Simulations of magnetic fields in core collapse on small and large scales

Size: px
Start display at page:

Download "Simulations of magnetic fields in core collapse on small and large scales"

Transcription

1 Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament d Astronomia i Astrofísica, Universitat de València, Spain Max-Planck-Institut für Astrophysik, Garching bei München, Bavaria Multi-messengers from Core-Collapse Supernovae, Fukuoka, 5 December / 21

2 Contents Introduction 1 Introduction 2 Results 3 Summary 2 / 21

3 Why magnetic fields? Introduction Indications for magnetic fields asymmetric explosions (but: can be explained by hydro alone) pulsar kicks (also non-magnetically possible) pulsar fields, magnetars magnetic fields are no more exotic in SNe than in the sun 3 / 21

4 Why magnetic fields? Introduction Indications for magnetic fields asymmetric explosions (but: can be explained by hydro alone) pulsar kicks (also non-magnetically possible) pulsar fields, magnetars magnetic fields are no more exotic in SNe than in the sun Scenarios for MHD effects magneto-convection in PNS and hot bubble: small-/large-scale dynamos? magnetic versions of the SASI: amplification, but how much? additional heating, e.g. by Alfvén waves with rotation: winding, MRI, angular-momentum transport, jet formation 3 / 21

5 Introduction Magnetic fields and MHD magnetic energy 1 2 B 2 ideal MHD: field lines and flux tubes frozen into the fluid Lorentz force (Maxwell stress) consists of isotropic pressure 1 B 2 2 anisotropic tension B i B j increase the energy by work against the forces t e mag + i e mag v i = P mag i v i + b i b j j v i compressing the field stretching and folding field lines estimate for the maximum field energy: kinetic energy actual amplification may be less 4 / 21

6 Introduction Magnetic fields and MHD magnetic energy 1 2 B 2 ideal MHD: field lines and flux tubes frozen into the fluid Lorentz force (Maxwell stress) consists of isotropic pressure 1 B 2 2 anisotropic tension B i B j increase the energy by work against the forces t e mag + i e mag v i = P mag i v i + b i b j j v i compressing the field stretching and folding field lines estimate for the maximum field energy: kinetic energy actual amplification may be less 4 / 21

7 Introduction Magnetic fields and MHD magnetic energy 1 2 B 2 ideal MHD: field lines and flux tubes frozen into the fluid Lorentz force (Maxwell stress) consists of isotropic pressure 1 B 2 2 anisotropic tension B i B j increase the energy by work against the forces t e mag + i e mag v i = P mag i v i + b i b j j v i compressing the field stretching and folding field lines estimate for the maximum field energy: kinetic energy actual amplification may be less in SNe: time and length scales are set by the infall no more stringent numerical requirement than, e.g. following the density profiles 4 / 21

8 Introduction Magnetic fields and MHD magnetic energy 1 2 B 2 ideal MHD: field lines and flux tubes frozen into the fluid Lorentz force (Maxwell stress) consists of isotropic pressure 1 B 2 2 anisotropic tension B i B j increase the energy by work against the forces t e mag + i e mag v i = P mag i v i + b i b j j v i compressing the field stretching and folding field lines estimate for the maximum field energy: kinetic energy actual amplification may be less 4 / 21

9 Introduction Magnetic fields and MHD magnetic energy 1 2 B 2 ideal MHD: field lines and flux tubes frozen into the fluid Lorentz force (Maxwell stress) consists of isotropic pressure 1 B 2 2 anisotropic tension B i B j increase the energy by work against the forces t e mag + i e mag v i = P mag i v i + b i b j j v i compressing the field stretching and folding field lines estimate for the maximum field energy: kinetic energy actual amplification may be less stretching a flux tube in one direction reduces the transverse dimension formation of very fine structures, requiring high resolution 4 / 21

10 Introduction Turbulence and dynamos instabilities such as convection and SASI drive turbulence energy cascades from the large scale at which the instability operates down to dissipation in a Kolmogorov-like cascade 5 / 21

11 Introduction Turbulence and dynamos dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations Kolmogorov-like spectrum of turbulent magnetic field large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity v v. 5 / 21

12 Introduction Turbulence and dynamos dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations Kolmogorov-like spectrum of turbulent magnetic field large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity v v. 5 / 21

13 Introduction Turbulence and dynamos dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations Kolmogorov-like spectrum of turbulent magnetic field large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity v v. 5 / 21

14 Introduction Turbulence and dynamos Cutting the cascades above the physical length scale may distort the results. At least, a good knowledge of the behaviour of the numerical code is necessary. 5 / 21

15 Introduction Amplification of MHD waves given the velocity of MHD waves and a time scale we need to resolve the propagation distance of the waves with n grid cells even if the time is set by the large-scale motion, this can be prohibitive for slow waves example: the MRI is the weak-field instability of the slow mode, i.e. c slow c s, v the length scale can be estimated from the Alfvén velocity and the rotational period λ MRI = O(c A Ω 1 ) 6 / 21

16 Introduction Amplification of MHD waves given the velocity of MHD waves and a time scale we need to resolve the propagation distance of the waves with n grid cells even if the time is set by the large-scale motion, this can be prohibitive for slow waves example: the MRI is the weak-field instability of the slow mode, i.e. c slow c s, v the length scale can be estimated from the Alfvén velocity and the rotational period λ MRI = O(c A Ω 1 ) 6 / 21

17 Introduction Amplification of MHD waves MRI dispersion normalised growth rate k v A Ω cosθ k Buoyant modes Stable modes Alfvén modes C dashed line: fastest growing mode solid line: boundary between modes branches Definition of symbols C = (N)2 + ( ϖ ϖ Ω 2) 2 Ω 2 N = bouyancy frequency 1 Stable modes short modes are stablised by magnetic tension Alfvén modes fast growth only for finite wave number Bouyant modes appear only for large entropy gradient; fast growth for long modes v A = Alfven velocity k = wave number θ k = angle between k and the vertical 6 / 21

18 Introduction Amplification of MHD waves MRI dispersion normalised growth rate 10 1 k v A Ω cosθ k Buoyant modes Stable modes Alfvén modes / 21

19 Introduction Amplification of MHD waves MRI dispersion normalised growth rate k v A Ω cosθ k Buoyant modes Stable modes Alfvén modes C dashed line: fastest growing mode solid line: boundary between modes branches Definition of symbols C = (N)2 + ( ϖ ϖ Ω 2) 2 Ω 2 N = bouyancy frequency 1 Stable modes short modes are stablised by magnetic tension Alfvén modes fast growth only for finite wave number Bouyant modes appear only for large entropy gradient; fast growth for long modes v A = Alfven velocity k = wave number θ k = angle between k and the vertical 6 / 21

20 Introduction Amplification of MHD waves MRI dispersion normalised growth rate k v A Ω cosθ k Buoyant modes Stable modes Alfvén modes C dashed line: fastest growing mode solid line: boundary between modes branches Definition of symbols C = (N)2 + ( ϖ ϖ Ω 2) 2 Ω 2 N = bouyancy frequency 1 Stable modes short modes are stablised by magnetic tension Alfvén modes fast growth only for finite wave number Bouyant modes appear only for large entropy gradient; fast growth for long modes v A = Alfven velocity k = wave number θ k = angle between k and the vertical 6 / 21

21 Introduction Global and local models dispersion relation of the MRI: only short modes, λ B, grow rapidly in core collapse, this can be 1 m grid width < λ computationally not feasible high-resolution shearing-box simulations to determine fundamental properties of the MRI use these results to build models that can be coupled to global simulations 7 / 21

22 Introduction Global and local models dispersion relation of the MRI: only short modes, λ B, grow rapidly in core collapse, this can be 1 m grid width < λ computationally not feasible high-resolution shearing-box simulations to determine fundamental properties of the MRI use these results to build models that can be coupled to global simulations 7 / 21

23 Contents Results 1 Introduction 2 Results 3 Summary 8 / 21

24 Simulations Results magneto-rotational collapse global simulations of rotating collapse without neutrino transport Newtonian and GR Non-rotating collapse neutrino transport: two-moment scheme Newtonian hydro with pseudo-relativistic gravity 15 M progenitor, only ν e, ν e polytropic models or stellar cores Magneto-rotational instability local boxes shear-periodic boundaries neglecting all microphysics Parasitic instabilities even more idealised local models determine the growth rate of tearing modes and measure the numerical resistivity/viscosity 9 / 21

25 Compression Results conservation of radial magnetic flux through a surface B ρ 2/3 for a fluid element; energy grows faster than gravitational no change of field topology core collapse: factor of 10 3 in field strength possible saturation: e mag e kin,r is unrealistic in collapse occurs in every collapse (and continues after bounce) log b [G] field estimate m [M sun] Profiles of field strength during collapse compared to estimate based on flux conservation (deviations come from non-radial geometry) 10 / 21

26 Convection/SASI Results hydro instabilities develop quickly highly variable amplitude of the instability, flow field field is amplified in thin filaments final field strength depends on the initial field, and amplification is not (necessarily) leading to equipartition weak initial field: no dynamic impact strong field: very different evolution of the post-shock flows, early development of high-entropy bubbles favourable for an explosion Weak initial field: three snapshots 11 / 21

27 Convection/SASI Results hydro instabilities develop quickly highly variable amplitude of the instability, flow field field is amplified in thin filaments final field strength depends on the initial field, and amplification is not (necessarily) leading to equipartition weak initial field: no dynamic impact strong field: very different evolution of the post-shock flows, early development of high-entropy bubbles favourable for an explosion Strong initial field: three snapshots 11 / 21

28 Convection/SASI Results hydro instabilities develop quickly highly variable amplitude of the instability, flow field field is amplified in thin filaments final field strength depends on the initial field, and amplification is not (necessarily) leading to equipartition weak initial field: no dynamic impact strong field: very different evolution of the post-shock flows, early development of high-entropy bubbles favourable for an explosion Very strong initial field: three snapshots 11 / 21

29 Results Amplification of Alfvén waves Guilet et al. (2011) requires an accretion flow decelerated above the PNS and a (radial) guide field accretion is sub-/super-alfvénic inside/outside the Alfvén surface Alfvén waves propagating along the field are amplified at the Alfvén point waves are finally dissipated there additional heating in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem modelling issues: high resolution, uncertainties in the dissipation 12 / 21

30 Results Amplification of Alfvén waves y log b [G] log b [G] log A x log A requires an accretion flow decelerated above the PNS and a (radial) guide field accretion is sub-/super-alfvénic inside/outside the Alfvén surface Alfvén waves propagating along the field are amplified at the Alfvén point waves are finally dissipated there additional heating in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem modelling issues: high resolution, uncertainties in the dissipation 12 / 21

31 Results Rotation and magnetic field Cerdá-Durán et al. (2008): MRI channel modes MPA/València: Newtonian/GR simulations of simplified collapse; Princeton, Japan, Basel: more detailed simulations winding of field lines strong field: MRI observable angular-momentum transport jet formation MHD explosions visible in the GW signal 13 / 21

32 Results The magneto-rotational instability differentially rotating core is unstable if b 0 growth time Ω 1 fastest growing modes λ MRI c A Ω 1 for SN core: λ MRI 6.9 cm ( b 0 ) ( ) 1/2 ρ ( ) Ω G g cm s 1 usually no the kind of resolution you would like to have in a supernova simulation use local high-resolution models as a guide to learn about the effects you are missing in global models 14 / 21

33 Local models Results Equations Ideal MHD simplified (hybrid) EOS external gravity no neutrino transport Models initial data: hydrostatic equilibrium axisymmetric and 3d models small (few kilometres) boxes resolution between 1.25 and 40 m shearing-disc boundary conditions Code Finite-volume code high-order MP reconstruction MUSTA Riemann solver constraint transport Questions, old, current, tbd growth in different regimes? termination mechanism? termination amplitude? saturation phase? transfer to global models? 15 / 21

34 Local models Results Equations Ideal MHD simplified (hybrid) EOS external gravity no neutrino transport Models initial data: hydrostatic equilibrium axisymmetric and 3d models small (few kilometres) boxes resolution between 1.25 and 40 m shearing-disc boundary conditions Code Finite-volume code high-order MP reconstruction MUSTA Riemann solver constraint transport Questions, old, current, tbd growth in different regimes? termination mechanism? termination amplitude? saturation phase? transfer to global models? 15 / 21

35 Local models Results Equations Ideal MHD simplified (hybrid) EOS external gravity no neutrino transport Models initial data: hydrostatic equilibrium axisymmetric and 3d models small (few kilometres) boxes resolution between 1.25 and 40 m shearing-disc boundary conditions Code Finite-volume code high-order MP reconstruction MUSTA Riemann solver constraint transport Questions, old, current, tbd growth in different regimes? termination mechanism? termination amplitude? saturation phase? transfer to global models? 15 / 21

36 MRI termination Results equipartition, e mag e diffrot, overestimates the final state MRI is quenched earlier by secondary instabilities linear evolution: channel modes Kelvin-Helmholtz or tearing modes disrupt the MRI channel flows Tomasz Rembiasz (2013): 2d MRI shearing box with viscosity and resistivity. 16 / 21

37 MRI termination Results Pessah (2010) perturbations (δb, δv) of an MRI mode grow at constant rate σ NRI MRI channel modes are separated by current sheets and shear layers unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes Tomasz Rembiasz (2013): 2d MRI shearing box with viscosity and resistivity. 16 / 21

38 MRI termination Results Pessah (2010) parasites grow at rates B MRI /λ exp σ MRI t/b 0, i.e., faster as the MRI proceeds at some point, they overtake the MRI and break the channels down into turbulence MRI growth ends, and final field is fixed Tomasz Rembiasz (2013): 2d MRI shearing box with viscosity and resistivity. 16 / 21

39 MRI termination Results Rembiasz (2013) can we test this model? in principle yes, but you have to carefully distinguish physics from numerics numerical errors introduce an effective viscosity/resistivity and modify the growth of the parasitic instabilities Tomasz Rembiasz (2013): 2d MRI shearing box with viscosity and resistivity. 16 / 21

40 Results Numerical resistivity/viscosity viscosity/resistivity... show up in different effects: dampen linear waves measuring damping rate drive tearing modes measure growth rate In all cases, you need to run many simulations with different resolutions in space and time, (numerical schemes), and physical resistivity/viscosity, and you need to know the theoretical growth/dampening rates very well. For tearing modes, the latter is a problem on its own. Viscous damping of a sound wave: profiles and comparison of numerical and theoretical solution; numerical dissipation vs. resolution for different schemes. 17 / 21

41 Results Numerical resistivity/viscosity viscosity/resistivity... show up in different effects: dampen linear waves measuring damping rate drive tearing modes measure growth rate In all cases, you need to run many simulations with different resolutions in space and time, (numerical schemes), and physical resistivity/viscosity, and you need to know the theoretical growth/dampening rates very well. For tearing modes, the latter is a problem on its own. Field lines before and after reconnection by tearing modes. 17 / 21

42 Results Numerical resistivity/viscosity viscosity/resistivity... show up in different effects: I dampen linear waves measuring damping rate I drive tearing modes measure growth rate In all cases, you need to run many simulations with different resolutions in space and time, (numerical schemes), and physical resistivity/viscosity, and you need to know the theoretical growth/dampening rates very well. For tearing modes, the latter is a problem on its own. Field lines before and after reconnection by tearing modes. Field lines of tearing modes as visualised in the garden of a Zen temple in Kyoto 17 / 21

43 Results Numerical resistivity/viscosity viscosity/resistivity... show up in different effects: dampen linear waves measuring damping rate drive tearing modes measure growth rate In all cases, you need to run many simulations with different resolutions in space and time, (numerical schemes), and physical resistivity/viscosity, and you need to know the theoretical growth/dampening rates very well. For tearing modes, the latter is a problem on its own. Growth rate is a complex function of wave number. For clear results, setup a perturbation consisting of a single mode, which is not terribly trivial. 17 / 21

44 Results Parasitic instabilities of the MRI A 3d MRI box. The parasitic instability is of Kelvin-Helmholtz type. High resolution is required. Comparison with theory is complicated because most approximations made for theoretical growth rates do not hold. Within the uncertainties, you can understand the termination point with the help of parasitic instabilities. 18 / 21

45 Contents Summary 1 Introduction 2 Results 3 Summary 19 / 21

46 Summary Summary Scenarios for MHD effects magneto-convection in PNS and hot bubble: small-/large-scale dynamos? magnetic versions of the SASI: amplification, but how much? additional heating, e.g. by Alfvén waves with rotation: winding, MRI, angular-momentum transport, jet formation Prospects fairly likely, requires high-resolution 3d modelling, good ν transport 3d, high-resolution, accurate ν treatment unclear, high-resolution combination of global and local models, still a long way to go for a MRI model 20 / 21

47 Summary Summary Scenarios for MHD effects magneto-convection in PNS and hot bubble: small-/large-scale dynamos? magnetic versions of the SASI: amplification, but how much? additional heating, e.g. by Alfvén waves with rotation: winding, MRI, angular-momentum transport, jet formation Prospects fairly likely, requires high-resolution 3d modelling, good ν transport 3d, high-resolution, accurate ν treatment unclear, high-resolution combination of global and local models, still a long way to go for a MRI model 20 / 21

48 Summary Summary Scenarios for MHD effects magneto-convection in PNS and hot bubble: small-/large-scale dynamos? magnetic versions of the SASI: amplification, but how much? additional heating, e.g. by Alfvén waves with rotation: winding, MRI, angular-momentum transport, jet formation Prospects fairly likely, requires high-resolution 3d modelling, good ν transport 3d, high-resolution, accurate ν treatment unclear, high-resolution combination of global and local models, still a long way to go for a MRI model 20 / 21

49 Summary Summary Scenarios for MHD effects magneto-convection in PNS and hot bubble: small-/large-scale dynamos? magnetic versions of the SASI: amplification, but how much? additional heating, e.g. by Alfvén waves with rotation: winding, MRI, angular-momentum transport, jet formation Prospects fairly likely, requires high-resolution 3d modelling, good ν transport 3d, high-resolution, accurate ν treatment unclear, high-resolution combination of global and local models, still a long way to go for a MRI model 20 / 21

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Magnetorotational Instability: Plans at MPA, IPP and TU Berlin

Magnetorotational Instability: Plans at MPA, IPP and TU Berlin Magnetorotational Instability: Plans at MPA, IPP and TU Berlin Wolf-Christian Müller 1, Ewald Müller 2, Thomas Janka 2, Frank Jenko 3 1 Max-Planck-Institut für Plasmaphysik, Garching 2 Max-Planck-Institut

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae David Radice R. Haas, P. Mösta, L. Roberts, C.D. Ott, E. Schnetter Core-Collapse Supernovae Core-Collapse Supernovae in Numbers ~ (50

More information

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes The ECHO code: from classical MHD to GRMHD in dynamical spacetimes Luca Del Zanna Dipartimento di Fisica e Astronomia Università di Firenze Main collaborators: N. Bucciantini, O. Zanotti, S. Landi 09/09/2011

More information

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences HPC in Physics (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences 1 Gravitational Wave Einstein s Unfinished Symphony Marcia Bartuciak Predicted

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

An experimental approach to shock instability during core collapse

An experimental approach to shock instability during core collapse An experimental approach to shock instability during core collapse Thierry Foglizzo Frédéric Masset Jérôme Guilet Gilles Durand CEA Saclay, UNAM, DAMTP Outline 1- neutrino driven convection and the SASI:

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

NewCompStar - working group 1 Observations and modelling of compact stars. Pablo Cerdá-Durán (U. Valencia) Trento 13 Oct. 2017

NewCompStar - working group 1 Observations and modelling of compact stars. Pablo Cerdá-Durán (U. Valencia) Trento 13 Oct. 2017 NewCompStar - working group 1 Observations and modelling of compact stars Pablo Cerdá-Durán (U. Valencia) Trento 13 Oct. 2017 WG1 objectives EM Observations Experiments Physics of strong interaction (WG2)

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

Structure Formation and Particle Mixing in a Shear Flow Boundary Layer

Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti palotti@astro.wisc.edu University of Wisconsin Center for Magnetic Self Organization Ellen Zweibel University of Wisconsin

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

arxiv: v2 [astro-ph] 17 Mar 2009

arxiv: v2 [astro-ph] 17 Mar 2009 Astronomy & Astrophysics manuscript no. 1323 c ESO 2018 January 1, 2018 Semi-global simulations of the magneto-rotational instability in core collapse supernovae M. Obergaulinger 1, P. Cerdá-Durán 1, E.

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA Nonlinear MRI Jeremy Goodman CMPD/CMSO Winter School 7-12 January 2008, UCLA Questions for the nonlinear regime How does the linear instability saturate? i.e., What nonlinear mode-mode interactions brake

More information

Core-Collapse Supernovae and Neutrino Transport

Core-Collapse Supernovae and Neutrino Transport Core-Collapse Supernovae and Neutrino Transport SFB TR7 Gravitational Wave Astronomy Video Seminar B.Müller 5.7.2010 Core Collapse Supernovae, General Relativity & Gravitational Waves Core collapse supernova

More information

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller Supernovae Tomek Plewa ASC Flash Center, University of Chicago Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller MPA für Astrophysik, Garching FLASH, Nov. 2005 1 Outline Non-exotic

More information

New Results from 3-D supernova models with spectral neutrino diffusion

New Results from 3-D supernova models with spectral neutrino diffusion New Results from 3-D supernova models with spectral neutrino diffusion Stuart C. Whitehouse and Matthias Liebendörfer Department of Physics, University of Basel, Switzerland Overview Introduction The Isotropic

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Jungyeon Cho Dmitry Shapovalov MWMF Madison, Wisconsin April 2012 The Large Scale Dynamo The accumulation of magnetic

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

General Relativistic MHD Simulations of Neutron Star Mergers

General Relativistic MHD Simulations of Neutron Star Mergers General Relativistic MHD Simulations of Neutron Star Mergers Luca Baiotti Osaka University with Luciano Rezzolla, Bruno Giacomazzo, Kentaro Takami Plan of the talk Brief overview of the status of BNS simulations

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Global magnetorotational instability with inflow The non-linear regime

Global magnetorotational instability with inflow The non-linear regime Global magnetorotational instability with inflow The non-linear regime Evy Kersalé PPARC Postdoctoral Research Associate Dept. of Appl. Math. University of Leeds Collaboration: D. Hughes & S. Tobias (Dept.

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Numerical Studies of the Magnetorotational Instability in Core Collapse Supernovae

Numerical Studies of the Magnetorotational Instability in Core Collapse Supernovae Technische Universität München Max-Planck-Institut für Astrophysik Numerical Studies of the Magnetorotational Instability in Core Collapse Supernovae Tomasz Piotr Rembiasz Technische Universität München

More information

Amplification of magnetic fields from turbulence in the early Universe

Amplification of magnetic fields from turbulence in the early Universe Amplification of magnetic fields from turbulence in the early Universe Jacques M. Wagstaff 1 arxiv:1304.4723 Robi Banerjee 1, Dominik Schleicher 2, Günter Sigl 3 1 Hamburg University 2 Institut für Astrophysik,

More information

Studies of self-gravitating tori around black holes and of self-gravitating rings

Studies of self-gravitating tori around black holes and of self-gravitating rings Studies of self-gravitating tori around black holes and of self-gravitating rings Pedro Montero Max Planck Institute for Astrophysics Garching (Germany) Collaborators: Jose Antonio Font (U. Valencia) Masaru

More information

Numerical Simulations of the Jet in the Crab Nebula

Numerical Simulations of the Jet in the Crab Nebula Numerical Simulations of the Jet in the Crab Nebula A. Mignone 1, A. Ferrari 1, E. Striani 2, M. Tavani 2 1 Dipartimento di Fisica, Università di Torino 2 Iasf/iaps università di tor vergata (roma) 1.

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

Asymmetric explosion of core-collapse supernovae

Asymmetric explosion of core-collapse supernovae Asymmetric explosion of core-collapse supernovae Rémi Kazeroni (CEA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA Garching) Journées des doctorants - IRFU 01/07/2015 About me Rémi Kazeroni (IRFU/SAp) Advisor:

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

The MRI in a Collisionless Plasma

The MRI in a Collisionless Plasma The MRI in a Collisionless Plasma Eliot Quataert (UC Berkeley) Collaborators: Prateek Sharma, Greg Hammett, Jim Stone Modes of Accretion thin disk: energy radiated away (relevant to star & planet formation,

More information

The amplification of magnetic fields by the turbulent dynamo in the early Universe

The amplification of magnetic fields by the turbulent dynamo in the early Universe The amplification of magnetic fields by the turbulent dynamo in the early Universe Jacques M. Wagstaff Phys. Rev. D89:103001 arxiv:1304.4723 Hamburger Sternwarte, Hamburg University Robi Banerjee 1, Dominik

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Nonmodal Growth and the Unstratified MRI Dynamo

Nonmodal Growth and the Unstratified MRI Dynamo MPPC general meeting, Berlin, June 24 Nonmodal Growth and the Unstratified MRI Dynamo Jonathan Squire!! and!! Amitava Bhattacharjee MRI turbulence Observed accretion rate in disks in astrophysical disks

More information

The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D The development of neutrino-driven convection in core-collapse supernovae: vs 3D Rémi Kazeroni (CEA/MPA) B. Krueger (CEA/LANL), J. Guilet (MPA/CEA), T. Foglizzo (CEA) FOE 2017, Corvallis, OR June 5, 2017

More information

Magnetic Fields (and Turbulence) in Galaxy Clusters

Magnetic Fields (and Turbulence) in Galaxy Clusters Magnetic Fields (and Turbulence) in Galaxy Clusters Dongsu Ryu (UNIST, Ulsan National Institute of Science and Technology, Korea) with Hyesung Kang (Pusan Nat. U, Korea), Jungyeon Cho (Chungnam Nat. U.),

More information

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

More information

arxiv: v1 [astro-ph.sr] 31 Mar 2010

arxiv: v1 [astro-ph.sr] 31 Mar 2010 Astronomy & Astrophysics manuscript no. MergerKH c ESO 218 October 15, 218 Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers M. Obergaulinger, M. A. Aloy, and E.

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017 NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS Jono Squire (Caltech) UCLA April 2017 Along with: E. Quataert, A. Schekochihin, M. Kunz, S. Bale, C. Chen,

More information

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities:

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities: CHAPTER 19 Fluid Instabilities In this Chapter we discuss the following instabilities: convective instability (Schwarzschild criterion) interface instabilities (Rayleight Taylor & Kelvin-Helmholtz) gravitational

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays DESY Summer Student Programme, 2016 Olga Lebiga Taras Shevchenko National University of Kyiv, Ukraine Supervisors Reinaldo

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley)

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) in collaboration with Ian Parrish, Prateek Sharma, Jim Stone, Greg Hammett Hydra A w/ Chandra Galactic

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Numerical modeling of binary neutron star mergers

Numerical modeling of binary neutron star mergers Numerical modeling of binary neutron star mergers Kenta Kiuchi (YITP) Masaru Shibata (YITP), Yuichiro Sekiguchi (Toho Univ.), Koutarou Kyutoku (KEK), Kyohei Kawaguchi (AEI) Dawn of the GW astronomy 2016-2017~

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Magnetic Fields in Astrophysics: Origins and Evolution. Kinwah Wu Mullard Space Science Laboratory University College London

Magnetic Fields in Astrophysics: Origins and Evolution. Kinwah Wu Mullard Space Science Laboratory University College London Magnetic Fields in Astrophysics: Origins and Evolution Kinwah Wu Mullard Space Science Laboratory University College London Maxwell s equations covariant form in flat space time Lorentz force equation:

More information

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation... Random density fluctuations, grow via gravitational instability galaxies, clusters, etc. Initial perturbations

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Max-Planck-Institut für Astrophysik Introduction Figure from Janka et al. (2012) CCSNe = death of

More information

MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail

MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail J. Plasma Fusion Res. SERIES, Vol. 8 (2009) MHD Flow Field and Momentum Transfer Process of Magneto-Plasma Sail Hiroyuki NISHIDA, Ikkoh FUNAKI, Yoshifumi INATANI 1) and Kanya KUSANO 2) University of Tokyo,

More information

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Yuhong Fan (HAO/NCAR), Fang Fang (LASP/CU) GTP workshop August 17, 2016 The High Altitude Observatory (HAO) at the National

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (LANL) 1D simulations

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

Global Magnetorotational Instability with Inflow

Global Magnetorotational Instability with Inflow Global Magnetorotational Instability with Inflow Evy Kersalé PPARC Postdoctoral Research Associate Dept. of Appl. Maths University of Leeds Collaboration: D. Hughes & S. Tobias (Appl. Maths, Leeds) N.

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

Astrofysikaliska Dynamiska Processer

Astrofysikaliska Dynamiska Processer Astrofysikaliska Dynamiska Processer VT 2008 Susanne Höfner hoefner@astro.uu.se Aims of this Course - understanding the role and nature of dynamical processes in astrophysical contexts and how to study

More information

MHD simulation for merger of binary neutron stars in numerical relativity

MHD simulation for merger of binary neutron stars in numerical relativity MHD simulation for merger of binary neutron stars in numerical relativity M. SHIBATA (Yukawa Institute for Theoretical Physics, Kyoto University) In collaboration with K. Kiuchi, L. Baiotti, & Y. Sekiguchi

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA The Secret Life of Neutron Stars Jeremy Heyl Harvard-Smithsonian CfA The Life of a 10 M Star PNS 10 5 yr 10 6 yr 10 7 yr 10 8 yr 10 9 yr 10 10 yr PMS MS Radio Pulsars Thermal Accretion-, Nuclear-, GWpowered

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES Michał Hanasz, Centre for Astronomy Nicolaus Copernicus University, Toruń MAGNETIC FIELDS IN SPIRAL GALAXIES - RADIO OBSERVATIONS M51 NGC891 A. Fletcher

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (U. Arizona) 1D simulations

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information