Quark matter in compact stars: the Constant Sound Speed parameterization

Size: px
Start display at page:

Download "Quark matter in compact stars: the Constant Sound Speed parameterization"

Transcription

1 Quark matter in compact stars: the Constant Sound Speed parameterization Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv: Alford, Burgio, Han, Taranto, Zappalà, arxiv: Ranea-Sandoval, Han, Orsaria, Contrera, Weber, Alford, arxiv:

2 T Schematic QCD phase diagram heavy ion collider QGP hadronic gas liq non CFL CFL = color superconducting quark matter nuclear superfluid /supercond compact star µ M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arxiv: (RMP review) A. Schmitt, arxiv: (Springer Lecture Notes)

3 Signatures of quark matter in compact stars Observable Microphysical properties (and neutron star structure) Phases of dense matter mass, radius spindown (spin freq, age) cooling (temp, age) glitches (superfluid, crystal) Property Nuclear phase Quark phase known unknown; eqn of state ε(p) up to n sat many models bulk viscosity shear viscosity heat capacity neutrino emissivity thermal cond. shear modulus vortex pinning energy Depends on phase: n p e n p e, µ n p e, Λ, Σ n superfluid p supercond π condensate K condensate Depends on phase: unpaired CFL CFL-K 0 2SC CSL LOFF 1SC...

4 Constraining QM EoS by observing M(R) There is lots of literature about specific models of quark matter, e.g. MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/ ) NJL models; (Paoli, Menezes, arxiv: ; Bonanno, Sedrakian, arxiv: ) PNJL models (Blaschke et. al, arxiv: ; Orsaria et. al.; arxiv: ) hadron-quark NLσ model (Negreiros et. al., arxiv: ) 2-loop perturbation theory (Kurkela et. al., arxiv: ) MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arxiv: ) We need a model-independent parameterization of the quark matter EoS: framework for relating different models to each other observational constraints can be expressed in universal terms

5 CSS: a fairly generic QM EoS Model-independent parameterization with Sharp 1st-order transition Constant [density-indp] ε(p) = ε trans + ε + c 2 QM (p p trans) Speed of Sound (CSS) Energy Density ε 0,QM ε trans Δε Slope = -2 c QM Quark Matter QM EoS params: p trans /ε trans ε/ε trans Nuclear Matter c 2 QM p trans Pressure Zdunik, Haensel, arxiv: ; Alford, Han, Prakash, arxiv:

6 Hybrid star M(R) Hybrid star branch in M(R) relation has 4 typical forms ε < ε crit small energy density jump at phase transition Connected M M Both R R ε > ε crit large energy density jump at phase transition M Absent Disconnected M R R

7 CSS Phase diagram of hybrid star M(R) Soft NM + CSS(c 2 QM =1) Schematic Δε/εtrans = λ D B n trans/n A C ncausal 6.0 trans ε ε B D A 0.2 C p trans/ε trans ptrans Above the red line ( ε > ε crit ), ε crit = 1 connected branch disappears ε trans p trans 2 ε trans (Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/ ) Disconnected branch exists in regions D and B. ε trans

8 Sensitivity to NM EoS and c 2 QM c 2 QM =1/3 c 2 QM =1 Δε/εtrans D NL3 B HLPS A C Δε/εtrans D NL3 B HLPS A C p trans/ε trans p trans/ε trans NM EoS (HLPS=soft, NL3=hard) does not make much difference. Higher cqm 2 favors disconnected branch.

9 Constraints on QM EoS from M max Increasing ε reduces M max Increasing p trans at first reduces then increases M max 2 M observation allows two scenarios: high p trans : very small connected branch low p trans : modest ε, no disconnected branch.

10 Low p trans and high p trans windows

11 Constraints on QM EoS from Mmax

12 Radius of heaviest star R maxm Heaviest star is typically the smallest, so lower limit on R maxm is the minimum radius of compact stars. High p trans : very short connected hybrid branch, radius like that of heaviest hadronic star. Low p trans : need to zoom in.

13 Constraints on QM EoS from RmaxM

14 Focus on low p trans and c 2 QM = 1/3 R maxm contours closely follow mass contours M max > 1.95 M requires R > km dashed line is M max = 2.1 M, requires R > 12.1 km Observation of a smaller star high transition pressure or c 2 QM > 1/3

15 Constraints on QM EoS from R1.4 M

16 Low transition pressure and R 1.4 M R 1.4 M contours roughly follow mass contours M max > 1.95 M requires R 1.4 M > 12 km (n trans n 0 ), rising with n trans. dashed line is M max = 2.1 M, requires R 1.4 M > 12.7 km Observation of a smaller 1.4 M star cqm 2 > 1/3. If p trans is high then no hybrid stars have mass 1.4 M compare Lattimer arxiv: : R > 11 km.

17 NJL models in CSS space

18 Summary of CSS CSS (Constant Speed of Sound) is a generic parameterization of the EoS close to a sharp first-order transition to quark matter. Any specific model of quark matter with such a transition corresponds to particular values of the CSS parameters (p trans /ε trans, ε/ε trans, c 2 QM ). Its predictions for hybrid star branches then follow from the generic CSS phase diagram. Every observation, e.g. observing a 2M neutron star, constraint on CSS parameters. E.g., for soft NM we need cqm 2 1/3 (But note that cqm 2 = 1/3 O(α s) in pert QCD). More measurements of M and R would strengthen the constraints. Models of quark matter tend to have cqm 2 1/3 and high transition pressure very short hybrid branch.

19 Could we identify hybrid stars via M(R)? We could identify a phase transition to a high-density phase (A) Nuclear branch ends with dm/dr 0 occurs if ε/ε trans is large enough (B,D) Disconnected branch can occur with M max 2M if nuclear and quark matter are both stiff (c 2 QM 1) M M R R M R

20 Could we identify hybrid stars via M(R)? We could identify a phase transition to a high-density phase (A) Nuclear branch ends with dm/dr 0 occurs if ε/ε trans is large enough (B,D) Disconnected branch can occur with M max 2M if nuclear and quark matter are both stiff (c 2 QM 1) M M R R M R We need: better measurements of M and R knowledge of nuclear matter EoS We could benefit from: theoretical constraints on parameters of QM EoS (p trans /ε trans, ε/ε trans, c 2 QM )

21 Density-independent c 2 QM? DD2-EV(nuclear) + NJL with 8 quark interactions (Blaschke et al., arxiv: ) p [MeV/fm 3 ] η 4 =0.0 η 4 =5.0 η 4 =10.0 η 4 =15.0 η 4 =20.0 η 4 =25.0 η 4 =30.0 DD2 NJL 8 c s DD2 DD2-EV NJL ε [MeV/fm 3 ]

22 Density-independent c 2 QM? SU(3) quark-meson model (quarks + Yukawa interaction via scalar and vector mesons) (Schaffner-Bielich et al, arxiv: ) c s 2 =dp/dε g w =0 g w =1 g w =2 g w =3 DD2 g ω =1 g ω =2 g ω =3 0.2 g ω = ε [MeV/fm 3 ]

23 Density-independent c 2 QM? Chiral Mean Field model (quarks wuth Yukawa coupling to isoscalar and isovector mesons) (e.g. Schramm, Dexheimer, Negreiros, arxiv: ) 1.5 P (fm - 4 ) dp/dε sqrt dp/dε Λ s u and d in mixed phase ε (fm - 4 )

24 Density-independent c 2 QM? Field Correlator Method (Simonov and Trusov, hep-ph/ ) a) c 2 QM ε (MeV fm -3 ) b) V 1 =0, G 2 =0.006 V 1 =0, G 2 =0.012 V 1 =100, G 2 =0.006 V 1 =150, G 2 = p (MeV fm -3 )

25 Density-independent c 2 QM? Local NJL model with vector repulsive interaction (Orsaria, Rodrigues, Weber, Contrera, arxiv: ) 0.5 (a ) (b ) C s S e t IV G V = 0.0 S e t V G V = G = G V S G = G V S G = G V S G = G V S N L 3 p h. tra n s. N L 3 p h. tra n s. G M 1 p h. tra n s. G M 1 p h. tra n s P [M e V fm -3 ] P [M e V fm -3 ]

26 Density-independent c 2 QM? Non-local NJL model with vector repulsive interaction (Orsaria, Rodrigues, Weber, Contrera, arxiv: ) 0.5 (a ) (b ) (c ) C s S e t II G V = 0.0 G V = G S G V = G S N L 3 p h. tra n s. G M 1 p h. tra n s P [M e V fm S e t I G V = ] G V = G S G V = G S G M 1 p h. tra n s. P [M e V fm -3 ] P [M e V fm S e t III G V = 0.0 G V = G S G V = G S N L 3 p h. tra n s. G M 1 p h. tra n s. -3 ]

The Constant-Sound-Speed parameterization of the quark matter EoS

The Constant-Sound-Speed parameterization of the quark matter EoS The Constant-Sound-Speed parameterization of the quark matter EoS Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arxiv:1501.07902

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Color superconductivity in quark matter

Color superconductivity in quark matter Fedora GNU/Linux; L A TEX 2ǫ; xfig Color superconductivity in quark matter Mark Alford Washington University Saint Louis, USA Outline I Quarks at high density Cooper pairing, color superconductivity II

More information

Compact Stars within a SU(3) chiral Quark Meson Model

Compact Stars within a SU(3) chiral Quark Meson Model Compact Stars within a SU(3) chiral Quark Meson Model Andreas Zacchi Matthias Hanauske,3 Laura Tolos Jürgen Schaffner-Bielich Institute for Theoretical Physics Goethe University Frankfurt Institut de Ciencies

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Maximum pulsar mass and strange neutron-star cores

Maximum pulsar mass and strange neutron-star cores Maximum pulsar mass and strange neutron-star cores P. Haensel Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl PAC2012 Beijing, China October 19-21, 2012 P. Haensel (CAMK) Maximum

More information

PUBLICATIONS Mark G. Alford

PUBLICATIONS Mark G. Alford PUBLICATIONS Mark G. Alford 1. Q-Clouds, M. Alford, Nucl. Phys. B298, 323-332, 1988. 2. Aharonov-Bohm interaction of cosmic strings with matter, M. Alford and F. Wilczek, Phys. Rev. Lett. 62, 1071-1074,

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Holographic model of dense matter in neutron stars

Holographic model of dense matter in neutron stars Holographic model of dense matter in neutron stars Carlos Hoyos Universidad de Oviedo Fire and Ice: Hot QCD meets cold and dense matter Saariselkä, Finland April 5, 2018 E. Annala, C. Ecker, N. Jokela,

More information

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Gordon Baym University of Illinois, Urbana Workshop on Universal Themes of Bose-Einstein Condensation Leiden

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

arxiv: v2 [nucl-th] 10 Oct 2017

arxiv: v2 [nucl-th] 10 Oct 2017 Mixed Phase within the Multi-polytrope Approach to High Mass Twins. David Alvarez-Castillo, 1,2 David Blaschke, 1,3,4 and Stefan Typel 5,6 arxiv:1709.08857v2 [nucl-th] 10 Oct 2017 1 Bogoliubov Laboratory

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Gravitational waves from neutron stars and the nuclear equation of state

Gravitational waves from neutron stars and the nuclear equation of state Gravitational waves from neutron stars and the nuclear equation of state Ian Jones School of Mathematics, University of Southampton, UK University of Surrey, 18th October 2011 Context: the hunt for gravitational

More information

arxiv: v2 [astro-ph.he] 19 Jul 2017

arxiv: v2 [astro-ph.he] 19 Jul 2017 Deconfinement to Quark Matter in Neutron Stars - The Influence of Strong Magnetic Fields arxiv:1208.1320v2 [astro-ph.he] 19 Jul 2017 V. Dexheimer,, R. Negreiros,, S. Schramm and M. Hempel UFSC, Florianopolis,

More information

Neutron Star Core Equations of State and the Maximum Neutron Star Mass

Neutron Star Core Equations of State and the Maximum Neutron Star Mass PORTILLO 1 Neutron Star Core Equations of State and the Maximum Neutron Star Mass Stephen K N PORTILLO Introduction Neutron stars are the compact remnants of massive stars after they undergo core collapse.

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

arxiv: v1 [nucl-th] 10 Apr 2015

arxiv: v1 [nucl-th] 10 Apr 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 6-30, 014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Many-body forces, isospin asymmetry and dense hyperonic matter R.O. Gomes 1,

More information

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications

Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications Introduction to equation of state (EoS) for supernovae, compact stars and HIC applications D. Blaschke (Wroclaw & Dubna) PSR J0737 3039 Collaboration (incomplete): D.E. Alvarez Castillo (Dubna), S. Benic

More information

Quark Matter in Neutron Stars: from a QCD perspective. Eduardo S. Fraga

Quark Matter in Neutron Stars: from a QCD perspective. Eduardo S. Fraga Quark Matter in Neutron Stars: from a QCD perspective Neutron stars at CERN??!! The very title of this workshop points to a new future, one that deeply connects high-energy nuclear & particle physics under

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES David Blaschke Universität Bielefeld & JINR Dubna Collaboration: D. Aguilera, H. Grigorian, D. Voskresensky EoS and QCD Phase Transition

More information

Strangeness in Compact Stars

Strangeness in Compact Stars Strangeness in Compact Stars Jürgen Schaffner-Bielich Institut für Theoretische Physik The Structure and Signals of Neutron Stars, from Birth to Death, Firenze, Italia, March 24-28, 2014 HGS-HIRe Helmholtz

More information

R-mode instability of strange stars and observations of neutron stars in LMXBs

R-mode instability of strange stars and observations of neutron stars in LMXBs Research in Astron. Astrophys. Vol. (2xx) No., http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics R-mode instability of strange stars and observations of

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

Neutron Star and Superfluidity

Neutron Star and Superfluidity Neutron Star and Superfluidity Ka Wai Lo Department of Physics, University of Illinois at Urbana-Champaign December 13, 2010 Abstract It is expected that under high density, nucleons in neutron star can

More information

(Color-)magnetic flux tubes in dense matter

(Color-)magnetic flux tubes in dense matter Seattle, Apr 17, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber,

More information

Signatures of QCD phase transition in a newborn compact star

Signatures of QCD phase transition in a newborn compact star Mon. Not. R. Astron. Soc. 350, L42 L46 (2004 doi:10.1111/j.1365-2966.2004.07849.x Signatures of QCD phase transition in a newborn compact star K.-W. Wong 1,2 and M.-C. Chu 1 1 Department of Physics, The

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Hyperons & Neutron Stars

Hyperons & Neutron Stars Hyperons & Neutron Stars Isaac Vidaña CFC, University of Coimbra HYP2012 The 11 th International Conference on Hypernuclear & Strange Particle Physics Barcelona, October 1 st - 5 th 2012 In this talk I

More information

Cooling of isolated neutron stars as a probe of superdense matter physics

Cooling of isolated neutron stars as a probe of superdense matter physics Cooling of isolated neutron stars as a probe of superdense matter physics, Alexander Potekhin and Dmitry Yakovlev Ioffe Physical Technical Institute - Politekhnicheskaya 26, 194021 Saint-Petersburg, Russia

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

arxiv: v1 [astro-ph.sr] 30 Aug 2010

arxiv: v1 [astro-ph.sr] 30 Aug 2010 Bag model and quark star Hua Li 1, Xin-Lian Luo 2, and Hong-Shi Zong 1,3 1 Department of Physics, Nanjing University, Nanjing 210093, China 2 Department of Astronomy, Nanjing University, Nanjing 210093,

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹 In collaboration with 南開大学 天津 H. Toki RCNP, Osaka University, Japan 中国 K. Sumiyoshi Numazu College

More information

a model-independent view

a model-independent view The state of cold quark matter: a model-independent view Renxin Xu ( 徐仁新 ) School of Physics, Peking University Compact stars in the QCD phase diagram II (CSQCD II), PKU May 24th, 2009. What s the nature

More information

COLOR SUPERCONDUCTIVITY

COLOR SUPERCONDUCTIVITY COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 Outline Motivations Superconductors Color

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Effects of hadron-quark phase transition on properties of Neutron Stars arxiv:1811.07434v1 [nucl-th] 19 Nov 2018 Debashree Sen, and T.K. Jha BITS-Pilani, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726,

More information

PoS(Confinement X)249

PoS(Confinement X)249 , David E. Alvarez Castillo, Institute for Theoretical Physics, University of Wrocław, Wrocław, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia E-mail: blaschke@ift.uni.wroc.pl,

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

arxiv:astro-ph/ v1 28 Oct 2004

arxiv:astro-ph/ v1 28 Oct 2004 Structure of the electrospheres of bare strange stars V.V. Usov 1, T. Harko 2 and K.S. Cheng 2 arxiv:astro-ph/0410682v1 28 Oct 2004 ABSTRACT We consider a thin ( 10 2 10 3 fm) layer of electrons (the electrosphere)

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Constraints on braneworld from compact stars

Constraints on braneworld from compact stars Constraints on braneworld from compact stars Daryel Manreza Paret, ICN-UNAM Aurora Pérez Martinez, ICIMAF, Cuba Ricardo. González Felipe, ISEL, Portugal R. Gonzales Felipe, D. Manreza Paret and A. Perez

More information

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook Stony Brook University The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. Alll Rigghht tss

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

arxiv: v1 [astro-ph.he] 19 Sep 2018

arxiv: v1 [astro-ph.he] 19 Sep 2018 Constraining the equation of state with gravitational wave observation Rana Nandi, 1 Prasanta Char, 2 and Subrata Pal 1 1 Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research,

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Shunzo KUMANO (KEK) 1. Introduction 4. Constraint

More information

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas Origin of the Nuclear EOS in Hadronic Physics and QCD Anthony W. Thomas XXX Symposium on Nuclear Physics - Cocoyoc: Jan 5 th 2007 Operated by Jefferson Science Associates for the U.S. Department of Energy

More information

4. Effects of hyperon mixing on NS-EOS

4. Effects of hyperon mixing on NS-EOS 4. Effects of hyperon mixing on NS-EOS Hyperons in NSs --- Earlier works Suggestion for Y-mixing in NSs A.G.W. Cameron, Astrophys. J., 130 (1959) 884. Attempts for Y-mixing calculation S. Tsuruta and A.G.W.

More information

Realistic nucleon force and X-ray observations of neutron stars

Realistic nucleon force and X-ray observations of neutron stars Realistic nucleon force and X-ray observations of neutron stars Pawe l Haensel haensel@camk.edu.pl New perspectives on neutron star interiors ECT*, Trento, Italy, October Pawe l Haensel (CAMK) Nucleon

More information

neutron star basics λ. λ

neutron star basics λ. λ neutron star basics A solar mass consists of ~ 10 57 nucleons. If they are separated by typical inter-nucleon distances, what would the radius of the volume containing them be? neutron star basics ( )

More information

Strong Interactions and QCD

Strong Interactions and QCD Strong Interactions and QCD Sourendu Gupta DTP: TIFR DIM 2009 TIFR, Mumbai November 4, 2009 SG (DTP: TIFR) Strong Interactions DIM 09 1 / 14 The experimental context of strong interactions 1 Thomson and

More information

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model ---

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- Quarks and Compact Stars (QCS2014) KIAA, Peking Univ., Oct.20-22.2014 Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- T. Takatsuka (RIKEN; Prof.

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

IMPLICATIONS FROM GW FOR -ISOBAR ADMIXED HYPERNUCLEAR COMPACT STARS

IMPLICATIONS FROM GW FOR -ISOBAR ADMIXED HYPERNUCLEAR COMPACT STARS Draft version April 4, 019 Preprint typeset using L A TEX style emulateapj v. 1/16/11 IMPLICATIOS FROM GW170817 FOR -ISOBAR ADMIXED HYPERUCLEAR COMPACT STARS Jia Jie Li Institute for Theoretical Physics,

More information

Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars

Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars N E U TRON STA R S IN FUTURE RESEARCH, 1 1. D E CEMBER 2017 MAX- P L A NCK- INSTITUT F Ü R R A D I OASTRONOMIE B ONN,

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Structure of the electrospheres of bare strange stars. Citation Astrophysical Journal Letters, 2005, v. 620 n. 2 I, p

Structure of the electrospheres of bare strange stars. Citation Astrophysical Journal Letters, 2005, v. 620 n. 2 I, p Title Structure of the electrospheres of bare strange stars Author(s) Usov, VV; Harko, T; Cheng, KS Citation Astrophysical Journal Letters, 005, v. 60 n. I, p. 95-9 Issued Date 005 URL http://hdl.handle.net/07/4467

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California Fridolin Weber San Diego State University and University of California at San Diego San Diego, California INT Program INT-16-2b The Phases of Dense Matter, July 11 August 12, 2016 EMMI Rapid Reaction Task

More information

Neutron star in the presence of strong magnetic field

Neutron star in the presence of strong magnetic field PRAMANA c Indian Academy of Sciences Vol. 82, No. 5 journal of May 2014 physics pp. 797 807 Neutron star in the presence of strong magnetic field K K MOHANTA 1, R MALLICK 2, N R PANDA 2, L P SINGH 3 and

More information

PoS(QNP2012)029. Quark Matter in Compact Stars

PoS(QNP2012)029. Quark Matter in Compact Stars Institute for Theoretical Physics, University of Wrocław (Poland) E-mail: thomas.klaehn@gmail.com Neutron stars by their very nature are the most likely physical systems in nature where pure, deconfined

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 Color Superconductivity and Blinking Proto-Neutron Stars arxiv:hep-ph/0111353v1 27 Nov 2001 G. W. Carter Department of Physics and Astronomy State University of New York Stony Brook, NY 11794-3800 1 Introduction

More information

Strange Stars: Can Their Crust Reach the Neutron Drip Density?

Strange Stars: Can Their Crust Reach the Neutron Drip Density? Chin. J. Astron. Astrophys. Vol. 3 (2003), No. 6, 535 542 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Strange Stars: Can Their Crust Reach the Neutron

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

QCD Matter under Extreme Conditions

QCD Matter under Extreme Conditions Physics Colloquium QCD Matter under Extreme Conditions Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran October 2006 How everything began? How everything will end? The Big

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Color-Neutral Superconducting Quark Matter. Abstract

Color-Neutral Superconducting Quark Matter. Abstract SUNY-NTG-02-05-25, MIT-CTP-3269 Color-Neutral Superconducting Quark Matter Andrew W. Steiner 1, Sanjay Reddy 2, and Madappa Prakash 1 1 Department of Physics and Astronomy, State University of Stony Brook,

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

arxiv: v3 [hep-ph] 22 Sep 2017

arxiv: v3 [hep-ph] 22 Sep 2017 Towards laboratory detection of topological vortices in superfluid phases of QCD Arpan Das 1,2, Shreyansh S. Dave 1,2, Somnath De 1,2, and Ajit M. Srivastava 1,2 1 Institute of Physics, Bhubaneswar 7515,

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Bumpy neutron stars in theory and practice

Bumpy neutron stars in theory and practice Bumpy neutron stars in theory and practice Nathan K. Johnson-McDaniel TPI, Uni Jena NS2013, Bonn 15.4.2013 In collaboration with Benjamin J. Owen and William G. Newton. See PRD 86, 063006 (2012), arxiv:1208.5227,

More information

New states of quantum matter created in the past decade

New states of quantum matter created in the past decade New states of quantum matter created in the past decade From: Trapped cold atomic systems: Bose-condensed and BCS fermion superfluid states T ~ nanokelvin (traps are the coldest places in the universe!)

More information

EOS Constraints From Neutron Stars

EOS Constraints From Neutron Stars EOS Constraints From Neutron Stars J. M. Lattimer Department of Physics & Astronomy Stony Brook University January 17, 2016 Bridging Nuclear and Gravitational Physics: the Dense Matter Equation of State

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

Gravitational wave from neutron star

Gravitational wave from neutron star Gravitational wave from neutron star phase transition Shu Lin 2018.11.4 ATHIC 2018, Hefei based on 1810.00528, Gaoqing Cao, SL Outline Introduction GW from binary neutron star merger GW generation from

More information