Neutrino-Driven Convection and Neutrino-Driven Explosions

Size: px
Start display at page:

Download "Neutrino-Driven Convection and Neutrino-Driven Explosions"

Transcription

1 Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (U. Arizona)

2 1D simulations (Rad-hydro) Wilson 85 Bethe & Wilson 85 Liebendoerfer et al. 01 Rampp & Janka 02 Buras et al. 03 Thompson et al. 03 Liebendoer et al. 05 Kitaura et al. 06 Burrows et al. 07 Neutrino mechanism suggested No Explosions (Except lowest masses) Spherical symmetry! No GW emission?

3 Fundamental Question of Core-Collapse Theory Steady-State Accretion Explosion?

4 Relax 1D assumption?

5

6 6

7 7

8 Neutrino Mechanism: Neutrino-heated convection Standing Accretion Shock Instability (SASI) Explosions? Maybe Acoustic Mechanism: Explosions but caveats. Magnetic Jets: Only for very rapid rotations Collapsar?

9 Fundamental Question of Core-Collapse Theory Steady-State Accretion Explosion?

10 Why is it easier to explode in 2D compared to 1D?

11 Two Paths to the Solution Detailed 3D radiation-hydrodynamic simulations ( Accurate energies, NS masses, nucleo., etc.) Parameterizations that capture essential physics (Tease out fundamental mechanisms)

12 Burrows & Goshy 93 Steady-state solution (ODE) Explosions! (No Solution) L νe Critical Curve Steady-state accretion (Solution) Ṁ

13 Explosion is a global, boundaryvalue problem 13

14 Explosion is a global, boundaryvalue problem In other words: What neutrino forcing is required to change the global structure between the NS and shock such that explosions occur? 14

15 Explosion is a global, boundaryvalue problem This also means that one can t easily and cleanly pick out one simple diagnostic Hence... Mazurek s Law 15

16 Is a critical luminosity relevant in hydrodynamic simulations? 1D 2D Convection and SASI?

17 How do the critical luminosities differ between 1D and 2D?

18 Murphy & Burrows 08

19 Murphy & Burrows 08

20 Nordhaus et al

21 SASI activity as key to successfu 3.0 Lνe [1052 erg/s] D D D D D D Ṁ[M /s] Hanke et al

22 CCSNE NEUTRINO MECH L e (10 52 erg s 1 ) LS220 LS180 STOS 1D 2D Ṁ (M s 1 ) Couch

23 Why is critical luminosity of multi-d simulations ~70% of 1D?

24 Comparison of Timescales (Thompson et al. 00, Janka 01, Thompson et al. 03, Murphy et al. 08, Pejcha 11, Fernandez 12) τ adv = Δr gain vr Q. τ q = E Q. M gain τ adv > 1 τ ~ q

25 ΔS Q T 1D one time mulit-d distribution of times More heating?.

26 2D & 3D critical luminosity lower than 1D Turbulence plays an important role!

27 A Theoretical Framework for Successful Explosions L ν + Turbulence Model Murphy & Meakin 2011 Ṁ

28 A Theoretical Framework for Successful Explosions L ν + Turbulence Model Ṁ Calibrate with 3D Simulations Murphy et al. 2012, in prep

29 A Theoretical Framework for Successful Explosions L ν + Turbulence Model Ṁ

30 A Theoretical Framework for Successful Explosions L ν + Turbulence Model Ṁ 1D Rad-hydro simulations Realistic and quantitative explosions Systematic exploration

31 N 2 < 0, s < 0 Convectively unstable N 2 > 0 N 2 > 0 Stably stratified (gravity waves)

32 N 2 < 0 Convectively unstable N 2 > 0 D p Over shoot N 2 > 0 Stably stratified (gravity waves) b(r) = N 2 dr = buoyant accel.

33 N 2 < 0 Convectively unstable F = F rad + F conv F conv = C p ρ(v T ) N 2 > 0 D p Over shoot N 2 > 0 Stably stratified (gravity waves) b(r) = N 2 dr = buoyant accel. F = F rad

34 F = F rad + F conv F conv = C p ρ(v T )

35 Need a More General Turbulence Model (Reynolds Decomposition)

36 Back to the Beginning 36

37 Reynolds Decomposition Hydro Equations Mean-Field Equations New steady-state solutions & Critical Curve 37

38 Reynolds-Averaged Equations Murphy & Meakin

39

40

41

42 Reynolds-Averaged Equations Murphy & Meakin

43 Turbulent Moment Equations Equations for 2nd order moments and more... 43

44 Turbulent Moment Equations Equations for 2nd order moments Depends upon higher order moments 44

45 Turbulent Moment Equations Equations for 2nd order moments A Closure Problem! 45

46 Closure Strategies Local Algebraic Local Single-Point Global 46

47 Closure Strategies Local Algebraic Local Single-Point Global 47

48 Closure Strategies Local Algebraic Local Single-Point Global MLT is a classic example 48

49 Closure Strategies Local Algebraic Local Single-Point Global Local models for these 49

50 Closure Strategies Local Algebraic Local Single-Point Global 50

51 Global Closure Examples Earth s Atmospheric Convective Layer Tennekes

52 Global Closure Examples Stellar Convection Meakin & Arnett

53 Global Closure For CCSNe Use And simulations to inform assumptions about profiles 53

54 Comparison of Timescales Q. M gain Heuristic & Emperical See... Thompson et al. 00 Janka 01 Thompson et al. 03 Murphy et al. 08 Buras 06 Pejcha 11 Fernandez 12

55 Comparison of Timescales Q. M gain

56 Comparison of Timescales

57 Comparison of Timescales

58 Comparison of Timescales

59 59

60 What about the SASI? 60

61 What dominates the post shock flow? Convection, SASI... both? 61

62 Compare nonlinear theories for convection and SASI with post shock flow SASI nonlinear theory? 62

63 Compare nonlinear theories for convection and SASI with post shock flow Convection nonlinear theory 100+ years In CCSN...Murphy & Meakin

64 Compare nonlinear theories for convection and SASI with post shock flow Convection nonlinear theory 100+ years In CCSN...Murphy & Meakin 2012 We can test this theory with 3D simulations 64

65 65

66

67

68

69

70

71

72 Nonlinear Convection is Consistent with Post Shock Flow 1. Consistent buoyancy flux profile 2. Consistent Reynolds stresses 3. Buoyant driving balances dissipation 4. Analytic scaling between buoyant flux and neutrino driving 5. Expansion of shock due to turbulent ram pressure

73 Nonlinear Convection is Consistent with Post Shock Flow But what about the SASI?

74 A theory for neutrino-driven explosions A turbulence model for CCSNe Post shock flow is consistent with nonlinear convection theory

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (LANL) 1D simulations

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators 2013/12/3 MMCOCOS@Fukuoka University 3D Simulations of Core-collapse Supernovae Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators Plan 1. Brief summary

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D The development of neutrino-driven convection in core-collapse supernovae: vs 3D Rémi Kazeroni (CEA/MPA) B. Krueger (CEA/LANL), J. Guilet (MPA/CEA), T. Foglizzo (CEA) FOE 2017, Corvallis, OR June 5, 2017

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

An experimental approach to shock instability during core collapse

An experimental approach to shock instability during core collapse An experimental approach to shock instability during core collapse Thierry Foglizzo Frédéric Masset Jérôme Guilet Gilles Durand CEA Saclay, UNAM, DAMTP Outline 1- neutrino driven convection and the SASI:

More information

Asymmetric explosion of core-collapse supernovae

Asymmetric explosion of core-collapse supernovae Asymmetric explosion of core-collapse supernovae Rémi Kazeroni (CEA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA Garching) Journées des doctorants - IRFU 01/07/2015 About me Rémi Kazeroni (IRFU/SAp) Advisor:

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

Progress in Multi-Dimensional Stellar Evolution

Progress in Multi-Dimensional Stellar Evolution Progress in Multi-Dimensional Stellar Evolution Casey A. Meakin Steward Observatory University of Arizona July 2006 David Arnett (Arizona), Patrick Young (Arizona/LANL) Outline Astronomical Perspective

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Neutrino Signature from Multi-D Supernova Models

Neutrino Signature from Multi-D Supernova Models Neutrino Signature from Multi-D Supernova Models David Radice 1,2 A. Burrows, J. C. Dolence, S. Seadrow, M. A. Skinner, D. Vartanyan, J. Wallace 1 Research Associate, Princeton University 2 Schmidt Fellow,

More information

Supernova Explosion Mechanisms

Supernova Explosion Mechanisms SFB-TR7 SFB-TR27 International Conference Physics of Neutron Stars 2011 St. Petersburg, Russia, July 11-15, 2011 Supernova Explosion Mechanisms Advancing to the 3rd Dimension: Supernova Models Confronting

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Supernovae, Gamma-Ray Bursts, and Stellar Rotation

Supernovae, Gamma-Ray Bursts, and Stellar Rotation Supernovae, Gamma-Ray Bursts, and Stellar Rotation When Massive Stars Die, How Do They Explode? Neutron Star + Neutrinos Neutron Star + Rotation Black Hole + Rotation Colgate and White (1966) Arnett Wilson

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Explosion Models of CoreCollapse Supernovae

Explosion Models of CoreCollapse Supernovae SFB-TR7 Hirschegg 2013: Astrophysics and Nuclear Structure Hirschegg, Austria, January 26 February 1, 2013 Explosion Models of CoreCollapse Supernovae Status of Modeling at Garching Hans-Thomas Janka Max

More information

A Simple Approach to the Supernova Progenitor-Explosion Connection

A Simple Approach to the Supernova Progenitor-Explosion Connection A Simple Approach to the Supernova Progenitor-Explosion Connection Bernhard Müller Queen's University Belfast Monash Alexander Heger, David Liptai, Joshua Cameron (Monash University) Many potential/indirect

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Core-Collapse Supernovae and Neutrino Transport

Core-Collapse Supernovae and Neutrino Transport Core-Collapse Supernovae and Neutrino Transport SFB TR7 Gravitational Wave Astronomy Video Seminar B.Müller 5.7.2010 Core Collapse Supernovae, General Relativity & Gravitational Waves Core collapse supernova

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

arxiv: v1 [astro-ph.sr] 22 Feb 2017

arxiv: v1 [astro-ph.sr] 22 Feb 2017 The Lives and Death-Throes of Massive Stars Proceedings IAU Symposium No. 329, 2017 A.C. Editor, B.D. Editor & C.E. Editor, eds. c 2017 International Astronomical Union DOI: 00.0000/X000000000000000X The

More information

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport F.O.E Conference June 3rd, 2015 Raleigh NC Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport Kuo-Chuan Pan Universität Basel, Switzerland (arxiv:1505.02513) The

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

Formation and evolution of BH and accretion disk in Collapsar

Formation and evolution of BH and accretion disk in Collapsar Formation and evolution of BH and accretion disk in Collapsar Yuichiro Sekiguchi National Astronomical Observatory of Japan arxiv : 1009.5303 Motivation Collapsar model of GRB Central engine : Black hole

More information

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2015/6/22@NAOJ International Symposium on Physics and Astronomy of Neutron Stars and Supernovae How equation of state affects explosions of core-collapse supernovae Tomoya Takiwaki (RIKEN) Collaborator:

More information

arxiv: v2 [astro-ph.he] 6 Apr 2017

arxiv: v2 [astro-ph.he] 6 Apr 2017 DRAFT VERSION APRIL 1, 217. Preprint typeset using LATEX style emulateapj v. 12/16/11 GENERAL RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

More information

Magnetorotational Instability: Plans at MPA, IPP and TU Berlin

Magnetorotational Instability: Plans at MPA, IPP and TU Berlin Magnetorotational Instability: Plans at MPA, IPP and TU Berlin Wolf-Christian Müller 1, Ewald Müller 2, Thomas Janka 2, Frank Jenko 3 1 Max-Planck-Institut für Plasmaphysik, Garching 2 Max-Planck-Institut

More information

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn

Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn Recent 2D/3D Core-Collapse Supernovae Simulations Results Obtained with the CHIMERA Code Stephen W. Bruenn bruenn@fau.edu Core Collapse Supernovae 101 1 2 neutrinos 3 4 5 shock 6 7 Core Collapse Supernovae

More information

arxiv: v1 [astro-ph.he] 13 Nov 2018

arxiv: v1 [astro-ph.he] 13 Nov 2018 Preprint 15 November 2018 Compiled using MNRAS LATEX style file v3.0 On the importance of progenitor asymmetry to shock revival in core-collapse supernovae Hiroki Nagakura, 1,2 Kazuya Takahashi 3 and Yu

More information

Rosalba Perna. (University of

Rosalba Perna. (University of Rosalba Perna (University of Colorado@Boulder) Swift observations opened a new window Pre-Swift Pre-Swift Pre-Swift belief belief belief [figure courtesy of R. Mockovitch]. of surprises.with PLATEAUS &

More information

Fast-time variations of supernova neutrino fluxes and detection perspectives

Fast-time variations of supernova neutrino fluxes and detection perspectives Fast-time variations of supernova neutrino fluxes and detection perspectives Irene Tamborra GRAPPA Institute, University of Amsterdam Xmas Workshop 2013 Bari, December 23, 2013 Outline Supernova explosion

More information

2D and 3D core-collapse supernovae simulation

2D and 3D core-collapse supernovae simulation 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code S. W. Bruenn 1, A. Mezzacappa 2, W. R. Hix 2, J. M. Blondin 3, P. Marronetti 1, O. E. B. Messer 4, C. J. Dirk 1 and

More information

arxiv: v2 [astro-ph.he] 3 Jul 2016

arxiv: v2 [astro-ph.he] 3 Jul 2016 Preprint typeset using L A TEX style emulateapj v. 04/17/13 LINKS BETWEEN THE SHOCK INSTABILITY IN CORE-COLLAPSE SUPERNOVAE AND ASYMMETRIC ACCRETIONS OF ENVELOPES Kazuya Takahashi 1,2, Wakana Iwakami 3,4,

More information

Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview

Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview arxiv:1602.05576v1 [astro-ph.sr] 17 Feb 2016 Ann. Rev. Nuc. Part. Sci. 2016. 66:1 35 This article s doi: 10.1146/(DOI) Copyright c 2016 by Annual Reviews. All rights reserved First page note to print below

More information

Neutrinos Probe Supernova Dynamics

Neutrinos Probe Supernova Dynamics Neutrinos Probe Supernova Dynamics Irene Tamborra GRAPPA Institute, University of Amsterdam Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 18, 2014 Outline Supernova explosion

More information

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Lecture 14 Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Baade and Zwicky, Proceedings of the National Academy of Sciences, (1934) With all reserve we advance the view that a supernova

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

Simulations of magnetic fields in core collapse on small and large scales

Simulations of magnetic fields in core collapse on small and large scales Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament

More information

arxiv: v1 [astro-ph.he] 24 Sep 2014

arxiv: v1 [astro-ph.he] 24 Sep 2014 SUBMITTED TO APJ. SEPTEMBER 24, 214 Preprint typeset using LATEX style emulateapj v. 5/2/11 NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE

More information

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Sherwood Richers 1 Evan O Connor 2 Christian Ott 1 1 TAPIR, California Institute of Technology 2 CITA, University

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE

LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE The Astrophysical Journal, 656:366Y371, 2007 February 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. LINEAR GROWTH OF SPIRAL SASI MODES IN CORE-COLLAPSE SUPERNOVAE

More information

New Results from 3-D supernova models with spectral neutrino diffusion

New Results from 3-D supernova models with spectral neutrino diffusion New Results from 3-D supernova models with spectral neutrino diffusion Stuart C. Whitehouse and Matthias Liebendörfer Department of Physics, University of Basel, Switzerland Overview Introduction The Isotropic

More information

Low Energy Neutrinos from Black Hole - Accretion Disks

Low Energy Neutrinos from Black Hole - Accretion Disks Low Energy Neutrinos from Black Hole - Accretion Disks Gail McLaughlin North Carolina State University General remarks about neutrinos from hot dense environments Detection of accretion disk neutrinos

More information

arxiv: v2 [astro-ph.he] 22 Jun 2015

arxiv: v2 [astro-ph.he] 22 Jun 2015 Preprint typeset using L A TEX style emulateapj v. 01//1 THE THREE DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR SEAN M. COUCH 1, EMMANOUIL CHATZOPOULOS,6, W. DAVID ARNETT,, AND F.X. TIMMES

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Max-Planck-Institut für Astrophysik Introduction Figure from Janka et al. (2012) CCSNe = death of

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution

Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution Electron Flavor Neutrinos in Stellar Core Collapse and Postbounce Evolution M. Liebendörfer, O. E. B. Messer, A. Mezzacappa, G. Martinez-Pinedo, W. R. Hix, F.-K. Thielemann University of Tennessee, Oak

More information

arxiv: v1 [astro-ph] 28 Nov 2008

arxiv: v1 [astro-ph] 28 Nov 2008 arxiv:0811.4648v1 [astro-ph] 28 Nov 2008 Nucleosynthesis Calculations from Core-Collapse Supernovae, Patrick Young ac, Michael Bennett ad, Steven Diehl abe, Falk Herwig adg, Raphael Hirschi ad, Aimee Hungerford

More information

Friday, April 29, 2011

Friday, April 29, 2011 Lecture 29: The End Stages of Massive Stellar Evolution & Supernova Review: Elemental Abundances in the Solar System Review: Elemental Abundances in the Solar System Synthesized by S and R-processes Review:

More information

Explosion Models of Massive Stars

Explosion Models of Massive Stars SFB-TR7 Fifty-One Ergs NC State University, Raleigh, North Carolina, May 13th 17th, 2013 Explosion Models of Massive Stars Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Heinzi-Ado Arnolds

More information

Turbulence models and excitation of solar oscillation modes

Turbulence models and excitation of solar oscillation modes Center for Turbulence Research Annual Research Briefs Turbulence models and excitation of solar oscillation modes By L. Jacoutot, A. Wray, A. G. Kosovichev AND N. N. Mansour. Motivation and objectives

More information

!"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.:

!#$%&%'()*%+),#-./(0)+1,-.%'#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56,$%+)-+7-.$,$(-859.: !"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.: Kei Kotake!National Astronomical Observatory of Japan" NuSYM11 @ Smith college, Northampton 18 th June 2011 The supernova

More information

arxiv: v1 [astro-ph.he] 23 Nov 2015

arxiv: v1 [astro-ph.he] 23 Nov 2015 SUBMITTED TO APJ ON 15 NOVEMBER 23 Preprint typeset using LATEX style emulateapj v. 01/23/15 TWO DIMENSIONAL CORE-COLLAPSE SUPERNOVA EXPLOSIONS AIDED BY GENERAL RELATIVITY WITH MULTIDIMENSIONAL NEUTRINO

More information

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller Supernovae Tomek Plewa ASC Flash Center, University of Chicago Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller MPA für Astrophysik, Garching FLASH, Nov. 2005 1 Outline Non-exotic

More information

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae David Radice R. Haas, P. Mösta, L. Roberts, C.D. Ott, E. Schnetter Core-Collapse Supernovae Core-Collapse Supernovae in Numbers ~ (50

More information

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University Rebecca Surman Union College 1 Three Relevant Nucleosynthesis Processes Explosive Burning e. g. shock moves

More information

Spontaneous Symmetry Breaking in Supernova Neutrinos

Spontaneous Symmetry Breaking in Supernova Neutrinos NOW 2014, 7 14 September Crab Nebula 2014, Otranto, Lecce, Italy Spontaneous Symmetry Breaking in Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Some Developments since NOW

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

Rosalba Perna. (Stony Brook University)

Rosalba Perna. (Stony Brook University) Rosalba Perna (Stony Brook University) Swift observations opened a new window Pre-Swift Pre-Swift Pre-Swift belief belief. of surprises.with PLATEAUS & FLARES [figure courtesy of R. Mockovitch] PLATEAUS

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

Mass ejection from neutron-star mergers in numerical relativity

Mass ejection from neutron-star mergers in numerical relativity Mass ejection from neutron-star mergers in numerical relativity Masaru Shibata Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University I. Brief introduction Outline

More information

RADIATION FROM ACCRETION ONTO BLACK HOLES

RADIATION FROM ACCRETION ONTO BLACK HOLES RADIATION FROM ACCRETION ONTO BLACK HOLES Accretion via MHD Turbulence: Themes Replacing dimensional analysis with physics MRI stirs turbulence; correlated by orbital shear; dissipation heats gas; gas

More information

arxiv: v2 [astro-ph.sr] 25 Oct 2012

arxiv: v2 [astro-ph.sr] 25 Oct 2012 Draft version October 26, 212 Preprint typeset using L A TEX style emulateapj v. 5/2/11 NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY

More information

From supernovae to neutron stars

From supernovae to neutron stars From supernovae to neutron stars Yudai Suwa 1,2 1 Yukawa Institute for Theoretical Physics, Kyoto University 2 Max Planck Institute for Astrophysics, Garching Yudai Suwa, NUFRA215 @ Kemer, Turkey 2 /25

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

Detection of Gravitational Waves and Neutrinos from Astronomical Events

Detection of Gravitational Waves and Neutrinos from Astronomical Events Detection of Gravitational Waves and Neutrinos from Astronomical Events Jia-Shu Lu IHEP,CAS April 18, 216 JUNO Neutrino Astronomy and Astrophysics Seminar 1 / 24 Outline Sources of both GW and neutrinos.

More information

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars from jet penetrability to massive stars, Yudai Suwa a and Kunihito Ioka c,d a Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan b Department of Science and Engineering,

More information

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences HPC in Physics (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences 1 Gravitational Wave Einstein s Unfinished Symphony Marcia Bartuciak Predicted

More information

Ultra-stripped Type Ic supernovae generating double neutron stars

Ultra-stripped Type Ic supernovae generating double neutron stars Ultra-stripped Type Ic supernovae generating double neutron stars Yudai Suwa Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto U. Collaboration with: T. Yoshida (U. Tokyo),

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

The Ledoux Criterion for Convection in a Star

The Ledoux Criterion for Convection in a Star The Ledoux Criterion for Convection in a Star Marina von Steinkirch, steinkirch@gmail.com State University of New York at Stony Brook August 2, 2012 Contents 1 Mass Distribution and Gravitational Fields

More information

arxiv: v1 [astro-ph] 16 Oct 2007

arxiv: v1 [astro-ph] 16 Oct 2007 Effect of Rotation on the Stability of a Stalled Cylindrical Shock and its Consequences for Core-Collapse Supernovae Tatsuya Yamasaki and Thierry Foglizzo arxiv:0710.3041v1 [astro-ph] 16 Oct 2007 Service

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger end-to-end physics of NS mergers GRB + afterflow binary stellar evolution (10 6-10 9 years) Final inspiral (minutes) gravitational

More information

Re-research on the size of proto-neutron star in core-collapse supernova

Re-research on the size of proto-neutron star in core-collapse supernova Vol 17 No 3, March 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(03)/1147-05 Chinese Physics B and IOP Publishing Ltd Re-research on the size of proto-neutron star in core-collapse supernova Luo Zhi-Quan(

More information

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology, Pasadena,

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

Weak Interaction Physics in Core-Collapse Supernova Simulation

Weak Interaction Physics in Core-Collapse Supernova Simulation Weak Interaction Physics in Core-Collapse Supernova Simulation Bronson Messer Oak Ridge Leadership Computing Facility & Theoretical Astrophysics Group Oak Ridge National Laboratory MICRA 2011 Department

More information

arxiv: v1 [astro-ph.sr] 27 Oct 2010

arxiv: v1 [astro-ph.sr] 27 Oct 2010 Astrophysical Dynamics: From Galaxies to Stars Proceedings IAU Symposium No. 271, 2011 Nic Brummell & Sacha Brun, eds. c 2011 International Astronomical Union DOI: 00.0000/X000000000000000X Time-dependent

More information

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

More information

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review]

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review] Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv:0809.0695, CQG topical review] Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology,

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information