Nuclear physics input for the r-process

Size: px
Start display at page:

Download "Nuclear physics input for the r-process"

Transcription

1 Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute

2 Outline 1 Introduction 2 Nucleosynthesis in supernova neutrino-driven winds 3 Nucleosynthesis in compact-object mergers

3 Making Gold in Nature: r-process nucleosynthesis Solar r abundances N= Known mass Known half life r process waiting point (ETFSI Q) N=126 r process path N=184 The r-process requires the knowledge of the properties of extremely neutron-rich nuclei: Nuclear masses. Beta-decay half-lives. Neutron capture rates. Fission rates and yields.

4 r-process Astrophysical sites Core-collapse supernova Neutrino-winds from protoneutron stars. Aspherical explosions, Jets, Magnetorotational Supernova,... [Winteler et al, ApJ 750, L22 (2012); Mösta et al, arxiv: ] Neutron star mergers Matter ejected ( 0.01 M ) dynamically during merger. Electromagnetic emission from radioactive decay of r-process nuclei [KiloNova, Metzger et al (20), Roberts et al (2011), Bauswein et al (2013)] What is the additional contribution from the accretion disk?

5 Role of weak interactions Main processes: ν e + n p + e ν e + p n + e + Neutrino interactions determine the proton to neutron ratio. Neutron-rich ejecta: [ ] E νe E νe > 4 np L νe [ ] L νe 1 E νe 2 np 5 Neutrino cooling and Neutrino-driven wind 4 νe,µ,τ, νe,µ,τ neutron-rich ejecta: r-process R in km 3 Ni proton-rich ejecta: νp-process We need accurate knowledge of ν e and ν e spectra 2 Rns ~ Rν PNS 1.4 n, p νp-process r-process α, p α, p, nuclei α, n α, n, nuclei M(r) in M Si He O 3 νe,µ,τ, νe,µ,τ

6 Neutrino interactions at high densities Most of Equations of State treat neutrons and protons as non-interacting (quasi)particles that move in a mean-field potential U n,p (ρ, T, Y e ). E n = p2 n 2m + m n + U n n µ n µ e E p = p2 p 2m + m p + U p p Q = m n m p + U n U p ν e absorption opacity affected by final state electron blocking ( χ(e ν ) (E ν + m + U) 2 Eν + m ) + U µ e exp, U = U n U p kt ν e absorption affected by energy threshold ( U). χ(e ν ) (E ν m U) 2 µ p E ν > m + U larger symmetry energy (larger U) implies: i) the larger the energy difference between ν e and ν e ; ii) smaller electron flavor luminosities.

7 Constrains in the symmetry energy Combination nuclear physics experiments and astronomical observations (Lattimer & Lim 2013) Isobaric Analog States (Danielewicz & Lee 2013) E sym [MeV] Danielewicz & Lee 2013 IAS Danielewicz & Lee 2013 IAS+Skins Lattimer & Lim 2013 DD2 NL3 TM1 TMA SFHo SFHx FSUgold IUFSU LS180 LS n B [fm -3 ] U [MeV] DD2 NL3 TM1 TMA SFHo SFHx FSUgold IUFSU n B [fm -3 ] Figures from Matthias Hempel (Basel)

8 Impact on neutrino luminosities and Y e evolution 1D Boltzmann transport radiation simulations (artificially induced explosion) for a 11.2 M progenitor based on the DD2 EoS (Stefan Typel and Matthias Hempel). Luminosity [ergs/s] Eν [MeV] Time [s] ν e 11 ν e 9 ν x Time [s] Electron fraction Entropy [kb/baryon] Time [s] Time [s] Y e is moderately neutron-rich at early times and later becomes proton-rich. GMP, Fischer, Huther, J. Phys. G 41, (2014).

9 Nucleosynthesis Rel. abundance Elemental abundance Mass number A Charge number Z Elements between Zn and Mo, including 92 Mo, are produced Mainly neutron-deficient isotopes are produced No elements heavier than Mo (Z = 42) are produced.

10 Neutron decay The neutron-proton energy difference in the medium could be of the order of several s MeV. Neutron decay is an important source of low energy neutrinos. n p + e + ν e e + + n p + ν e This is part of the direct URCA process in neutron stars [Lattimer et al, (1991)] ν e 9 8 Opacity km Ν e e p n Ν e p n e Energy MeV Fischer, Lohs, GMP, Qian, in preparation no neutron decay channel including neutron decay channel t t [s] ν e 20 E ν [MeV] E ν [MeV]

11 Neutron star mergers: Short gamma-ray bursts and r-process Mergers are expected to eject around 0.01 M of very neutron rich-material (Y e 0.01). A similar amount of less neutron-rich material (Y e ) is expected from the accretion disk. They are also promising sources of gravitational waves. Observational signatures of the r-process?

12 Neutron-star mergers: Astrophysically robust ejecta mass fraction Korobkin, Rosswog, Arcones, & Winteler, MNRAS 426, 1940 (2012) Y e [g/cm 3 ] Y e Y i ns1.0-ns1.0 ns1.4-ns1.4 ns1.2-ns1.2 ns1.2-ns1.0 ns1.4-ns1.0 ns1.4-bh5 ns1.4-bh similar results: Bauswein, Goriely, Janka, ApJ 773, 78 (2013) Mass number A

13 General features r-process r-process abundance 200 Proton number (Z) N 1 r, 0 (Si = 6 ) Mass number (A) log(t s 1 ) Neutron number (N) Figure from Peter Möller.

14 Global mass models vs experiment Similar behaviour for all mass models. Problems in reproducing masses in transitional regions.

15 General features evolution in mergers r-process stars once electron fermi energy drops below MeV to allow for beta-decays (ρ 11 g cm 3 ). Important role of nuclear energy production. Increases temperature to values that allow for an (n, γ) (γ, n) equilibrium. r-process operates at moderate high entropies, s 50 0 k/nuc. Trajectories from simmulation A. Bauswein and H.-T. Janka. Log (ρ) (g cm -3 ) T/ 9 K de/dt (Mev nuc -1 s -1 ) FRDM MASS MODEL Time (s)

16 Final abundances different mass models neutron captures computed consistently for each mass model. Final abundances solar r-process abundances R n/seed 1920 FRDM MASS MODEL WS3 MASS MODEL -6 Final abundances HFB21 MASS MODEL DZ31 MASS MODEL A A J. Mendoza-Temis, G. Martinez-Pinedo, K. Langanke, A. Bauswein, H.-Th. Janka, in preparation.

17 Temporal evolution (selected phases) abundances abundances Final abundances Y n /Y h = 1 τ (n, γ) > τ β FRDM MASS MODEL -8-9 solar A Y e Y e abundances abundances Final abundances Y n /Y h = 1 τ (n, γ) > τ β DZ31 MASS MODEL -8-9 solar A Y e Y e

18 Role of N 90 (Telurium isotopes) Sn (MeV) FRDM DZ31 WS3 HFB 21 AME Te (Z=52) Isotopes Neutron Number Hakala et al, PRL 9, (2012) Van Schelt, et al, PRC 85, (2012)

19 Neutron Separation energies Cd isotopes Sn (MeV) FRDM DZ31 WS3 HFB 21 AME 2012 Cd (Z=48) Isotopes Neutron number FRDM mass model predicts rather low neutron separation energies approaching N 90 for Z 50.

20 Odd-even effects (Te isotopes) (3) (MeV) Te (Z = 52) Isotopes FRDM DZ31 WS3 HFB21 AME Neutron Number (3) = ( 1) N [2B e (Z, N) B e (Z, N + 1) B e (Z, N 1)] /2 All mass models have problems reproducing odd-even effects

21 The role of N 130 Sn (MeV) DZ31 WS3 HFB 21 FRDM 1 0 Yb (Z=70) Isotopes Neutron Number Both FRDM and HFB models predict a sudden drop in neutron separation energies approaching N 130 for Z 70.

Nuclear robustness of the r process in neutron-star mergers

Nuclear robustness of the r process in neutron-star mergers Nuclear robustness of the r process in neutron-star mergers Gabriel Martínez Pinedo International Nuclear Physics Conference Adelaide, Australia, September 11-16, 2016 Nuclear Astrophysics Virtual Institute

More information

Explosive nucleosynthesis of heavy elements:

Explosive nucleosynthesis of heavy elements: Explosive nucleosynthesis of heavy elements: an astrophysical and nuclear physics challenge Gabriel Martínez Pinedo NUSPIN 2017 GSI, Darmstadt, June 26-29, 2017 32 30 28 34 36 38 40 42 46 44 48 26 28 60

More information

Neutrinos in supernova evolution and nucleosynthesis

Neutrinos in supernova evolution and nucleosynthesis Neutrinos in supernova evolution and nucleosynthesis Gabriel Martínez Pinedo International School of Nuclear Physics 39th Course Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice,

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

Nobuya Nishimura Keele University, UK

Nobuya Nishimura Keele University, UK 7. Aug. 2014 @INT Studies of r-process nucleosynthesis based on recent hydrodynamical models of NS-NS mergers Nobuya Nishimura Keele University, UK The r-process: observational request - many r-rich Galactic

More information

Nucleosynthesis in core-collapse supernovae

Nucleosynthesis in core-collapse supernovae INT Program INT-12-2a Core-Collapse Supernovae: Models and Observable Signals Workshop: Nuclear and neutrino physics Nucleosynthesis in core-collapse supernovae Almudena Arcones Z Big Bang: H, He 20 28

More information

Nuclear physics impact on kilonova light curves

Nuclear physics impact on kilonova light curves Nuclear physics impact on kilonova light curves Gabriel Martínez Pinedo INT-JINA symposium: First multi-messenger observations of a neutron star merger and its implications for nuclear physics, INT, Seattle,

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Solar system abundances Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed. Contribution of all nucleosynthesis

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

r-process nucleosynthesis in neutron star mergers and associated macronovae events

r-process nucleosynthesis in neutron star mergers and associated macronovae events r-process nucleosynthesis in neutron star mergers and associated macronovae events Oleg Korobkin Stockholm University, Oskar Klein Centre, Sweden March 14, 2014 O. Korobkin () r-process in neutron star

More information

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University The r-process of nucleosynthesis: overview of current status Gail McLaughlin North Carolina State University The popular press says that the gold and platinum in wedding bands is made in neutron star mergers

More information

Low Energy Neutrinos from Black Hole - Accretion Disks

Low Energy Neutrinos from Black Hole - Accretion Disks Low Energy Neutrinos from Black Hole - Accretion Disks Gail McLaughlin North Carolina State University General remarks about neutrinos from hot dense environments Detection of accretion disk neutrinos

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae? Tobias Fischer University of Wroclaw (Poland) Bonn workshop on Formation and Evolution of Neutron Stars

More information

Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence. Brian Metzger

Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence. Brian Metzger Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence Brian Metzger (Columbia University) In Collaboration with Rodrigo Fernandez (IAS) Almudena Arcones, Gabriel Martinez-Pinedo

More information

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu 0 Metal-poor

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Impact of fission on r-process nucleosynthesis within the energy density functional theory Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani, G. Martínez Pinedo, L. M. Robledo, M.-R. Wu Technische Universität Darmstadt, Darmstadt, Germany

More information

Integrated nucleosynthesis in neutrino-driven winds

Integrated nucleosynthesis in neutrino-driven winds Integrated nucleosynthesis in neutrino-driven winds L. Huther 1, T. Fischer 1, G. Martínez-Pindeo 1,2 & K. Langanke 2,3 1 TU Darmstadt, 2 GSI Helmholtzzentrum für Schwerionenforschung, 3 Frankfurt Institute

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

Lecture 15. Explosive Nucleosynthesis and the r-process

Lecture 15. Explosive Nucleosynthesis and the r-process Lecture 15 Explosive Nucleosynthesis and the r-process As the shock wave passes through the star, matter is briefly heated to temperatures far above what it would have experienced in hydrostatic equilibrium.

More information

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel

Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown. Friedrich-K. Thielemann Dept. of Physics University of Basel Nucleosynthesis in Core Collapse Supernovae: Knowns and Unknown Friedrich-K. Thielemann Dept. of Physics University of Basel Radioactivity Diagnostics of SN1987A: 56Ni/Co, 57Ni/Co, 44Ti total/photon decay

More information

r-process nucleosynthesis: conditions, sites, and heating rates

r-process nucleosynthesis: conditions, sites, and heating rates r-process nucleosynthesis: conditions, sites, and heating rates Technische Universität Darmstadt August 14, 17 The (solar) r-process abundance pattern abundance proton number 1-1 -3 1-4 1-5 1-6 8 7 6 5

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

How Nature makes gold

How Nature makes gold How Nature makes gold The role of isotopes for the origin of the elements Karlheinz Langanke GSI Helmholtzzentrum Darmstadt AAAS Symposium, Vancouver, February 20, 2012 Signatures of Nucleosynthesis solar

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

Brian Metzger Princeton University NASA Einstein Fellow

Brian Metzger Princeton University NASA Einstein Fellow EM Counterparts of Neutron Star Binary Mergers and their Detection in the Era of Advanced LIGO Brian Metzger Princeton University NASA Einstein Fellow In Collaboration with: Edo Berger (Harvard CfA) Eliot

More information

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger end-to-end physics of NS mergers GRB + afterflow binary stellar evolution (10 6-10 9 years) Final inspiral (minutes) gravitational

More information

arxiv:astro-ph/ v1 27 Jul 2004

arxiv:astro-ph/ v1 27 Jul 2004 1 Prospects for obtaining an r process from Gamma Ray Burst Disk Winds arxiv:astro-ph/0407555v1 27 Jul 2004 G. C. McLaughlin a, and R. Surman b a Department of Physics, North Carolina State University,

More information

On the robustness of the r-process in neutron-star mergers against variations of nuclear masses

On the robustness of the r-process in neutron-star mergers against variations of nuclear masses Journal of Physics: Conference Series PAPER OPEN ACCESS On the robustness of the r-process in neutron-star mergers against variations of nuclear masses To cite this article: J J Mendoza-Temis et al 2016

More information

Gravitational waves and dynamical mass ejection from binary neutron-star mergers

Gravitational waves and dynamical mass ejection from binary neutron-star mergers Gravitational waves and dynamical mass ejection from binary neutron-star mergers Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University In collaboration with Hotokezaka, Kiuchi, Kyutoku,

More information

Neutrinos from Black Hole Accretion Disks

Neutrinos from Black Hole Accretion Disks Neutrinos from Black Hole Accretion Disks Gail McLaughlin North Carolina State University General remarks about black hole accretion disks Neutrinos and nucleosynthesis - winds Neutrino flavor transformation

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

ν-driven wind in the Aftermath of Neutron Star Merger

ν-driven wind in the Aftermath of Neutron Star Merger ν-driven wind in the Aftermath of Neutron Star Merger Albino Perego in collaboration with A. Arcones, R. Cabezon, R. Käppeli, O. Korobkin, M. Liebendörfer, D. Martin, S. Rosswog albino.perego@physik.tu-darmstadt.de

More information

Neutrino emission, Equation of State and the role of strong gravity

Neutrino emission, Equation of State and the role of strong gravity Neutrino emission, Equation of State and the role of strong gravity O. L. Caballero 1,a) The EoS connects the macroscopic thermodynamical variables to the microphysics of the neutron star. Observables

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers. Brian Metzger

Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers. Brian Metzger Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers Brian Metzger Princeton University NASA Einstein Fellow In Collaboration with Almudena Arcones (U Basel) & Gabriel

More information

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers.

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. S. Ning, H. Gerling-Dunsmore, L. Roberts 1 Abstract. Recent research 1 has shown that

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae Franziska Treffert (Matrikelnummer: 2044556) Seminar zur Kernstruktur und nuklearen Astrophysik Prof.

More information

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger Supernovae and Nucleosynthesis in Zero and Low Metal Stars Stan Woosley and Alex Heger ITP, July 6, 2006 Why believe anything I say if we don t know how any star (of any metallicity) blows up? The physics

More information

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College

Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Rebecca Surman Union College Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University Rebecca Surman Union College 1 Three Relevant Nucleosynthesis Processes Explosive Burning e. g. shock moves

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics Stellar evolution, core-collapse supernova and explosive nucleosynthesis Karlheinz Langanke GSI & TU Darmstadt & FIAS Tokyo, December 2, 2009 arlheinz Langanke ( GSI & TU Darmstadt

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

EOS Constraints From Neutron Stars

EOS Constraints From Neutron Stars EOS Constraints From Neutron Stars J. M. Lattimer Department of Physics & Astronomy Stony Brook University January 17, 2016 Bridging Nuclear and Gravitational Physics: the Dense Matter Equation of State

More information

Role of (a,n) reactions in the nucleosynthesis of light r-elements in neutrino-driven winds

Role of (a,n) reactions in the nucleosynthesis of light r-elements in neutrino-driven winds Role of (a,n) reactions in the nucleosynthesis of light r-elements in neutrino-driven winds Jorge Pereira, Fernando Montes National Superconducting Cyclotron Laboratory, MSU, USA Joint Institute for Nuclear

More information

The r-process nucleosynthesis: astrophysics and nuclear physics challenges

The r-process nucleosynthesis: astrophysics and nuclear physics challenges The r-process nucleosynthesis: astrophysics and nuclear physics challenges S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles 1. Astrophysics considerations: ν-driven winds

More information

Transient Events from Neutron Star Mergers

Transient Events from Neutron Star Mergers Transient Events from Neutron Star Mergers Li-Xin Li Kavli Institute for Astronomy and Astrophysics Peking University, Beijing Transient Astronomical Events Transient astronomical events include all astronomical

More information

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars

Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Role of neutrinos for the nucleosynthesis of heavy elements beyond iron in explosions of massive stars Institute for Theoretical Physics, University of Wroclaw, Plac Maksa Borna 9, 50-204 Wroclaw, Poland

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Type Ia Supernova White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Last stage of superheavy (>10 M ) stars after completing Main Sequence existence

More information

Nucleosynthesis of molybdenum in neutrino-driven winds

Nucleosynthesis of molybdenum in neutrino-driven winds Nucleosynthesis of molybdenum in neutrino-driven winds Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany E-mail: jbliss@theorie.ikp.physik.tu-darmstadt.de

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt

Nuclear Physics and Supernova Dynamics. Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Nuclear Physics and Supernova Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Tribute to Gerry - Stony Brook, November 26, 2013 Hans Bethe s Centennial at Caltech

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information

Neutron star post-merger simulations: origin of kilonovae and the heavy elements

Neutron star post-merger simulations: origin of kilonovae and the heavy elements 4-color Process 100% Cyan 72% Magenta logo can also be rendered in black, grey (60% black), Pantone 280, or Pantone 286; on a darker color background, the logo can be rendered in Pantone 290, 291, or 284,

More information

β-delayed neutron emission probability measurements at RIKEN RIBF

β-delayed neutron emission probability measurements at RIKEN RIBF β-delayed neutron emission probability measurements at RIKEN RIBF G. G. Kiss RIKEN Nishina Center for Accelerator-Based Science Radioactive Isotope Physics Laboratory (in behalf of the BRIKEN collaboration)

More information

Synergy of GWs and EM signals

Synergy of GWs and EM signals Leiden, Feb 04 2015 Synergy of GWs and EM signals Gravitational wave facilities (LIGO, VIRGO ) Transient facilities (PTF, ZTF ) Stephan Rosswog I. Gravitational wave detection LIGO & VIRGO detectors currently

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Isotopic yields from supernova light curves

Isotopic yields from supernova light curves Isotopic yields from supernova light curves Astrophysics and Nuclear Structure Hirschegg, January 29, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop,

Present status of modeling the supernova EOS. Matthias Hempel, Basel University Numazu Workshop, Present status of modeling the supernova EOS, Basel University Numazu Workshop, 1.09.2015 The general purpose supernova EOS neutron stars core-collapse supernovae MH Liebendörfer Crab nebula, Hubble Space

More information

Extreme Transients in the Multimessenger Era

Extreme Transients in the Multimessenger Era Extreme Transients in the Multimessenger Era Philipp Mösta Einstein fellow @ UC Berkeley pmoesta@berkeley.edu BlueWBlueWaters Symposium 2018 Sunriver Resort Core-collapse supernovae neutrinos turbulence

More information

General Relativistic MHD Simulations of Neutron Star Mergers

General Relativistic MHD Simulations of Neutron Star Mergers General Relativistic MHD Simulations of Neutron Star Mergers Luca Baiotti Osaka University with Luciano Rezzolla, Bruno Giacomazzo, Kentaro Takami Plan of the talk Brief overview of the status of BNS simulations

More information

Microscopic description of fission properties for r-process nuclei

Microscopic description of fission properties for r-process nuclei Journal of Physics: Conference Series PAPER OPEN ACCESS Microscopic description of fission properties for r-process nuclei To cite this article: S A Giuliani et al 2018 J. Phys.: Conf. Ser. 940 013 View

More information

Detection of Gravitational Waves and Neutrinos from Astronomical Events

Detection of Gravitational Waves and Neutrinos from Astronomical Events Detection of Gravitational Waves and Neutrinos from Astronomical Events Jia-Shu Lu IHEP,CAS April 18, 216 JUNO Neutrino Astronomy and Astrophysics Seminar 1 / 24 Outline Sources of both GW and neutrinos.

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study

Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University In collaboration

More information

Supernova Evolution and Explosive Nucleosynthesis

Supernova Evolution and Explosive Nucleosynthesis Supernova Evolution and Explosive Nucleosynthesis Gabriel Martínez Pinedo 5 th European Summer School On Experimental Nuclear Astrophysics Santa Tecla, September 25, 2009 Outline 1 Introduction 2 Electron

More information

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer,

More information

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae Roger Käppeli Collaborators: Christian Winteler Albino Perego Almudena Arcones Nicolas Vasset Nobuya Nishimura Matthias

More information

Short GRB and kilonova: did observations meet our theoretical predictions?

Short GRB and kilonova: did observations meet our theoretical predictions? Short GRB and kilonova: did observations meet our theoretical predictions? Riccardo Ciolfi INAF - Astronomical Observatory of Padova INFN - Trento Institute for Fundamental Physics and Applications GW170817

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Impact of Nuclear Reactions on the Fate of Intermediate-mass Stars

Impact of Nuclear Reactions on the Fate of Intermediate-mass Stars Impact of Nuclear Reactions on the Fate of Intermediate-mass Stars Technische Universität Darmstadt, Germany E-mail: hmoeller@theorie.ikp.physik.tu-darmstadt.de Samuel Jones University of Victoria, Canada

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS Indrani Banerjee Indian Institute of Science Bangalore The work has been done in collaboration with Banibrata Mukhopadhyay

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

THE SENSITIVITY OF CORE-COLLAPSE SUPERNOVAE TO NUCLEAR ELECTRON CAPTURE

THE SENSITIVITY OF CORE-COLLAPSE SUPERNOVAE TO NUCLEAR ELECTRON CAPTURE Draft version September 1, 215 Preprint typeset using L A TEX style emulateapj v. 5/2/11 Pinedo 2). Unfortunately, it is difficult to obtain information about transitions from excited states in the laboratory.

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Discerning the symmetry energy and neutron star properties from nuclear collective excitations International Workshop XLV on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 15-21, 2017 Discerning the symmetry energy and neutron star properties from

More information

Mass ejection from neutron-star mergers in numerical relativity

Mass ejection from neutron-star mergers in numerical relativity Mass ejection from neutron-star mergers in numerical relativity Masaru Shibata Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University I. Brief introduction Outline

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

Origin of the main r-process elements

Origin of the main r-process elements Origin of the main r-process elements K. Otsuki Λ, J. Truran Λ, M. Wiescher, J. Gorres, G. Mathews,D. Frekers ΛΛ, A. Mengoni, A. Bartlett and J. Tostevin Λ Department of Astronomy and Astrophysics, University

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Nuclear physics aspects of stellar evolution and heavy element nucleosynthesis

Nuclear physics aspects of stellar evolution and heavy element nucleosynthesis Nuclear physics aspects of stellar evolution and heavy element nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 10

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information