COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES

Size: px
Start display at page:

Download "COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES"

Transcription

1 COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES David Blaschke Universität Bielefeld & JINR Dubna Collaboration: D. Aguilera, H. Grigorian, D. Voskresensky EoS and QCD Phase Transition Stability of Hybrid Stars Cooling of Hadronic Stars Hybrid Star Cooling: 2SC + X Quark Matter Perspectives - a Conjecture Picture taken from

2 INTRODUCTION Tc ~ 170 MeV T early universe ALICE crossover n = 0 B vacuum QCD Phase Diagram <ψψ> > 0 quark-gluon plasma RHIC hadronic fluid µ o n > 0 B SPS nuclear matter 922 MeV µ <ψψ> 0 quark matter crossover superfluid/superconducting phases? 2SC <ψψ> > 0 CFL neutron star cores T = 0, µ = 0 ψψ 0 hadron phase chiral symmetry is broken. T, µ ψψ = 0 symmetry phase all symmetries are restored. Moderate T and µ? heavy-ion collisions / compact stars interiors * S. Hands, The phase diagram of the QCD physics/ (2001)

3 MOTIVATION Even at weak coupling, any attractive quark-quark interaction condensate of Cooper pairs Color superconductivity To explore dense matter EoS (T, µ) with diquark condensates? with strangeness? To build a stable realistic neutron star with quark core - Quark matter EoS with hadron shell - Nuclear matter EoS

4 QUARK MATTER EOS MODEL Mass gap φ f and diquark gap f are order parameters for χsb and CSC β-equilibrium for the two flavor and three color case (N f = 2 u, d, N c = 3 r, b, g) requires different chemical potentials: µ q = (µ u + µ d )/2 and µ I = (µ u µ d )/2. Ω(φ, ; µ q, µ I, T ) = φ dqq 2 (N 4G 1 4G 2 2π 2 c 2){2E φ [ ( 0 +T ln 1 + exp E )] [ ( φ µ q µ I + T ln 1 + exp E )] φ µ q + µ I T T [ ( +T ln 1 + exp E )] [ ( φ + µ q µ I + T ln 1 + exp E )] φ + µ q + µ I } T T 4 dqq 2 {E 2π E [ 0 ( +T ln 1 + exp E φ µ )] [ ( I + T ln 1 + exp E φ + µ )] I T T [ ( )] [ ( )] +T ln 1 + exp E+ φ µ I T + T ln 1 + exp E+ φ + µ I T } Ω vac The dispersion relations: E φ 2 = q 2 + (m + g(q)φ) 2 for quarks of unpaired color E ± φ 2 = (E φ ± µ) 2 + g( q) 2 for quarks of paired colors

5 FORM FACTORS The following cases are considered: Gaussian (g G ),Lorentzian (g L ) and NJL cutoff (g NJL ). Gaussian gg(q) 2 = exp ( q 2 /Λ 2 G) Lorentzian gl 2 (q) = 1 Λ 2 + (q/λ L ) 4 NJL gnjl 2 (q) = Θ(1 q/λ NJL) Λ[GeV] G 1 Λ 2 m[mev] g G g L g NJL The parameters Λ, G 1, G 2 and m are fixed at T = µ = 0 by m π = 140 MeV, f π = 93 MeV, m q (0) = 330 MeV and by choosing G 1 /G 2 = 4/3. S. Schmidt, D. Blaschke, Y. Kalinovsky, Phys. Rev. C 50 (1994) 435. QUARK MATTER IN COMPACT STAR CORES The quark matter core of compact stars consists of u, d, e,, under the conditions: β-equilibrium d u + e + µ d = µ u + µ e + µ νe µ e + µ νe = 2µ I Charge neutrality 2 3 n u 1 3 n d n e = 0 n q + 3n I 6n e = 0

6 THERMODYNAMICAL POTENTIAL, GAP EQUATIONS The extrema of Ω correspond to Gap equations for the order parameters φ 0, 0 : Ω φ φ=φ0 = Ω ; = 0 φ=φ0 = 0 ; = 0 As T or µ changes, Ω can have several local minima in the φ, plane. The lowest minimum describes the lowest free energy state and is preferred. As an example, Ω(T, µ) at T = 0, µ = GeV is plotted. Two degenerate minima can coexist at the values: φ = 0.4 GeV, = 0 and φ = 0, = GeV. This corresponds to a first order transition at which two phases with equal pressure can coexist Ω φ = 0 [GeV] = 0 µ=0 µ=0.292 µ= φ Ω(φ 0, 0 ; µ q, µ I, T ) = ɛ T s µ q n q µ I n I = P, n i = Ω µ i T,φ=φ0, = 0

7 EFFECT OF FINITE TEMPERATURE GAP EQUATION SOLUTIONS AND µ I IN β-equilibrium µ I,, δ [GeV] φ, Τ = 0, T = 0 µ Ι, Τ = 0 φ, T = 20 MeV, T = 20 MeV µ I, T= 20 MeV φ, T = 40 MeV, T = 40 MeV µ I, T= 40 MeV µ q [GeV] m q = 0 (left) and m q = 2.41 MeV, (right) The diquark condensate does not feel the difference in partial or complete restoration of the chiral symmetry. At low temperatures color superconductivity at µ immediately above the first order phase transition. Color superconductivity persists up to Tc = 45 MeV. The onset of the diquark condensation is found at higher µ q if the temperature is increased. BCS theory predicts that T c = 0.57F (µ) 2 0 (T = 0)

8 EFFECT OF FORM FACTORS GAP EQUATION SOLUTIONS AND µ I IN β-equilibrium The maximum of the diquark condensate ( 150 MeV) roughly form factor independent. The critical values of the phase transition temperature and chemical potential depend on smoothness of form factors. [GeV] φ F G F L α=2 F L α=10 F L α=50 F NJL At T = 0 the critical chemical potentials are: µ G qc = 320 MeV, µ L qc = 345 MeV and µ qc NJL = 360 MeV. D.B., Fredriksson, Grigorian, Öztas, NPA 736 (2004) µ Ι µ q [GeV]

9 EOS FOR QUARK STAR MATTER TEMPERATURE AND ANTINEUTRINO EFFECTS P + ɛ = st + µ q n q + µ I n I, n q = n u + n d, n I = n u n d Temperature effect Antineutrino effect T = 0 T = 40 MeV T = 50 MeV T = 20 MeV 1000 P [MeV fm -3 ] P 10 ε P [MeV/fm 3 ] µ νe = 0 µ νe = 100 MeV µ νe = 200 MeV ε[mev fm -3 ] ε [MeV/fm 3 ]

10 CONFIGURATION OF QUARK STARS WITHOUT SHELL CONDENSATE AND TEMPERATURE EFFECT 2 Gaussian Tolman-Oppenheimer-Volkoff equations M [M sun ] n B [n 0 ] T = 0, = 0 T = 0 T = 40 MeV T = 60 MeV R [km] dp dr = [ɛ(r) + P (r)][m(r) + 4πr3 P (r)] r[r 2m(r)] m = 4π r 0 r 2 ɛ(r)dr The integral parameters M and R feel the existence of the diquark condensation: the EoS becomes softer. At higher temperature both M max and R max decrease approximately 10% compared to T = 0 and = 0 cases.

11 MASS DEFECT - ESTIMATION OF ENERGY RELEASE M [M sun ] N B [N sun ] Μ(Α) = 0.06 Μ sun M i (A) = 1.51 M sun M i (B) = 1.51 M sun M f (B) = 1.44 M sun M f (B) = 1.42 M sun Μ(Β) = 0.09 Μ sun Conserved N B (A) = 1.68 N sun, N B (B) = 1.57 N sun T = 0 T = 0, = 0 T = 40 MeV, = 0 T = 40 MeV Gaussian n B [n 0 ] During the cooling evolution the star must loose an amount of energy: the energy release will lead to an equivalent mass defect. We estimated it to about 0.1 M. It accidentally corresponds to the simple estimate (Hong et al., PLB 516 (2001) 362) ( /µ) 2 M erg

12 PNS EVOLUTION WITH NEUTRINO TRAPPING T = 40 MeV QM ν e νe ν µ = 72 MeV e T > 1 MeV QM 2SC µ = 72 MeV T = 0 µ = 0 2SC M [M sun ] M sun 0.07 M sun initial state A final state initial state B N B [N Bsun ] µ νe = 0 µ νe = 72 MeV µ νe = 150 MeV n q [n 0 ] Mass defect M M erg Effect due to Un-Trapping of (Anti-)Neutrinos Explosion possible: Phase transition 1 st Order GRB with time delay Cannon Ball Model Aguilera, D.B., Grigorian, Astron. & Astrophys. 416 (2004) 991.

13 PHASE TRANSITION: NUCLEAR MATTER QUARK MATTER Walecka model (p,n,e)+(σ,ω) Bag model (u,d,e) Maxwell construction: P Had = P Quark µ Had B 1000 EoS at T = 0 B 1/4 [MeV] 1800 = µ Quark B Walecka Model Bag Model, B 1/4 =190 MeV P[ MeV / fm 3 ] ε[ MeV / fm 3 ] Nuclear Matter B 1/4 = 220 B 1/4 =200 B 1/4 =190 B 1/4 =180 ε[ MeV / fm 3 ] µ = MeV µ B [ MeV]

14 STABILITY OF HADRONIC AND HYBRID STARS Gaussian model Lorentzian model

15 STABILITY OF ROTATING HYBRID STARS Mass - Radius relation HHJ - Gaussian formfactor model Phase diagram for rotating stars Springer LNP 578 Phys. of NS Int. M [ M sun ] R e [km] _ Ω = 0 Ω = Ω max with SC normal hadronic ε(0) [MeV/fm 3 ] Ω [khz] RSt line (normal) RSt line (2SC) phtc line (normal) phtc line (2SC) BH line (normal) BH line (2SC) Hadronic Configurations No Stable Rotation Quark Core Configurations M [M sun ] Black Holes

16 Normal Cooling for HJ EoS our crust, without medium effects COOLING log(t s [K]) PSR J in 3C58 Crab RX J E RX J log(t[yr]) Vela PSR Geminga PSR RX J Evolution of the surface temperature T s of a hadronic star Data: Yakovlev et al., A & A 389 (2002) L24; Calculation: D.B., Grigorian, Voskresensky, astro-ph/

17 THE NUCLEAR URCA PROCESS n p + e + Neutrinos leave the star (λ ν R): µ ν = 0 β-equilibrium: µ n = µ p + µ e Momentum conservation: p F,n = p F,p + p F,e p F,n p F,p + p F,e Charge neutrality: n p n e = 0 p3 F,p = p3 F,e 3π 2 3π 2 Triangle inequality: p F,n 2p F,p n n 8 n p n p n p +n n = x p 1 9 Luminosity: L ν = (2π) 4 d 3 p n (2π) 3 2E n... d 3 p ν (2π) 3 2E ν δ 3 ( p i )δ(e i ) M fi 2 f n (1 f p )(1 f e ) Emissivity: ɛ ν = L ν V 1027 ( m n m p m 2 N ) ( ) 1/3 n e ( T ) 6 erg n K cm 3 s

18 HADRON MATTER: DU CRITICAL DENSITIES AND CRITICAL MASSES OF STARS DU critical densities n c = 2.7 n 0 non linear Walecka (NLW) n c = 5.0 n 0 AV 18 + δv (HHJ) DU critical masses M c = 1.25 M - NLW M c = 1.84 M - HHJ 0.18 Charge Particles for WNL(250) & HJ(240) EoS Densities of protons electrons and muons n p,e,µ [fm-3 ] p - HHJ e - - HHJ µ - HHJ p - NLW e - - NLW µ NLW M [M sun ] HHJ, 240 MeV NLW 250 MeV n [fm -3 ] R [km] n(0) [fm -3 ] Heiselberg, Hjorth-Jensen, astro-ph/

19 GENERAL RELATIVISTIC COOLING EQUATIONS The energy flux per unit time l(r) through a spherical slice at distance r from the center is: l(r) = 4πr 2 k(r) (T eφ ) e 1 Φ 2M r r. The factor e Φ 1 2M r corresponds to relativistic corrections of time and distance scales. The equations for energy balance and thermal energy transport are: N B (le 2Φ ) = 1 n (ɛ νe 2Φ + c V t (T eφ )) (T e 2Φ ) = 1 le Φ N B k 16π 2 r 4 n where n = n(r) is the baryon number density, N B = N B (r) is the total baryon number in the sphere with radius r and N B r = 4πr2 n(1 2M r ) 1/2 D.B., Grigorian, Voskresensky, Astron. & Astrophys. 368 (2001) 561.

20 COOLING CURVES: HADRONS (NORMAL) STARS Our crust (Ts Tin) log(t[yr]) RX J Vela Geminga log(t s [K]) 1E RX J PSR PSR PSR J in 3C58 Crab RX J π -condensate and MMU Normal Cooling for HJ EoS our crust, without medium effects log(t[yr]) RX J Vela Geminga log(t s [K]) PSR PSR J in 3C58 1E RX J PSR Crab RX J Normal Cooling for HJ EoS our crust, with medium effects, π cond D.B., Grigorian, Voskresensky, astro-ph/

21 HADRON MATTER: PAIRING GAPS AND CRUST OF STARS Neutron and Proton pairing gaps Crust model 1.5 n 1S 0 Thick lines Yak. et. al Thin lines AV18 10 n 3P 2 p 1S [MeV] log 10 (T in [K]) our fit Tsuruta law Yakovlev (η = ) Yakovlev (η = 4.0*10-8 ) n / n log 10 (T s [K]) Yakovlev, Gnedin, Kaminker, Levenfish, Potekhin, astro-ph/ ; Yakovlev, Levenfish, Potekhin, Gnedin, Chabrier, A & A 417 (2004) 169; Takatsuka, Tamagaki, nucl-th/

22 COOLING CURVES: HADRONIC (SUPERCONDUCTING) STARS with AV18 gaps, π -condensate, MMU (3P 2 - suppressed) log(t s [K]) Cooling for HJ EoS (AV18) Our crust, with medium effects, 3P 2 *0.1 π cond PSR J in 3C58 Crab RX J E RX J Vela PSR Geminga PSR RX J with Gaps from Yakovlev at al log(t s [K]) Cooling for HJ EoS our crust, with medium effects, π cond. 3P 2 *0.1 PSR J in 3C58 Crab RX J E RX J log(t[yr]) Vela PSR Geminga PSR RX J log(t[yr]) D. Blaschke, H. Grigorian, and D.N. Voskresensky, (2004). arxiv:astro-ph/

23 COOLING CURVES: HADRONIC (SUPERCONDUCTING - ANOMALOUS) STARS with AV18 gaps, π -condensate, MMU (3P 2 - is NOT suppressed) log(t s [K]) Cooling for HJ EoS (AV18) Our crust, with medium effects PSR J in 3C58 Crab RX J E RX J Vela PSR Geminga PSR RX J with Gaps from Yakovlev at al log(t s [K]) Cooling for HJ EoS our crust, with medium effects, π cond. PSR J in 3C58 Crab RX J E RX J log(t[yr]) Vela PSR Geminga PSR RX J log(t[yr]) D. Blaschke, H. Grigorian, and D.N. Voskresensky, (2004). arxiv:astro-ph/

24 BAG MODEL FIT AND HYBRID STAR CONFIGURATION Mass - Radius relation HHJ - Gaussian formfactor model Bag model Fit for Gaussian SM EoS H. Grigorian et al., PRC 69 (2004) M [ M o ] HHJ -SM with 2SC HHJ -SM without 2SC HHJ R [km]

25 NEUTRINO PROCESSES IN QUARK MATTER: EMISSIVITIES Quark direct Urca (QDU) the most efficient processes d u + e + ν and u + e d + ν ɛ QDU ν α s uye 1/3 ζ QDU T9 6 erg cm 3 s 1, Compression u = n/n 0 2, strong coupling α s 1 Quark Modified Urca (QMU) and Quark Bremsstrahlung (QB) d + q u + q + e + ν and q 1 + q 2 q 1 + q 2 + ν + ν ɛ QMU ν ɛ QB ν ζ QMU T9 8 erg cm 3 s 1. Suppression due to the pairing QDU : ζ QDU exp( q /T ) QMU and QB : ζ QMU exp( 2 q /T ) for T < T crit,q 0.4 q e+ e e+ e+ ν+ ν ɛ ee ν = Ye 1/3 u 1/3 T9 8 erg cm 3 s 1, becomes important for q /T >> 1 BLASCHKE, GRIGORIAN, VOSKRESENSKY, ASTRON. & ASTROPHYS. 368 (2001) 561 d d u - ν e- u - ν e - u u FLOWERS, ITOH, APJ 250 (1981) 750; SCHAAB, VOSKRESENSKY, SEDRAKIAN, WEBER, WEIGEL, A & A 321 (1997)591 YAKOVLEV, LEVENFISH, SHIBANOV, PHYS. USP. 169 (1999) 825; BAIKO, HAENSEL, ACTA PHYS. POLON. B 30 (1999) 1097

26 EVOLUTION OF THE TEMPERATURE PROFILE = 50 MeV = 0.1 MeV = 0 Temperature profiles in MeV t = 1 sec t = 1 min t = 5 min t = 2 hours t = 5 hours t = 10 hours t = 1.5 days t = 0.1 year t = 1 year t = 3 years t = 4 years t = 6 years Radius in km

27 COOLING CURVES: HYBRID STARS WITH 2SC QUARK MATTER 2SC phase - 1 color is unpaired (mixed superconductivity) log(t s [K]) Cooling of Hybrid stars with 2SC Quark core HJ (Y - 3P 2 *0.1) with K = 240 MeV with Med. effects, our crust, Gaussian FF PSR J in 3C58 Crab RX J E RX J Vela PSR Geminga PSR RX J critical SC + X, X = 1 MeV log(t s [K]) 6,4 6,2 6 5,8 Cooling of Hybrid stars with 2SC Quark core HJ (Y - 3P 2 *0.1) with K = 240 MeV with Med. effects, our crust, Gaussian FF PSR J in 3C58 Crab 5, RX J E RX J log(t[yr]) Vela PSR Geminga PSR RX J log(t[yr]) D.B., Grigorian, Voskresensky, astro-ph/

28 COOLING CURVES: HYBRID STARS WITH 2SC QUARK MATTER 2SC + X phase, X = 100 kev log(t s [K]) Cooling of Hybrid stars with 2SC Quark core HJ (Y - 3P 2 *0.1) with K = 240 MeV with Med. effects, our crust, Gaussian FF PSR J in 3C58 Crab RX J E RX J Vela PSR Geminga PSR RX J critical SC + X phase, X = 30 kev log(t s [K]) Cooling of Hybrid stars with 2SC Quark core HJ (Y - 3P 2 *0.1) with K = 240 MeV with Med. effects, our crust, Gaussian FF PSR J in 3C58 Crab RX J E RX J log(t[yr]) Vela PSR Geminga PSR RX J critical log(t[yr]) D.B., Voskresensky, Grigorian, [arxiv:astro-ph/ ], and in preparation

29 CONJECTURE ABOUT MAGNETIZED QUARK STARS: NEUTRINO BEAMING AND GRB Magnetic vortex structure Characteristic length scales: ξ, λ, λ D N vort Φ q = B in,sπr 2, Φ q 6Φ 0, B λ Channeling of neutrino propagation Berdermann, D.B., Grigorian, Hong, Voskresensky in prep. (2004) star surface λ ν ν,ν + e ν ν e conversion ξ R G G ν,ν λ D G ξ < λ < λ D vortex superconductor θ ν

30 CONJECTURE ABOUT MAGNETIZED QUARK STARS: NEUTRINO BEAMING AND GRB Beaming angle as function of T and B θ ν arcsin λ ν R, λν = λ ν ( V N V o V V o ) α Evolution of luminosity, temperature, θ ν Berdermann, D.B., Grigorian, Hong, Voskresensky, in prep. (2004) 10 L [erg/s] 1e+53 1e+52 1e+51 1e+50 B = G B = G B = G B = G B = G θ ν [grad] T [MeV] B = G B = G T [MeV] θ ν [grad] t [s]

31 PERSPECTIVES THEORY OF EOS WITH CONSTRAINTS Nuclear Matter - 2SC Quark Matter Phase transition depends on details of the modeling, e.g. Coupling Constants, Form Factors Improve by using DSE Models 2SC Quark Matter Core is possible for NLW - Gaussian separable model Rôle of CFL phase at higher densities? EXPERIMENTAL OBSERVABLES Late time Cooling: Onset of Enhanced Cooling depends on Size of Quark Core, i.e. Mass/Spin of the Star Coupling of Rotational & Cooling evolution (in progress) Early Evolution (PNS): Explosive release of Binding energy is possible in antineutrino untrapping Second pulse of ν from supernovae Anisotropic Emission (magnetic vortices) may explain GRB - beaming

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

David Blaschke Univ. Wroclaw & JINR Dubna

David Blaschke Univ. Wroclaw & JINR Dubna David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, 28 th November 2007 David Blaschke Univ. Wroclaw & JINR Dubna Mass & Spin Phase diagram Mass clustering = Phase transition High density EoS with Phase

More information

Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution

Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution D.N. Aguilera 1,2,D.Blaschke

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

Cooling of isolated neutron stars as a probe of superdense matter physics

Cooling of isolated neutron stars as a probe of superdense matter physics Cooling of isolated neutron stars as a probe of superdense matter physics, Alexander Potekhin and Dmitry Yakovlev Ioffe Physical Technical Institute - Politekhnicheskaya 26, 194021 Saint-Petersburg, Russia

More information

Physics of Compact Stars

Physics of Compact Stars Physics of Compact Stars Crab nebula: Supernova 1054 Pulsars: rotating neutron stars Death of a massive star Pulsars: lab s of many-particle physics Equation of state and star structure Phase diagram of

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

David Blaschke Univ. Wroclaw & JINR Dubna

David Blaschke Univ. Wroclaw & JINR Dubna David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, Thursday 14 th February, 28 David Blaschke Univ. Wroclaw & JINR Dubna Phase Diagram & Chiral Quark Model Mass and Flow constraint on high-density EoS

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Structure and cooling of neutron stars: nuclear pairing and superfluid effects

Structure and cooling of neutron stars: nuclear pairing and superfluid effects Journal of Physics: Conference Series PAPER OPEN ACCESS Structure and cooling of neutron stars: nuclear pairing and superfluid effects To cite this article: F Isaule and H F Arellano 2016 J. Phys.: Conf.

More information

Cooling of neutron stars. Hadronic model

Cooling of neutron stars. Hadronic model A&A 424, 979 992 (2004) DOI: 10.1051/0004-31:20040404 c ESO 2004 Astronomy & Astrophysics Cooling of neutron stars. Hadronic model D. Blaschke 1,2,3, H. Grigorian 1,4, and D. N. Voskresensky 5, 1 Fachbereich

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México Neutron Star Cooling Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Core: homogeneous matter Swiss cheese Lasagna Spaghetti B Crust: nuclei + neutron superfluid Atmosphere

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

Neutron star properties from an NJL model modified to simulate confinement

Neutron star properties from an NJL model modified to simulate confinement Nuclear Physics B (Proc. Suppl.) 141 (25) 29 33 www.elsevierphysics.com Neutron star properties from an NJL model modified to simulate confinement S. Lawley a W. Bentz b anda.w.thomas c a Special Research

More information

Compact Stars within a SU(3) chiral Quark Meson Model

Compact Stars within a SU(3) chiral Quark Meson Model Compact Stars within a SU(3) chiral Quark Meson Model Andreas Zacchi Matthias Hanauske,3 Laura Tolos Jürgen Schaffner-Bielich Institute for Theoretical Physics Goethe University Frankfurt Institut de Ciencies

More information

Neutron Star and Superfluidity

Neutron Star and Superfluidity Neutron Star and Superfluidity Ka Wai Lo Department of Physics, University of Illinois at Urbana-Champaign December 13, 2010 Abstract It is expected that under high density, nucleons in neutron star can

More information

David Blaschke (Univ. Wroclaw & JINR Dubna)

David Blaschke (Univ. Wroclaw & JINR Dubna) David Blaschke (Univ. Wroclaw & JINR Dubna) INT Workshop, Seattle, August 15 th, 28 David Blaschke (Univ. Wroclaw & JINR Dubna) NCQM as a tool for strong QCD T,µ Mean-field: order params. & phase diagram

More information

Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing

Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing M. E. Gusakov 1, O. Y. Gnedin 2 1 Ioffe Physical Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia 2 Space Telescope

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California

Fridolin Weber San Diego State University and University of California at San Diego San Diego, California Fridolin Weber San Diego State University and University of California at San Diego San Diego, California INT Program INT-16-2b The Phases of Dense Matter, July 11 August 12, 2016 EMMI Rapid Reaction Task

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Quark matter in compact stars: the Constant Sound Speed parameterization

Quark matter in compact stars: the Constant Sound Speed parameterization Quark matter in compact stars: the Constant Sound Speed parameterization Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà,

More information

Thermal Behavior of Neutron Stars

Thermal Behavior of Neutron Stars Thermal Behavior of Neutron Stars Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Thermal Behavior of Neutron Stars Overview of neutron star structure and a simple analytical

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

Color superconductivity in quark matter

Color superconductivity in quark matter Fedora GNU/Linux; L A TEX 2ǫ; xfig Color superconductivity in quark matter Mark Alford Washington University Saint Louis, USA Outline I Quarks at high density Cooper pairing, color superconductivity II

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Introduction Thermal evolution of ordinary neutron stars Thermal evolution

More information

Neutron Star Core Equations of State and the Maximum Neutron Star Mass

Neutron Star Core Equations of State and the Maximum Neutron Star Mass PORTILLO 1 Neutron Star Core Equations of State and the Maximum Neutron Star Mass Stephen K N PORTILLO Introduction Neutron stars are the compact remnants of massive stars after they undergo core collapse.

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Signatures of QCD phase transition in a newborn compact star

Signatures of QCD phase transition in a newborn compact star Mon. Not. R. Astron. Soc. 350, L42 L46 (2004 doi:10.1111/j.1365-2966.2004.07849.x Signatures of QCD phase transition in a newborn compact star K.-W. Wong 1,2 and M.-C. Chu 1 1 Department of Physics, The

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 Color Superconductivity and Blinking Proto-Neutron Stars arxiv:hep-ph/0111353v1 27 Nov 2001 G. W. Carter Department of Physics and Astronomy State University of New York Stony Brook, NY 11794-3800 1 Introduction

More information

Realistic nucleon force and X-ray observations of neutron stars

Realistic nucleon force and X-ray observations of neutron stars Realistic nucleon force and X-ray observations of neutron stars Pawe l Haensel haensel@camk.edu.pl New perspectives on neutron star interiors ECT*, Trento, Italy, October Pawe l Haensel (CAMK) Nucleon

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

arxiv:astro-ph/ v1 16 Apr 1999

arxiv:astro-ph/ v1 16 Apr 1999 PHASE TRANSITIONS IN NEUTRON STARS AND MAXIMUM MASSES H. HEISELBERG Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark and arxiv:astro-ph/9904214v1 16 Apr 1999 M. HJORTH-JENSEN Department of Physics,

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Hadronization as Mott-Anderson localization in cqm

Hadronization as Mott-Anderson localization in cqm Hadronization as Mott-Anderson localization in cqm David Blaschke University of Wroclaw, Poland & JINR Dubna, Russia PSR J0348+0432 PSR J1614-2230 ECT* Workshop Hadronization & Statistical Model, Trento,

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

arxiv:astro-ph/ v1 11 May 2004

arxiv:astro-ph/ v1 11 May 2004 arxiv:astro-ph/040596v May 2004 THE MINIMAL COOLING OF NEUTRON STARS DANY PAGE Instituto de Astronomía, UNAM Mexico, D.F. 0440, MEXICO E-mail: page@astroscu.unam.mx A general overview of the main physical

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Thermal Emission. Cooling Neutron Stars

Thermal Emission. Cooling Neutron Stars Neutron Stars and Pulsars: about 40 Years after their Discovery 363th Heraeus-Seminar, Bad Honnef, May 14-19, 19, 2006 Thermal Emission from Cooling Neutron Stars Dany Page Instituto de Astronomía, UNAM,

More information

a model-independent view

a model-independent view The state of cold quark matter: a model-independent view Renxin Xu ( 徐仁新 ) School of Physics, Peking University Compact stars in the QCD phase diagram II (CSQCD II), PKU May 24th, 2009. What s the nature

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

MAGNETARS AS COOLING NEUTRON STARS

MAGNETARS AS COOLING NEUTRON STARS MAGNETARS AS COOLING NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Main coauthors: A.D. Kaminker, A.Y. Potekhin, D.A. Baiko February 2009, Aspen HISTORY The first

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Color superconductivity in cold and dense quark matter

Color superconductivity in cold and dense quark matter Color superconductivity in cold and dense quark matter Habilitationsschrift im Fach Theoretische Physik vorgelegt beim Rektorat der Technischen Universität Wien von Andreas Schmitt aus Frankfurt am Main

More information

arxiv: v1 [hep-ph] 25 Apr 2010

arxiv: v1 [hep-ph] 25 Apr 2010 Accessibility of color superconducting quark matter phases in heavy-ion collisions arxiv:1004.4375v1 [hep-ph] 5 Apr 010 D. B. Blaschke Institute for Theoretical Physics, University of Wroc law, 50-04 Wroc

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Stellar and terrestrial observations from the mean field QCD model MANJARI BAGCHI PDF, TIFR, Mumbai MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Mira & Jishnu Dey, Presidency College,

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Envelopes of neutron stars with strong magnetic fields

Envelopes of neutron stars with strong magnetic fields Envelopes of neutron stars with strong magnetic fields Alexander Y. Potekhin Alexander D. Kaminker Dmitry G. Yakovlev Ioffe Physical-Technical Institute (Saint-Petersburg, Russia) Introduction: neutron

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

The Constant-Sound-Speed parameterization of the quark matter EoS

The Constant-Sound-Speed parameterization of the quark matter EoS The Constant-Sound-Speed parameterization of the quark matter EoS Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arxiv:1501.07902

More information

An EOS implementation for astrophyisical simulations

An EOS implementation for astrophyisical simulations Introduction Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A S Schneider 1, L F Roberts 2, C D Ott 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI East

More information

The cooling of Akmal Pandharipande Ravenhall neutron star models

The cooling of Akmal Pandharipande Ravenhall neutron star models Mon. Not. R. Astron. Soc. 363, 555 562 (2005) doi:10.1111/j.1365-2966.2005.09459.x The cooling of Akmal Pandharipande Ravenhall neutron star models M. E. Gusakov, 1 A. D. Kaminker, 1 D. G. Yakovlev, 1

More information

Transport in the Outer Core of Neutron Stars

Transport in the Outer Core of Neutron Stars Stephan Stetina Institute for Theoretical Physics Vienna UT Transport in the Outer Core of Neutron Stars SEWM 018, Barcelona Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle) [S. Stetina,

More information

Bulk viscosity in superfluid neutron star cores

Bulk viscosity in superfluid neutron star cores A&A 372, 130 137 2001 DOI: 10.1051/0004-6361:20010383 c ESO 2001 Astronomy & Astrophysics Bulk viscosity in superfluid neutron star cores II. Modified Urca processes in npeµ matter P. Haensel 1,K.P.Levenfish

More information

Phonon contribution to the thermal conductivity in neutron star core

Phonon contribution to the thermal conductivity in neutron star core Phonon contribution to the thermal conductivity in neutron star core Tata Institute of Fundamental Research E-mail: sreemoyee.sarkar@tifr.res.in Cristina Manuel Instituto de Ciencias del Espacio (IEEC/CSIC)

More information

(Color-)magnetic flux tubes in dense matter

(Color-)magnetic flux tubes in dense matter Seattle, Apr 17, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber,

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence

Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence K.P.Levenfish, D.G.Yakovlev, P.Haensel I Ioffe Institute, S.Petersburg Copernicus Astronomical Center, Warsaw Brown, Bildstein, Rutledge`98

More information

Pulsar glitch dynamics in general relativity

Pulsar glitch dynamics in general relativity Pulsar glitch dynamics in general relativity Jérôme Novak (jerome.novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel &

More information

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Krakow, May 18, 2007 PSR J020564 in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Astro-Hadron Physics: HIC & Compact Stars Phase Diagrams Quark Matter Quark

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Proto-neutron star in generalized thermo-statistics

Proto-neutron star in generalized thermo-statistics Proto-neutron star in generalized thermo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract The proto-neutron star (PNS) is investigated for the rst time in the generalized thermo-statistics.

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

HADRON PHYSICS AND THE STRUCTURE OF NEUTRON STARS ) Marek Kutschera

HADRON PHYSICS AND THE STRUCTURE OF NEUTRON STARS ) Marek Kutschera HADRON PHYSICS AND THE STRUCTURE OF NEUTRON STARS ) Marek Kutschera H. Niewodniczański Institute of Nuclear Physics ul. Radzikowskiego 152, 31-342 Kraków, Poland Abstract: The equation of state of hadronic

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

arxiv:astro-ph/ v1 7 Jul 1999

arxiv:astro-ph/ v1 7 Jul 1999 Gamma-ray Burst Energetics Pawan Kumar Institute for Advanced Study, Princeton, NJ 08540 Abstract arxiv:astro-ph/9907096v1 7 Jul 1999 We estimate the fraction of the total energy in a Gamma-Ray Burst (GRB)

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Crab nebula in X-ray GSI 22 November2016 Compress the sun (radius 700,000 km) down to a radius of 10-12 km Neutron star over

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

FERMION PAIRINGS IN B!

FERMION PAIRINGS IN B! FERMION PAIRINGS IN B! Vivian de la Incera University of Texas at El Paso CSQCDIII Guaruja, December 11-15, 2012! OUTLINE! Fermion Pairings, B, & QCD Map Magnetoelectricity of the MCFL Phase Quarkyonic

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Gordon Baym University of Illinois, Urbana Workshop on Universal Themes of Bose-Einstein Condensation Leiden

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information