Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Size: px
Start display at page:

Download "Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn"

Transcription

1 Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

2 Collaborators Anthony Mezzacappa John M. Blondin John C. Hayes Oak Ridge National Lab North Carolina State UC at San Diego W. Raph Hix Oak Ridge National Lab O. E. Bronson Messer Oak Ridge National Lab 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

3 Core Collapse Supernova Energetics Photons ~ ergs Ejecta Kinetic energy ~ ergs Neutrinos ~ 3x10 53 ergs 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

4 Core Collapse Supernova Polarization Asymmetries Core collapse SN are polarized at ~1% level Degree of polarization increases with decreasing envelope mass Degree of polarization generally increases after optical maximum Outward mixing of Ni in SN1987 A & Cas A Axisymmetric ejecta of SN1987A Early Emission of x-rays and γ-rays from SN1987A Pulsar kicks 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

5 Direct Imaging SN 1987A Suggests a Bipolar Structure SN 1987A November 28, 2003

6 Supernova Connections Neutron Stars Nucleosynthesis Supernovae Neutrino Signatures Black Holes Gravitational Waves

7 Core Collapse Supernova Scenario neutrinos shock

8 Aftermath neutrinos photons matter neutron star or black hole

9 The Supernova Problem Matter Flow Neutrino flow Shock _ ν e + n p + e - ν e + p n + e + _ ν e + n p + e - ν e + p n + e + Protoneutron Star Gain Radius ν-spheres Cooling Heating

10 The Core Collapse Supernova Mechanism: A Computational Challenge Inherently multi-dimensional Variety of complex physical processes that need to be accurately modeled Explosions are marginal 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

11 Supernova Code Hydrodynamics Nuclear Reactions Neutrino Transport

12 Hydrodynamics Lagrangian PPM with Remap implementation of a Godunov scheme Newtonian spectral Poisson solver with effective GR radial potential Spherical polar grid Moving radial grid option during infall, adaptive below shock after shock generation 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

13 Hydrodynamics Implementation e i + e k + e g in shock if! < g cm -3, e i + e k in shock if! > g cm -3, e i elsewere evolve e i + e k + e g, remap e i + e k e i + e k in shock, e i elsewere e i + e k + e g everywhere e i + e k everywhere 11.2 M O 1D. Improved Opacities evolve e i + e k, remap e i + e k + e g e i + e k + e g if! < g cm -3, e i + e k if! > in shock, e i outside of shock if! > t post bounce (s)

14 Nuclear Network 4 He, 12 C, 16 O, 20 Ne, 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca, 44 Ti, 48 Cr, 52 Fe, 56 Ni, 60 Zn n, p, Fe-like tracers Advection of material into and out of NSE Flashing and freeze-out of zones 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

15 Neutrino Transport Multigroup, flux-limited diffusion tuned to Boltzmann transport Ray-by-ray plus approximation Full flavor implicit solve All O(v/c) velocity corrections, red shift and time dilation effects included 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

16 Neutrino Interactions Emission and Absorption of ν e s e + p, A(Z, N) ν e + p, A(Z 1, N + 1) Emission and Absorption of ν e s e + + n, A(Z, N) ν e + p, A(Z + 1, N 1) Neutrino-Electron, Neutrino-Positron Scattering ν e,µ,τ, ν e,µ,τ + e, e + ν e,µ,τ, ν e,µ,τ + e, e + Neutrino Scattering on Nucleons and Nuclei ν e,µ,τ, ν e,µ,τ + n, p, A ν e,µ,τ, ν e,µ,τ + n, p, A Electron-Positron Pair Annihilation e + e + ν e,µ,τ + ν e,µ,τ Nucleon-Nucleon Bremsstrahlung N + N N + N + ν e,µ,τ + ν e,µ,τ Neutrino-Neutrino Scattering ν e,µ,τ + ν e,µ,τ ν e,µ,τ + ν e,µ,τ

17 Progenitor Structure M Ȯ 15.0 M Ȯ M Ȯ Mass Enclosed (M O ).

18 S15s7b 15 ms post bounce

19 S15s7b 100 ms post bounce

20 S15s7b 200 ms post bounce

21 S15s7b 621 ms post bounce

22 20M 256x256 O.

23 2D Supernova Simulations Stellar Mass Gravity Opacities Resolution 20 Groups t (ms pb) Explosion Energy (B) Remnant (M O ). 11 (S11s7b) N Standard 192 X Y (S11s7b) N Standard 192 X Y (S11.2) N Improved 256 X Y (S11.2) GR Improved 256 X Y (S11.2) N Improved 256 X Y (S11.2) GR Standard 256 X Y (S11.2) GR Improved 256 X Y (S15s7b) N Standard 192 X Y (S15) N Improved 256 X (S15) GR Improved 256 X (S20) N Improved 256 X Possibly 20 (S20) GR Improved 256 X Possibly

24 Why Are We Getting Explosion? Convection driven by neutrino heating Improved neutrino rates Energy deposition by nuclear reactions SASI (Standing Accretion Shock Instability) 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology

25

26 SASI

27 Neutrinospheres Neutrinospheres Heating Cooling Protoneutron Star! e s _! e s _! µ s,_! µ s,! " s,! " s,! e -sphere _! e -sphere! µ & " -sphere

28 1D Supernova Simulations 150 S11.2, 63 ms post bounce shock em - ab! - e -,e + scat! +! - e - + e +! + N scat N + N brem Net 1x10 7 1x10 8 1x10 9 1x x x10 12 " (g cm -3 )

29 1D Supernova Simulations Neutrino Luminosities M O GR 1D. Stand opacities Stand + Brem opacities Stand + (! + N) opacities Stand + Brem + (! + N) opacities t post bounce (s)

30 Conclusions 2D simulations with spectral neutrino transport exhibit explosions for the 11.2 and 20M models, and probably for the 15M model as well. The simulations must be continued for longer times to ascertain the explosion energies of the models.

31 Future Work Investigate the observables of the exploding models---nucleosynthesis, neutrino and gravitational wave signatures, neutron star masses and kick velocities. Move to 3-D Use a singularity-free grid Incorporate magnetic fields

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn bruenn@fau.edu Core Collapse Supernovae 101 1 2 neutrinos 3 4 5 shock 6 7 Core Collapse Supernovae

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

2D and 3D core-collapse supernovae simulation

2D and 3D core-collapse supernovae simulation 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code S. W. Bruenn 1, A. Mezzacappa 2, W. R. Hix 2, J. M. Blondin 3, P. Marronetti 1, O. E. B. Messer 4, C. J. Dirk 1 and

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Weak Interaction Physics in Core-Collapse Supernova Simulation

Weak Interaction Physics in Core-Collapse Supernova Simulation Weak Interaction Physics in Core-Collapse Supernova Simulation Bronson Messer Oak Ridge Leadership Computing Facility & Theoretical Astrophysics Group Oak Ridge National Laboratory MICRA 2011 Department

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

Core-Collapse Supernova Simulation A Quintessentially Exascale Problem

Core-Collapse Supernova Simulation A Quintessentially Exascale Problem Core-Collapse Supernova Simulation A Quintessentially Exascale Problem Bronson Messer Deputy Director of Science Oak Ridge Leadership Computing Facility Theoretical Astrophysics Group Oak Ridge National

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS Indrani Banerjee Indian Institute of Science Bangalore The work has been done in collaboration with Banibrata Mukhopadhyay

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Low Energy Neutrinos from Black Hole - Accretion Disks

Low Energy Neutrinos from Black Hole - Accretion Disks Low Energy Neutrinos from Black Hole - Accretion Disks Gail McLaughlin North Carolina State University General remarks about neutrinos from hot dense environments Detection of accretion disk neutrinos

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Sherwood Richers 1 Evan O Connor 2 Christian Ott 1 1 TAPIR, California Institute of Technology 2 CITA, University

More information

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física White dwarf dynamical interactions Enrique García-Berro Jornades de Recerca, Departament de Física CONTENTS 1. Introduction 2. Smoothed Particle Hydrodynamics 3. White dwarf mergers 4. White dwarf collisions

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

Asymmetric explosion of core-collapse supernovae

Asymmetric explosion of core-collapse supernovae Asymmetric explosion of core-collapse supernovae Rémi Kazeroni (CEA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA Garching) Journées des doctorants - IRFU 01/07/2015 About me Rémi Kazeroni (IRFU/SAp) Advisor:

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller Supernovae Tomek Plewa ASC Flash Center, University of Chicago Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller MPA für Astrophysik, Garching FLASH, Nov. 2005 1 Outline Non-exotic

More information

Core-Collapse Supernovae and Neutrino Transport

Core-Collapse Supernovae and Neutrino Transport Core-Collapse Supernovae and Neutrino Transport SFB TR7 Gravitational Wave Astronomy Video Seminar B.Müller 5.7.2010 Core Collapse Supernovae, General Relativity & Gravitational Waves Core collapse supernova

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators 2013/12/3 MMCOCOS@Fukuoka University 3D Simulations of Core-collapse Supernovae Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators Plan 1. Brief summary

More information

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution M. Liebendörfer, O. E. B. Messer, A. Mezzacappa, G. Martinez-Pinedo, W. R. Hix, F.-K. Thielemann University of Tennessee, Oak

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Theory of core-collapse supernovae

Theory of core-collapse supernovae Theory of core-collapse supernovae H.-Th. Janka 1, K. Langanke 2,3, A. Marek 1, G. Martínez-Pinedo 2, B. Müller 1 1 Max-Planck Institut für Astrophysik, Garching, Germany 2 Gesellschaft für Schwerionenforschung,

More information

PHYS Further Stellar Evolution Prof. Maurizio Salaris

PHYS Further Stellar Evolution Prof. Maurizio Salaris PHYS 383 - Further Stellar Evolution Prof. Maurizio Salaris PROF. 1 Standard Big Bang model and the problem of galaxy formation Stellar evolution can put independent constraints on the cosmological model

More information

Friday, April 29, 2011

Friday, April 29, 2011 Lecture 29: The End Stages of Massive Stellar Evolution & Supernova Review: Elemental Abundances in the Solar System Review: Elemental Abundances in the Solar System Synthesized by S and R-processes Review:

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses I. Preliminaries The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries I. Preliminaries Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Supernovae, Gamma-Ray Bursts, and Stellar Rotation

Supernovae, Gamma-Ray Bursts, and Stellar Rotation Supernovae, Gamma-Ray Bursts, and Stellar Rotation When Massive Stars Die, How Do They Explode? Neutron Star + Neutrinos Neutron Star + Rotation Black Hole + Rotation Colgate and White (1966) Arnett Wilson

More information

Neutrinos Probe Supernova Dynamics

Neutrinos Probe Supernova Dynamics Neutrinos Probe Supernova Dynamics Irene Tamborra GRAPPA Institute, University of Amsterdam Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 18, 2014 Outline Supernova explosion

More information

Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA ab, Stephen W. Bruenn c, J. Austin Harris a, Merek Austin Chertkow a, W. Raphael Hix ba, Anthony Mezzacappa ba, O. E. Bronson

More information

The Deflagration Phase of Type Ia SNe

The Deflagration Phase of Type Ia SNe The Center for Astrophysical Thermonuclear Flashes The Deflagration Phase of Type Ia SNe Alan Calder ASC FLASH Center Type Ia Supernova Team Type Ia Supernovae and Cosmology August 5, 2004 An Advanced

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Life of a High-Mass Stars

Life of a High-Mass Stars Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Neutrino Signature from Multi-D Supernova Models

Neutrino Signature from Multi-D Supernova Models Neutrino Signature from Multi-D Supernova Models David Radice 1,2 A. Burrows, J. C. Dolence, S. Seadrow, M. A. Skinner, D. Vartanyan, J. Wallace 1 Research Associate, Princeton University 2 Schmidt Fellow,

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Advanced Stellar Astrophysics

Advanced Stellar Astrophysics v Advanced Stellar Astrophysics William K. Rose University of Maryland College Park CAMBRIDGE UNIVERSITY PRESS Contents Preface xiii Star formation and stellar evolution: an overview 1 1 A short history

More information

Explosion Models of CoreCollapse Supernovae

Explosion Models of CoreCollapse Supernovae SFB-TR7 Hirschegg 2013: Astrophysics and Nuclear Structure Hirschegg, Austria, January 26 February 1, 2013 Explosion Models of CoreCollapse Supernovae Status of Modeling at Garching Hans-Thomas Janka Max

More information

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Powering Anomalous X-ray Pulsars by Neutron Star Cooling Powering Anomalous X-ray Pulsars by Neutron Star Cooling Jeremy S. Heyl Lars Hernquist 1 Lick Observatory, University of California, Santa Cruz, California 95064, USA ABSTRACT Using recently calculated

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry of SN1987A?

Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry of SN1987A? PASJ: Publ. Astron. Soc. Japan 56, 663 669, 2004 August 25 c 2004. Astronomical Society of Japan. Importance of Prolate Neutrino Radiation in Core-Collapse Supernovae: The Reason for the Prolate Geometry

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences HPC in Physics (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences 1 Gravitational Wave Einstein s Unfinished Symphony Marcia Bartuciak Predicted

More information

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012 January 25, 2012 Overview Supernovae Supernovae Supernova types Core collapse model Neutrino properties Detection of neutrinos Data and analysis Experiment results Comparison with results Possible neutrino

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

The Ledoux Criterion for Convection in a Star

The Ledoux Criterion for Convection in a Star The Ledoux Criterion for Convection in a Star Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook August 2, 2012 Contents 1 Mass Distribution and Gravitational Fields

More information

New Results from 3-D supernova models with spectral neutrino diffusion

New Results from 3-D supernova models with spectral neutrino diffusion New Results from 3-D supernova models with spectral neutrino diffusion Stuart C. Whitehouse and Matthias Liebendörfer Department of Physics, University of Basel, Switzerland Overview Introduction The Isotropic

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Internal conversion electrons and SN light curves

Internal conversion electrons and SN light curves Internal conversion electrons and SN light curves International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics September 23, 2010, Erice Ivo Rolf Seitenzahl DFG Emmy Noether Research

More information

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) What do we want to learn about supernovae? What explodes? progenitors, evolution towards explosion How does it explode? explosion mechanisms

More information

Lecture 13. Presupernova Models, Core Collapse and Bounce

Lecture 13. Presupernova Models, Core Collapse and Bounce Lecture 13 Presupernova Models, Core Collapse and Bounce Generalities When Massive Stars Die, How Do They Explode? Black hole Neutron Star + Neutrinos Neutron Star + Rotation Colgate and White (1966) Arnett

More information

Supernova theory: simulation and neutrino fluxes

Supernova theory: simulation and neutrino fluxes Supernova theory: simulation and neutrino fluxes K G Budge 1, C L Fryer and A L Hungerford CCS-2, Los Alamos National Laboratory 2 M.S. D409, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545,

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010 Modelling Cosmic Explosions Wolfgang Hillebrandt MPI für Astrophysik Garching DEISA PRACE Symposium Barcelona May 10 12, 2010 Outline of the talk Supernova types and phenomenology (in brief) Models of

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

Supernova Nucleosynthesis

Supernova Nucleosynthesis Supernova Nucleosynthesis Andrea Kulier Princeton University, Department of Astrophysical Sciences November 25, 2009 Outline o Overview o Core-Collapse Supernova Nucleosynthesis o Explosive Nucleosynthesis

More information

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A

Supernovae. Richard McCray University of Colorado. 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Supernovae Richard McCray University of Colorado 1. Supernovae 2. Supernova Remnants 3. Supernova 1987A Why are supernovae interesting? They are the source of all elements in the universe (except H, He,

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Stars with Mⵙ go through two Red Giant Stages

Stars with Mⵙ go through two Red Giant Stages Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Death of Stars Nuclear reactions in small stars How stars disperse carbon How low mass stars die The nature of white dwarfs

More information

Explosion Models of Massive Stars

Explosion Models of Massive Stars SFB-TR7 Fifty-One Ergs NC State University, Raleigh, North Carolina, May 13th 17th, 2013 Explosion Models of Massive Stars Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Heinzi-Ado Arnolds

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae Franziska Treffert (Matrikelnummer: 2044556) Seminar zur Kernstruktur und nuklearen Astrophysik Prof.

More information

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star Star Death High Mass Star Red Supergiant A star with mass between 8 M and 20 M will become a red supergiant and will subsequently experience a supernova explosion. The core of this star will have a mass

More information

R-process in Low Entropy Neutrino Driven Winds

R-process in Low Entropy Neutrino Driven Winds R-process in Low Entropy Neutrino Driven Winds E. Baron John J. Cowan, Tamara Rogers, 1 and Kris Gutierrez 2 Dept. of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 131, Norman, OK 73019-0225

More information

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni SN1987A before(right) and during the explosion Supernova Explosion Qingling Ni Overview Core-Collapse supernova (including Type II supernova) -Mechanism: collapse+rebound Type Ia supernova -Mechanism:

More information

Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis * 235. Nuclear Binding Energy.

Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis * 235. Nuclear Binding Energy. Nuclear Binding Energy Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis http://apod.nasa.gov/apod/astropix.html Below iron can repack the nucleons into heavier nuclei and gain energy

More information

Supernova Explosion Mechanisms

Supernova Explosion Mechanisms SFB-TR7 SFB-TR27 International Conference Physics of Neutron Stars 2011 St. Petersburg, Russia, July 11-15, 2011 Supernova Explosion Mechanisms Advancing to the 3rd Dimension: Supernova Models Confronting

More information

Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae

Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae a, W. Raphael Hix ba, Merek A. Chertkow a, Stephen W. Bruenn c, Eric J. Lentz ab, O. E. Bronson Messer

More information

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle Sponsored by the Chemistry and Physics Societies of the Open University S381 The Energetic Universe Block 2 Nucleosynthesis and Stellar Remnants Paul Ruffle Visiting Research Fellow Astrophysics Research

More information

A1199 Are We Alone? " The Search for Life in the Universe

A1199 Are We Alone?  The Search for Life in the Universe ! A1199 Are We Alone? " The Search for Life in the Universe Instructor: Shami Chatterjee! Summer 2018 Web Page: http://www.astro.cornell.edu/academics/courses/astro1199/! HW2 now posted...! So far: Cosmology,

More information

Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis * 235. Nuclear Binding Energy.

Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis * 235. Nuclear Binding Energy. Nuclear Binding Energy Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis http://apod.nasa.gov/apod/astropix.html Below iron can repack the nucleons into heavier nuclei and gain energy

More information

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Tobias Fischer University of Wroclaw (Poland) Bonn workshop on Formation and Evolution of Neutron Stars

More information

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University The r-process of nucleosynthesis: overview of current status Gail McLaughlin North Carolina State University The popular press says that the gold and platinum in wedding bands is made in neutron star mergers

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information