics Group Oak Ridge National Laboratory MICRA 2011 Department

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

2D and 3D core-collapse supernovae simulation

2D and 3D core-collapse supernovae simulation 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code S. W. Bruenn 1, A. Mezzacappa 2, W. R. Hix 2, J. M. Blondin 3, P. Marronetti 1, O. E. B. Messer 4, C. J. Dirk 1 and

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (LANL) 1D simulations

More information

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Institute for Theoretical Physics, University of Wroclaw, Plac Maksa Borna 9, 50-204 Wroclaw, Poland

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Supernova Explosion Mechanisms

Supernova Explosion Mechanisms SFB-TR7 SFB-TR27 International Conference Physics of Neutron Stars 2011 St. Petersburg, Russia, July 11-15, 2011 Supernova Explosion Mechanisms Advancing to the 3rd Dimension: Supernova Models Confronting

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

Formation and evolution of BH and accretion disk in Collapsar

Formation and evolution of BH and accretion disk in Collapsar Formation and evolution of BH and accretion disk in Collapsar Yuichiro Sekiguchi National Astronomical Observatory of Japan arxiv : 1009.5303 Motivation Collapsar model of GRB Central engine : Black hole

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

arxiv: v1 [astro-ph] 12 Jun 2007

arxiv: v1 [astro-ph] 12 Jun 2007 Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra K. Langanke, 1,2 G. Martínez-Pinedo, 1 B. Müller, 3 H.-Th. Janka, 3 A. Marek, 3 W.R. Hix, 4 A. Juodagalvis,

More information

!"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.:

!#$%&%'()*%+),#-./(0)+1,-.%'#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56,$%+)-+7-.$,$(-859.: !"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.: Kei Kotake!National Astronomical Observatory of Japan" NuSYM11 @ Smith college, Northampton 18 th June 2011 The supernova

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Explosion Models of CoreCollapse Supernovae

Explosion Models of CoreCollapse Supernovae SFB-TR7 Hirschegg 2013: Astrophysics and Nuclear Structure Hirschegg, Austria, January 26 February 1, 2013 Explosion Models of CoreCollapse Supernovae Status of Modeling at Garching Hans-Thomas Janka Max

More information

Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA ab, Stephen W. Bruenn c, J. Austin Harris a, Merek Austin Chertkow a, W. Raphael Hix ba, Anthony Mezzacappa ba, O. E. Bronson

More information

On ion-ion correlation effects during stellar core collapse ABSTRACT

On ion-ion correlation effects during stellar core collapse ABSTRACT A&A, (5) DOI:.5/-66:56 c ESO 5 Astronomy & Astrophysics On ion-ion correlation effects during stellar core collapse A. Marek,H.-Th.Janka,R.Buras, M. Liebendörfer,andM.Rampp, Max-Planck-Institut für Astrophysik,

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

Asymmetric explosion of core-collapse supernovae

Asymmetric explosion of core-collapse supernovae Asymmetric explosion of core-collapse supernovae Rémi Kazeroni (CEA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA Garching) Journées des doctorants - IRFU 01/07/2015 About me Rémi Kazeroni (IRFU/SAp) Advisor:

More information

Low Energy Neutrinos from Black Hole - Accretion Disks

Low Energy Neutrinos from Black Hole - Accretion Disks Low Energy Neutrinos from Black Hole - Accretion Disks Gail McLaughlin North Carolina State University General remarks about neutrinos from hot dense environments Detection of accretion disk neutrinos

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Perspectives on Core-Collapse Supernova Theory

Perspectives on Core-Collapse Supernova Theory Perspectives on Core-Collapse Supernova Theory Adam Burrows Department of Astrophysical Sciences Princeton University Princeton, NJ 08544 USA e-mail: burrows@astro.princeton.edu URL: http://www.astro.princeton.edu/

More information

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Sherwood Richers 1 Evan O Connor 2 Christian Ott 1 1 TAPIR, California Institute of Technology 2 CITA, University

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (U. Arizona) 1D simulations

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry of SN1987A?

Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry of SN1987A? PASJ: Publ. Astron. Soc. Japan 56, 663 669, 2004 August 25 c 2004. Astronomical Society of Japan. Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry

More information

Improving gradient evaluation in Smoothed Particle Hydrodynamics

Improving gradient evaluation in Smoothed Particle Hydrodynamics Improving gradient evaluation in Smoothed Particle Hydrodynamics Domingo García Senz José A. Escartín Antonio Relaño Ruén M. Caezón Alino Perego Matthias Lieendörfer Gradients in SPH < f r > = f r W r

More information

arxiv: v1 [astro-ph.he] 29 Oct 2010

arxiv: v1 [astro-ph.he] 29 Oct 2010 Studies of Stellar Collapse and Black Hole Formation with the Open-Source Code GR1D C. D. Ott and E. O Connor arxiv:1011.0005v1 [astro-ph.he] 29 Oct 2010 cott@tapir.caltech.edu, TAPIR, California Institute

More information

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators 2013/12/3 MMCOCOS@Fukuoka University 3D Simulations of Core-collapse Supernovae Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators Plan 1. Brief summary

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Solar system abundances Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed. Contribution of all nucleosynthesis

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

arxiv: v1 [astro-ph] 28 Nov 2008

arxiv: v1 [astro-ph] 28 Nov 2008 arxiv:0811.4648v1 [astro-ph] 28 Nov 2008 Nucleosynthesis Calculations from Core-Collapse Supernovae, Patrick Young ac, Michael Bennett ad, Steven Diehl abe, Falk Herwig adg, Raphael Hirschi ad, Aimee Hungerford

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

arxiv:astro-ph/ v2 25 Aug 2004

arxiv:astro-ph/ v2 25 Aug 2004 Magneto-driven Shock Waves in Core-Collapse Supernova Tomoya Takiwaki 1, Kei Kotake 1, Shigehiro Nagataki 2, and Katsuhiko Sato 1,3 1 Department of Physics, School of Science, the University of Tokyo,

More information

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Space Research Institute, Moscow, Russia Basic equations: MHD +self-gravitation, infinite

More information

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Lecture 14 Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Baade and Zwicky, Proceedings of the National Academy of Sciences, (1934) With all reserve we advance the view that a supernova

More information

Progress in Multi-Dimensional Stellar Evolution

Progress in Multi-Dimensional Stellar Evolution Progress in Multi-Dimensional Stellar Evolution Casey A. Meakin Steward Observatory University of Arizona July 2006 David Arnett (Arizona), Patrick Young (Arizona/LANL) Outline Astronomical Perspective

More information

How is the supernova shock wave revived?

How is the supernova shock wave revived? How is the supernova shock wave revived? The most fundamental question in supernova theory Gravity Neutrino Heating Convection Shock Instability Nuclear Burning Rotation Magnetic Fields *New Ingredient

More information

The role of neutrinos in collapse-driven supernovae

The role of neutrinos in collapse-driven supernovae The role of neutrinos in collapse-driven supernovae Shoichi Yamada, Kei Kotake and Tatsuya Yamasaki Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan Department of

More information

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown Friedrich-K. Thielemann Dept. of Physics University of Basel Radioactivity Diagnostics of SN1987A: 56Ni/Co, 57Ni/Co, 44Ti total/photon decay

More information

arxiv: v1 [astro-ph.he] 23 Nov 2015

arxiv: v1 [astro-ph.he] 23 Nov 2015 SUBMITTED TO APJ ON 15 NOVEMBER 23 Preprint typeset using LATEX style emulateapj v. 01/23/15 TWO DIMENSIONAL CORE-COLLAPSE SUPERNOVA EXPLOSIONS AIDED BY GENERAL RELATIVITY WITH MULTIDIMENSIONAL NEUTRINO

More information

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller Supernovae Tomek Plewa ASC Flash Center, University of Chicago Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller MPA für Astrophysik, Garching FLASH, Nov. 2005 1 Outline Non-exotic

More information

Supernova Dynamics via Kinetic Theory. W. Bauer Michigan State University

Supernova Dynamics via Kinetic Theory. W. Bauer Michigan State University Supernova Dynamics via Kinetic Theory W. Bauer Michigan State University PASI 2010 1 2 3 4 Element Abundances Left over from Big Bang Bauer & Westfall, 2010 5 Big Bang 6 He/H ratio from Big Bang Coming

More information

From supernovae to neutron stars

From supernovae to neutron stars From supernovae to neutron stars Yudai Suwa 1,2 1 Yukawa Institute for Theoretical Physics, Kyoto University 2 Max Planck Institute for Astrophysics, Garching Yudai Suwa, NUFRA215 @ Kemer, Turkey 2 /25

More information

arxiv: v1 [astro-ph] 18 May 2007

arxiv: v1 [astro-ph] 18 May 2007 arxiv:0705.2675v1 [astro-ph] 18 May 2007 GENERIC GRAVITATIONAL WAVE SIGNALS FROM THE COLLAPSE OF ROTATING STELLAR CORES H. DIMMELMEIER Department of Physics, Aristotle University of Thessaloniki, GR-54124

More information

Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae

Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae a, W. Raphael Hix ba, Merek A. Chertkow a, Stephen W. Bruenn c, Eric J. Lentz ab, O. E. Bronson Messer

More information

LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE

LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE The Astrophysical Journal, 656:366Y371, 2007 February 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

arxiv:astro-ph/ v1 27 Jul 2004

arxiv:astro-ph/ v1 27 Jul 2004 1 Prospects for obtaining an r process from Gamma Ray Burst Disk Winds arxiv:astro-ph/0407555v1 27 Jul 2004 G. C. McLaughlin a, and R. Surman b a Department of Physics, North Carolina State University,

More information

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology, Pasadena,

More information

Explosion Models of Massive Stars

Explosion Models of Massive Stars SFB-TR7 Fifty-One Ergs NC State University, Raleigh, North Carolina, May 13th 17th, 2013 Explosion Models of Massive Stars Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Heinzi-Ado Arnolds

More information

Physical ingredients of corecollapse supernova driven by neutrino-heating mechanism. Yudai SUWA

Physical ingredients of corecollapse supernova driven by neutrino-heating mechanism. Yudai SUWA Physical ingredients of corecollapse supernova driven by neutrino-heating mechanism Yudai SUWA Core-collapse supernovae Explosion energy Tanaka+ 9 Kinetic Energy (1 51 ergs) 1 1.1 (a) 93J 94I 2ap 6aj 87A

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Lecture 13. Presupernova Models, Core Collapse and Bounce

Lecture 13. Presupernova Models, Core Collapse and Bounce Lecture 13 Presupernova Models, Core Collapse and Bounce Baade and Zwicky, Proceedings of the National Academy of Sciences, (1934) With all reserve we advance the view that a supernova represents the transition

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Friday, April 29, 2011

Friday, April 29, 2011 Lecture 29: The End Stages of Massive Stellar Evolution & Supernova Review: Elemental Abundances in the Solar System Review: Elemental Abundances in the Solar System Synthesized by S and R-processes Review:

More information

Lecture 13. Presupernova Models, Core Collapse and Bounce

Lecture 13. Presupernova Models, Core Collapse and Bounce Lecture 13 Presupernova Models, Core Collapse and Bounce Generalities When Massive Stars Die, How Do They Explode? Black hole Neutron Star + Neutrinos Neutron Star + Rotation Colgate and White (1966) Arnett

More information

arxiv: v2 [astro-ph] 2 Sep 2007

arxiv: v2 [astro-ph] 2 Sep 2007 Boiling of nuclear liquid in core-collapse supernova explosions Peter Fomin, Dmytro Iakubovskyi, and Yuri Shtanov Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine We investigate the possibility

More information

arxiv: v3 [astro-ph.sr] 26 Jun 2014

arxiv: v3 [astro-ph.sr] 26 Jun 2014 Draft version June 7, 1 Preprint typeset using L A TEX style emulateapj v. 5//11 A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE IV. THE NEUTRINO SIGNAL

More information

Kinetic Theory for Supernova Explosions

Kinetic Theory for Supernova Explosions Proc. Int. Workshop on Hot and Dense Matter in Relativistic Heavy Ion Collisions (2004) 65 71 Budapest 2004 International Workshop Budapest, Hungary March 24 27, 2004 Kinetic Theory for Supernova Explosions

More information

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger Supernovae and Nucleosynthesis in Zero and Low Metal Stars Stan Woosley and Alex Heger ITP, July 6, 2006 Why believe anything I say if we don t know how any star (of any metallicity) blows up? The physics

More information

Multidimensional modeling of core-collapse supernovae: New challenges and perspectives

Multidimensional modeling of core-collapse supernovae: New challenges and perspectives Multidimensional modeling of core-collapse supernovae: New challenges and perspectives Kei Kotake (National Astronomical Observatory of Japan) K. Sato, T. Takiwaki, and Y. Suwa (RESCEU, Univ. of Tokyo),

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University)

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) with Takami Kuroda (TU. Darmstadt), Ko Nakamura (Fukuoka Univ.), Tomoya Takiwaki

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae

Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae Kei Kotake, Katsuhiko Sato, and Keitaro Takahashi Science & Engineering, Waseda University, 3-4-1 Okubo, Shinjuku,

More information

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University Rebecca Surman Union College 1 Three Relevant Nucleosynthesis Processes Explosive Burning e. g. shock moves

More information

An experimental approach to shock instability during core collapse

An experimental approach to shock instability during core collapse An experimental approach to shock instability during core collapse Thierry Foglizzo Frédéric Masset Jérôme Guilet Gilles Durand CEA Saclay, UNAM, DAMTP Outline 1- neutrino driven convection and the SASI:

More information

Neutrinos from the Formation, Cooling and Black Hole Collapse of Neutron Stars

Neutrinos from the Formation, Cooling and Black Hole Collapse of Neutron Stars Technische Universität München Max-Planck-Institut für Astrophysik Neutrinos from the Formation, Cooling and Black Hole Collapse of Neutron Stars Lorenz Hüdepohl Vollständiger Abdruck der an die Fakultät

More information

Simulations of magnetic fields in core collapse on small and large scales

Simulations of magnetic fields in core collapse on small and large scales Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament

More information

Collapse of Low-Mass Protostellar Cores: Part I

Collapse of Low-Mass Protostellar Cores: Part I Collapse of Low-Mass Protostellar Cores: Part I Isothermal Unmagnetized Solutions and Observational Diagnostics Andrea Kulier AST 541 October 9, 2012 Outline Models of Isothermal Unmagnetized Collapse

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

arxiv:astro-ph/ v1 29 Dec 2003

arxiv:astro-ph/ v1 29 Dec 2003 Submitted to Ap.J. December 25, 2003 Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context Eli Livne 1, Adam Burrows 2,

More information

Nucleosynthesis in core-collapse supernovae

Nucleosynthesis in core-collapse supernovae INT Program INT-12-2a Core-Collapse Supernovae: Models and Observable Signals Workshop: Nuclear and neutrino physics Nucleosynthesis in core-collapse supernovae Almudena Arcones Z Big Bang: H, He 20 28

More information

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review]

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review] Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv:0809.0695, CQG topical review] Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology,

More information