Pulsar glitch dynamics in general relativity

Size: px
Start display at page:

Download "Pulsar glitch dynamics in general relativity"

Transcription

1 Pulsar glitch dynamics in general relativity Jérôme Novak Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel & Chamel Phys. Rev. D 93, (2016) & Month. Not. Roy. Astron. Soc. 464, 4641 (2017) CoCoNuT meeting 2017, Garching, October, 27 th

2 Pulsar glitches 1RXS J Angular momentum loss through emission of electromagnetic waves slowing down of the pulsar with P Kaspi & Gavriil, ApJ, 2003 tiny changes in this slowing down = glitches

3 Pulsar glitches 1RXS J Angular momentum loss through emission of electromagnetic waves slowing down of the pulsar with P Kaspi & Gavriil, ApJ, 2003 tiny changes in this slowing down = glitches

4 Pulsar glitch observations glitch amplitude are low: Ω/Ω rise time is quite short : τ r < 30 s Vela Wong, Backer & Lyne, ApJ, 2001 exponential relaxation during several days, up to months. glitches are driven by internal processes

5 Different glitch types Wang et al., Ap&SS, 2012 giant glitches quasi-periodic narrow amplitude distribution standard glitches randomly spaced in time various amplitudes Different glitch models moment of inertia reduction, with crustquakes transfer of angular momentum between two components, with superfluidity

6 Different glitch types Wang et al., Ap&SS, 2012 giant glitches quasi-periodic narrow amplitude distribution standard glitches randomly spaced in time various amplitudes Different glitch models moment of inertia reduction, with crustquakes transfer of angular momentum between two components, with superfluidity

7 Different glitch types Wang et al., Ap&SS, 2012 giant glitches quasi-periodic narrow amplitude distribution standard glitches randomly spaced in time various amplitudes Different glitch models moment of inertia reduction, with crustquakes transfer of angular momentum between two components, with superfluidity

8 Different glitch types Wang et al., Ap&SS, 2012 giant glitches quasi-periodic narrow amplitude distribution standard glitches randomly spaced in time various amplitudes Different glitch models moment of inertia reduction, with crustquakes transfer of angular momentum between two components, with superfluidity

9 Numerical models Rotating neutron stars in GR hypotheses General relativity to describe gravity Need to describe rotation axisymmetry Glitch time-scale hydro time-scale stationarity Contrary to spherical symmetry no matching to any known vacuum solution is possible (no Birkhoff theorem). Only boundary condition at r : flat metric. Numerical solution obtained using spectral methods (Grandclément & Novak 2009) and the lorene library (

10 Two-fluid approach Anderson & Itoh 1975 Two-fluid model charged particles : Ω p = Ω pulsar superfluid neutrons : Ω n Ω p angular velocity Ω p Superfluid vortices can pin into the crust nuclei When a critical threshold is reached in terms of δω = Ω n Ω p, some vortices unpin and can freely move in radial direction Transfer of angular momentum between both fluids and glitch time

11 Two-fluid approach Anderson & Itoh 1975 Two-fluid model charged particles : Ω p = Ω pulsar superfluid neutrons : Ω n Ω p angular velocity Ω n Ω p Superfluid vortices can pin into the crust nuclei When a critical threshold is reached in terms of δω = Ω n Ω p, some vortices unpin and can freely move in radial direction Transfer of angular momentum between both fluids and glitch time

12 Two-fluid approach Anderson & Itoh 1975 Two-fluid model charged particles : Ω p = Ω pulsar superfluid neutrons : Ω n Ω p angular velocity Ω n Ω p Superfluid vortices can pin into the crust nuclei When a critical threshold is reached in terms of δω = Ω n Ω p, some vortices unpin and can freely move in radial direction Transfer of angular momentum between both fluids and glitch time

13 Two-fluid approach Anderson & Itoh 1975 Two-fluid model charged particles : Ω p = Ω pulsar superfluid neutrons : Ω n Ω p angular velocity Ω n Ω p Superfluid vortices can pin into the crust nuclei When a critical threshold is reached in terms of δω = Ω n Ω p, some vortices unpin and can freely move in radial direction Transfer of angular momentum between both fluids and glitch time

14 Hypotheses Prix, Novak & Comer 2005 Equilibrium configurations: uniform composition : n, p, e crust is neglected rigid rotation : Ω n and Ω p = const. stationary and axisymmetric spacetime + isolated star. T T F, and no magnetic field. dissipation effects are neglected.

15 Hypotheses Prix, Novak & Comer 2005 Equilibrium configurations: uniform composition : n, p, e crust is neglected rigid rotation : Ω n and Ω p = const. stationary and axisymmetric spacetime + isolated star. T T F, and no magnetic field. dissipation effects are neglected.

16 two-fluid relativistic hydrodynamics Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998 System made of two perfect fluids : superfluid neutrons n α n = n n u α n, protons & electrons n α p = n p u α p. Energy-momentum tensor 1 fluid : T αβ = (E + P ) u α u β + P g αβ

17 two-fluid relativistic hydrodynamics Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998 System made of two perfect fluids : superfluid neutrons n α n = n n u α n, protons & electrons n α p = n p u α p. Energy-momentum tensor 1 fluid : T αβ = (E + P ) u α u β +P g αβ }{{} n αp β

18 two-fluid relativistic hydrodynamics Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998 System made of two perfect fluids : superfluid neutrons n α n = n n u α n, protons & electrons n α p = n p u α p. Energy-momentum tensor 2 fluids : T αβ = n nα p n β + n pαp p β + Ψg αβ

19 two-fluid relativistic hydrodynamics Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998 System made of two perfect fluids : superfluid neutrons n α n = n n u α n, protons & electrons n α p = n p u α p. Energy-momentum tensor 2 fluids : T αβ = n nα p n β + n pαp p β + Ψg αβ conjugate momenta { p n α u n α p p α u p α without entrainment

20 two-fluid relativistic hydrodynamics Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998 System made of two perfect fluids : superfluid neutrons n α n = n n u α n, protons & electrons n α p = n p u α p. Energy-momentum tensor 2 fluids : T αβ = n nα p n β + n pαp p β + Ψg αβ conjugate momenta { p n α u n α p p α u p α without entrainment { p n α = K nn n n α + K np n p α p p α = K pn n n α + K pp n p α entrainment effect Entrainment matrix:

21 New, realistic equations of state E ( n n, n p, 2) Ψ ( µ n, µ p, 2) Relativistic mean field model : nucleon - nucleon interactions effective meson exchange DDH DDHδ exp. constraints [ units ] Typel & Wolter (1999) Avancini et al. (2009) Oertel et al. (2017) n ± [ fm 3 ] B sat ± 0.3 [ MeV ] K ± 40 [ MeV ] J ± 3.2 [ MeV ] L ± 28.1 [ MeV ] M max,0 G [ M ]

22 Numerical results entrainment vs. Lense-Thirring The (Komar) angular momentum J X is such that dj X = I XX dω X + I XY dω Y Total coupling coefficient ˆε X = I XY / (I XX + I XY ) depends entrainment due to strong interaction between nucleons measured with the global entrainment coefficient ε (integration of ε over the star) Lense-Thirring effect due to GR dragging of inertial frames by each fluid measured with the metric term g tϕ DDH: εˆp ε~ p DDHδ: εˆp ε~ p M G (M )

23 Mutual friction No external torque exchange of angular momentum between neutrons and protons through mutual friction torque Γ mf Angular velocity Ω n Ω p δω 0 From Langlois et al. (1998), with straight vortices parallel to the rotation axis: interplay between Magnus force due to neutron fluid drag force caused by charged particles time Γ mf = R 1 + R 2 Γ nn n ϖ n χ 2 dσ (Ω n Ω p ) = B 2ÎnΩ n ζ δω

24 Evolution equations: { J n = + Γ mf, J p = Γ mf. Rise time Sidery et al δ Ω δω = ÎÎn I nn I pp Inp 2 2 BζΩ n Analytic approximation: ) δω(t) = δω 0 exp ( tτr τ r = Îp Î 1 ˆε p ˆε n 2ζ BΩ n Numerical modeling : Ω n (t) and Ω p (t) are determined by integration from Ω n,0 > Ω p,0 parameters M G, Ω, Ω/Ω, EoS, B

25 Time evolution Ω/Ω = 10 6, Ω f n = Ω f p = 2π Hz, M G = 1.4 M & B = 10 4 [ Ω X (t) - Ω 0 p ] / Ω0 p Ω 0 n Ω n Ω p Ω f n = Ωf p Ω n -Ω p (rad.s -1 ) DDH - numerique ajust. : τ r = 4.23 s DDHδ - numerique ajust. : τ r = 2.92 s DDHδ Ω 0 p DDH t (s) t (s) Rise times can be estimated with high accuracy without time integration, using only equilibrium models.

26 Ω/Ω = 10 6, Ω f n = Ω f p = 2π Hz Vela pulsar 10 2 DDH DDHδ τ r = 0.1 s B = τr B τ r = 1 s τ r = 10 s Constraints on B : τ r < 30 s B > τ r = 30 s B < 1/2 τr > 0.6 ms M G (M ) a glitch event is a quasi-stationary process, from the hydro viewpoint

27 Ω/Ω = 10 6, Ω f n = Ω f p = 2π Hz Vela pulsar 10 2 DDH DDHδ τ r = 0.1 s B = τr B τ r = 1 s τ r = 10 s Constraints on B : τ r < 30 s B > τ r = 30 s B < 1/2 τr > 0.6 ms M G (M ) a glitch event is a quasi-stationary process, from the hydro viewpoint

28 Influence of general relativity Comparison using two analytic EoSs from Prix et al. (2005) 0.5 [ τ GR τnewt ] / τgr r τnewt r ] / τgr r EoS I EoS II Ξ Compactness defined as Ξ = GM G R circ c 2 with Ξ NS depends on Ω, too. impact of general relativity on glitch dynamics can be quite strong!

29 Conclusions perspectives Precise models of rotating neutron stars in GR Realistic EoS for 2 fluids, including entrainment Quasi-stationary approach, with analytic formula for rise time Additional coupling between fluids due to Lense-Thirring effect Strong overall influence of GR on glitch rise time For the future: Looking for accurate data to constrain rise time Local modeling of glitch unpinning and movement Taking into account crust in global models?

30 References Anderson, P.W. and Itoh, N., Pulsar glitches and restlessness as a hard superfluidity phenomenon, Nature, 256, 25 (1975). Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., Axisymmetric rotating relativistic bodies: a new numerical approach for exact solutions, Astron. & Astrophys., 278, 421 (1993). Carter, B., Covariant theory of conductivity in ideal fluid or solid media, Lect. Notes Math., 1385 (1989). Relativistic models for superconducting-superfluid mixtures, Nucl. Phys. B, 531, 478 (1998). Grandclément, Ph. and Novak, J., Spectral Methods for numerical Relativity, Liv. Rev. Relat., 12, 1 (2009). Kaspi, V.M. and Gavriil, F.P., A second glitch from the anomalous X-ray pulsar 1RXS J , Astrophys. J., 576, L71 (2003). Langlois, D., Sedrakian, D. and Carter, B., Differential rotation of relativistic superfluid in neutron stars, Month. Not. Roy. Astron. Soc., 297, 1189 (1998). Relativistic numerical models for stationary superfluid neutron stars, Phys. Rev. D 71, (2005). Swesty, F.D., Thermodynamically Consistent Interpolation for Equation of State Tables, J. Comp. Phys., 127, 118 (1996). Wang, J., Wang, N., Tong, H. and Yuan, J., Recent glitches detected in the Crab pulsar, Astrophys. Space Sci., 340, 307 (2012). Wong, T., Backer, D.C. and Lyne, A.G., Observations of a series of six recent glitches in the Crab pulsar, Astrophys. J., 548, 447 (2001).

31 with entrainment p α X = K XX n X u α X + K XY n Y u α Y Numerical results entrainment Dynamic effective mass: p i X = m X u i X i {1, 2, 3} in the fluid-y rest-frame In the u i Y = 0 frame: relativity DDH DDHδ ε p 0 ) m X = µ X (1 ε X ε X ε n 0 entrainment n B (fm -3 )

32 with entrainment p α X = K XX n X u α X + K XY n Y u α Y Numerical results entrainment Dynamic effective mass: p i X = m X u i X i {1, 2, 3} in the fluid-y rest-frame In the u i Y = 0 frame: relativity DDH DDHδ ε p 0 ) m X = µ X (1 ε X ε X ε n 0 entrainment n B (fm -3 )

33 with entrainment p α X = K XX n X u α X + K XY n Y u α Y Numerical results entrainment Dynamic effective mass: p i X = m X u i X i {1, 2, 3} in the fluid-y rest-frame In the u i Y = 0 frame: relativity DDH DDHδ ε p 0 ) m X = µ X (1 ε X ε X ε n 0 entrainment n B (fm -3 )

arxiv:gr-qc/ v1 29 Nov 2002

arxiv:gr-qc/ v1 29 Nov 2002 Stationary structure of relativistic superfluid neutron stars arxiv:gr-qc/0211105v1 29 Nov 2002 R. Prix 1, J. Novak 2 and G.L. Comer 3 1 University of Southampton, UK 2 Observatoire de Paris-Meudon, France

More information

Using CompOSE cold EOSs for rotating neutron star models in lorene

Using CompOSE cold EOSs for rotating neutron star models in lorene Using CompOSE cold EOSs for rotating neutron star models in lorene Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot in

More information

Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue

Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université

More information

Generalized equation of state for cold superfluid neutron stars. Abstract

Generalized equation of state for cold superfluid neutron stars. Abstract Generalized equation of state for cold superfluid neutron stars N. Chamel, 1 J. M. Pearson, 2 and S. Goriely 1 1 Institut d Astronomie et d Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels,

More information

Superfluid instability in precessing neutron stars

Superfluid instability in precessing neutron stars Superfluid instability in precessing neutron stars Kostas Glampedakis SISSA, Trieste, Italy in collaboration with Nils Andersson & Ian Jones Soton October 2007 p.1/15 This talk Precessing neutron stars

More information

Dense matter equation of state and rotating neutron stars

Dense matter equation of state and rotating neutron stars Dense matter equation of state and rotating neutron stars ANG LI (李昂) with R.-X. Xu & H. Gao (Beijing) W. Zuo & J.-M. Dong (Lanzhou) B. Zhang (UNLV) J.-B. Wang (Urumqi) N.-B. Zhang & B. Qi (Weihai) T.

More information

arxiv:astro-ph/ v2 8 Nov 2002

arxiv:astro-ph/ v2 8 Nov 2002 Radio Pulsars ASP Conference Series, Vol. to be determined, 23 M. Bailes, D. J. Nice, & S. E. Thorsett, eds. Precession of Isolated Neutron Stars arxiv:astro-ph/282v2 8 Nov 22 Bennett Link Department of

More information

Neutron Star and Superfluidity

Neutron Star and Superfluidity Neutron Star and Superfluidity Ka Wai Lo Department of Physics, University of Illinois at Urbana-Champaign December 13, 2010 Abstract It is expected that under high density, nucleons in neutron star can

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009 Gravitational Wave emission mechanisms in accreting systems INAF-Milano 26/11/2009 GWs from rotating neutron stars LMXBs and accretion models Emission mechanisms Crustal and core mountains Magnetic mountains

More information

Neutron Stars: Observations

Neutron Stars: Observations Neutron Stars: Observations Ian Jones School of Mathematics, University of Southampton, UK Neutron star observations: overview From the observational point of view, neutron stars come in many different

More information

arxiv: v2 [astro-ph.he] 27 Sep 2017

arxiv: v2 [astro-ph.he] 27 Sep 2017 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed April 22, 2018 (MN LATEX style file v2.2) Minimum Glitch of the Crab Pulsar and the Crustquake as a Trigger Mechanism O. Akbal 1 & M.A. Alpar 1 arxiv:1707.01160v2

More information

Glitches and precession

Glitches and precession Glitches and precession What is a glitch? A sudden increase of rotation rate. ATNF catalogue gives ~120 normal PSRs with glitches. The most known: Crab and Vela ΔΩ/Ω~ 10 9 10 6 Spin down rat e can change

More information

Gravitational Waves from Neutron Stars

Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting

More information

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS Journée Gravitation et Physique Fondamentale Meudon, 27 May 2014 Isabel Cordero-Carrión Laboratoire Univers et Théories (LUTh), Observatory

More information

Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach

Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach Mon. Not. R. Astron. Soc. 420, 658 671 (2012) doi:10.1111/j.1365-2966.2011.20080.x Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach B. Haskell, 1,2 P. M. Pizzochero 3,4

More information

Glitches in radio pulsars

Glitches in radio pulsars 6.39466 Frequency (Hz) 6.39464 6.39462 6.3946 6.39458 6.39456 6.39454? 6.39452 6.3945 42000 44000 46000 48000 50000 52000 54000 MJD (Days) Glitches in radio pulsars Cristóbal Espinoza Jodrell Bank Centre

More information

arxiv: v1 [astro-ph.sr] 9 Apr 2015

arxiv: v1 [astro-ph.sr] 9 Apr 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 26-30, 2014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Magnetized Neutron Star Bruno Franzon 1 Stefan Schramm 1 arxiv:1504.02337v1

More information

Center for Gravitation and Cosmology University of Wisconsin-Milwaukee. John Friedman

Center for Gravitation and Cosmology University of Wisconsin-Milwaukee. John Friedman Center for Gravitation and Cosmology University of Wisconsin-Milwaukee Binary Neutron Stars: Helical Symmetry and Waveless Approximation John Friedman I. EINSTEIN EULER SYSTEM II. HELICAL SYMMETRY AND

More information

Vela Pulsar Glitches and Nuclear Superfluidity

Vela Pulsar Glitches and Nuclear Superfluidity Vela Pulsar Glitches and Nuclear Superfluidity Nicolas Chamel Institute of Astronomy and Astrophysics Université Libre de Bruxelles, Belgium March 214 Vela pulsar In October 1968, astronomers from the

More information

Study of superfluidity in magnetars by van Hoven and Levin

Study of superfluidity in magnetars by van Hoven and Levin Study of superfluidity in magnetars by van Hoven and Levin Overview What is a superfluid and how does it look like in neutron stars? What can happen when both a superfluid and a strong magnetic field are

More information

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1 Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars Qiu-he Peng a,b ( qhpeng@nju.edu.cn ) Zhi quan Luo a,c a School of Physics and electronic

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

SUPERFLUID MAGNETARS AND QPO SPECTRUM

SUPERFLUID MAGNETARS AND QPO SPECTRUM SUPERFLUID MAGNETARS AND QPO SPECTRUM Andrea Passamonti Osservatorio Astronomico di Roma INAF. In collaboration with L. Stella, S. Lander SAIt Bologna 9/5/23 Magnetars Neutron stars with a strong magnetic

More information

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Farrukh J. Fattoyev Bao-An Li, William G. Newton Texas A&M University-Commerce 27 th Texas Symposium on Relativistic Astrophysics

More information

Fast Rotation of Neutron Stars

Fast Rotation of Neutron Stars Fast Rotation of Neutron Stars Leszek Zdunik in collaboration with Pawel Haensel, Michal Bejger, Eric Gourgoulhon CAMK - Nicolaus Copernicus Astronomical Center, Warszawa LUTh, Observatoire de Paris, CNRS,

More information

Two types of glitches in a solid quark star model

Two types of glitches in a solid quark star model Two types of glitches in a solid quark star Enping Zhou Supervisor: Prof. Renxin Xu & Prof. Luciano Rezzolla 2015.01.13 1 Outline Motivation The The result D & C Challenges to the theories on pulsar glitches

More information

Universal Relations for the Moment of Inertia in Relativistic Stars

Universal Relations for the Moment of Inertia in Relativistic Stars Universal Relations for the Moment of Inertia in Relativistic Stars Cosima Breu Goethe Universität Frankfurt am Main Astro Coffee Motivation Crab-nebula (de.wikipedia.org/wiki/krebsnebel) neutron stars

More information

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars THE NEUTRON STAR CRUST AND SURFACE WORKSHOP Seattle 25-29 June 2007 Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars P. Avogadro, F.Barranco, R.A.Broglia, E.Vigezzi

More information

Statistical study of neutron star glitches

Statistical study of neutron star glitches International Journal of Astrophysics and Space Science 2014; 2(2): 16-21 Published online May 20, 2014 (http://www.sciencepublishinggroup.com/j/ijass) doi: 10.11648/j.ijass.20140202.11 Statistical study

More information

Horizon Surface Gravity in Black Hole Binaries

Horizon Surface Gravity in Black Hole Binaries Horizon Surface Gravity in Black Hole Binaries, Philippe Grandclément Laboratoire Univers et Théories Observatoire de Paris / CNRS gr-qc/1710.03673 A 1 Ω κ 2 z 2 Ω Ω m 1 κ A z m Black hole uniqueness theorem

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

arxiv: v1 [astro-ph.he] 27 Dec 2018

arxiv: v1 [astro-ph.he] 27 Dec 2018 Manuscript for Revista Mexicana de Astronomía y Astrofísica (2007) arxiv:1812.10815v1 [astro-ph.he] 27 Dec 2018 ENTRAINMENT FACTOR ON INDIVIDUAL GLITCH FRACTIONAL MOMENT OF INERTIA I. O. Eya, 1,3 J. O.

More information

Neutron-star properties with unified equations of state

Neutron-star properties with unified equations of state Neutron-star properties with unified equations of state Nicolas Chamel in collaboration with J. M. Pearson, S. Goriely, A. F. Fantina Institute of Astronomy and Astrophysics Université Libre de Bruxelles,

More information

Towards general-relativistic pulsar magnetospheres

Towards general-relativistic pulsar magnetospheres Towards general-relativistic pulsar magnetospheres Jérôme Pétri Observatoire Astronomique de Strasbourg, Université de Strasbourg, France. Physics of Neutron Stars, Saint-Petersbourg, 29/7/2014 Jérôme

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

From dying massive stars to nascent compact objects: proto-neutron stars

From dying massive stars to nascent compact objects: proto-neutron stars From dying massive stars to nascent compact objects: proto-neutron stars Loïc Villain Departament d Astronomia i Astrofisica (DAA) Universitat de Valencia Valencia, Spain and Laboratoire de l Univers et

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

Gravitational waves from neutron stars: theoretical challenges. Ian Jones University of Southampton IGWM, 17 th May 2017

Gravitational waves from neutron stars: theoretical challenges. Ian Jones University of Southampton IGWM, 17 th May 2017 Gravitational waves from neutron stars: theoretical challenges Ian Jones University of Southampton IGWM, 17 th May 2017 Three gravitational wave emission mechanisms Mountains non-axisymmetric deformation

More information

Missing pieces in the r-mode puzzle

Missing pieces in the r-mode puzzle Missing pieces in the r-mode puzzle Southampton Theory Astronomy Gravity Centre for Fundamental Physics Nils Andersson accreting systems Accreting neutron stars in LMXBs may be relevant gravitational-wave

More information

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) Investigation on the oscillation modes of neutron stars 文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) collaborators Bao-An Li, William Newton, Plamen Krastev Department of Physics

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

arxiv: v1 [astro-ph.he] 31 Mar 2015

arxiv: v1 [astro-ph.he] 31 Mar 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 26-30, 2014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Braking index of isolated pulsars: open questions and ways forward arxiv:1503.09110v1

More information

Initial Data for Black-Hole Binaries

Initial Data for Black-Hole Binaries Initial Data for Black-Hole Binaries Gregory B. Cook Wake Forest University June 11/1, 004 Abstract We will examine the current state of our efforts to generate astrophysically realistic initial data for

More information

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars:

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: PACIFIC 2018 (Feb. 14, 2018) Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models GW & C. J. Pethick, PRL 119, 062701 (2017). Gentaro Watanabe (Zhejiang

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries Astronomical Institute Anton Pannekoek Low Mass X-ray Binaries Mass is stripped from the donor Forms

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust

Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust Nicolas Chamel in collaboration with S. Goriely and J. M. Pearson Research Associate FNRS Institute of Astronomy

More information

Thermodynamics of a Black Hole with Moon

Thermodynamics of a Black Hole with Moon Thermodynamics of a Black Hole with Moon Laboratoire Univers et Théories Observatoire de Paris / CNRS In collaboration with Sam Gralla Phys. Rev. D 88 (2013) 044021 Outline ➀ Mechanics and thermodynamics

More information

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Introduction Thermal evolution of ordinary neutron stars Thermal evolution

More information

arxiv: v1 [cond-mat.other] 11 Sep 2008

arxiv: v1 [cond-mat.other] 11 Sep 2008 arxiv:0809.1990v1 [cond-mat.other] 11 Sep 2008 Momentum deficit in quantum glasses A.F. Andreev Kapitza Institute for Physical Problems, Russian Academy of Sciences, Kosygin Str. 2, Moscow, 119334 Russia

More information

Topics in Relativistic Astrophysics

Topics in Relativistic Astrophysics Topics in Relativistic Astrophysics John Friedman ICTP/SAIFR Advanced School in General Relativity Parker Center for Gravitation, Cosmology, and Astrophysics Part I: General relativistic perfect fluids

More information

arxiv:astro-ph/ v1 16 Aug 2001

arxiv:astro-ph/ v1 16 Aug 2001 Mon. Not. R. Astron. Soc. 000, 1 6 (2001) Printed 19 February 2004 (MN LATEX style file v1.4) Vortex Unpinning in Precessing Neutron Stars B. Link 1 and C. Cutler 2 1 Montana State University, Department

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA The Secret Life of Neutron Stars Jeremy Heyl Harvard-Smithsonian CfA The Life of a 10 M Star PNS 10 5 yr 10 6 yr 10 7 yr 10 8 yr 10 9 yr 10 10 yr PMS MS Radio Pulsars Thermal Accretion-, Nuclear-, GWpowered

More information

New Approach to Sgr A* Problem

New Approach to Sgr A* Problem New Approach to Sgr A* Problem arxiv:astro-ph/0201316v1 18 Jan 2002 L.V.Verozub Kharkov National University June 20, 2017 Abstract The hypothesis that radiation of Sgr A* is caused by accretion onto a

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

Post-Keplerian effects in binary systems

Post-Keplerian effects in binary systems Post-Keplerian effects in binary systems Laboratoire Univers et Théories Observatoire de Paris / CNRS The problem of binary pulsar timing (Credit: N. Wex) Some classical tests of General Relativity Gravitational

More information

1 g σbσ m b. L I = L b. Ψ b m b Ψ b + L m + L l, 168 A.E. Broderick et al. / Physics Letters B 531 (2002)

1 g σbσ m b. L I = L b. Ψ b m b Ψ b + L m + L l, 168 A.E. Broderick et al. / Physics Letters B 531 (2002) Physics Letters B 531 (2002) 167 174 www.elsevier.com/locate/npe Effects of strong magnetic fields in strange baryonic matter A.E. Broderick a,m.prakash b, J.M. Lattimer b a Theoretical Astrophysics, California

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Compact objects and strange quark stars

Compact objects and strange quark stars Compact objects and strange quark stars Eric Gourgoulhon Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot F-92190 Meudon, France eric.gourgoulhon@obspm.fr

More information

Mass, Radius and Moment of Inertia of Neutron Stars

Mass, Radius and Moment of Inertia of Neutron Stars Sapienza Università di Roma ICRA & ICRANet X-Ray Astrophysics up to 511 KeV Ferrara, Italy, 14-16 September 2011 Standard approach to neutron stars (a) In the standard picture the structure of neutron

More information

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College Black Hole-Neutron Star Binaries in General Relativity Thomas Baumgarte Bowdoin College 1 Why do we care? Compact binaries (containing neutron stars and/or black holes) are promising sources of gravitational

More information

Non-equilibrium beta processes in superfluid neutron star cores ABSTRACT

Non-equilibrium beta processes in superfluid neutron star cores ABSTRACT A&A 444, 539 548 (25) DOI:.5/4-636:25333 c ESO 25 Astronomy & Astrophysics Non-equilibrium beta processes in superfluid neutron star cores L. Villain,2 and P. Haensel N. Copernicus Astronomical Center,

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

A Method for Judging Decay or Growth of the Magnetic Field of Pulsar

A Method for Judging Decay or Growth of the Magnetic Field of Pulsar J. Astrophys. Astr. (2009) 30, 145 151 A Method for Judging Decay or Growth of the Magnetic Field of ulsar Lin-Sen Li Department of hysics, Northeast Normal University, Changchun 130 024, China. Received

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

Electromagnetically Induced Flows in Water

Electromagnetically Induced Flows in Water Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 213 () Electromagnetically Induced Flows 1 / 56 Outline 1 Introduction 2 Maxwell equations Complex Maxwell equations 3 Gaussian sources

More information

Numerical relativity and the simulation of gravitational waves

Numerical relativity and the simulation of gravitational waves Numerical relativity and the simulation of gravitational waves Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot in collaboration

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

arxiv: v1 [nucl-th] 1 Oct 2018

arxiv: v1 [nucl-th] 1 Oct 2018 General predictions for the neutron star crustal moment of inertia Thomas Carreau, 1 Francesca Gulminelli, 1 and Jérôme Margueron 2 1 CNRS, ENSICAEN, UMR6534, LPC,F-14050 Caen cedex, France 2 Institut

More information

DYNAMICS OF MIXED BINARIES

DYNAMICS OF MIXED BINARIES DYNAMICS OF MIXED BINARIES Luciano Rezzolla Albert Einstein Institute, Golm, Germany In collaboration with Frank Löffler & Marcus Ansorg [Phys. Rev. D 74 104018 (2006)] SISSA (Trieste, Italy), AEI (Golm,

More information

Studies of self-gravitating tori around black holes and of self-gravitating rings

Studies of self-gravitating tori around black holes and of self-gravitating rings Studies of self-gravitating tori around black holes and of self-gravitating rings Pedro Montero Max Planck Institute for Astrophysics Garching (Germany) Collaborators: Jose Antonio Font (U. Valencia) Masaru

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta Phase transitions in dilute stellar matter Francesca Gulminelli & Adriana Raduta LPC Caen, France IFIN Bucharest Supernova remnant and neutron star in Puppis A (ROSAT x-ray) χ 1/2 Τ 10 12 Κ Motivation:

More information

Pulsar braking indices, glitches and energy dissipation in neutron stars

Pulsar braking indices, glitches and energy dissipation in neutron stars Mon. Not. R. Astron. Soc. 372, 489 496 (2006 doi:10.1111/j.1365-2966.2006.10893.x Pulsar braking indices, glitches and energy dissipation in neutron stars M. Ali Alpar 1 and Altan Baykal 2 1 Sabancı University,

More information

Pulsar Glitches: Gravitational waves at r-modes frequencies

Pulsar Glitches: Gravitational waves at r-modes frequencies Pulsar Glitches: Gravitational waves at r-modes frequencies LIGO-G1100022 I. Santiago 1, J. Clark 2, I. Heng 1, I. Jones 3, Graham Woan 1 1 University of Glasgow, 2 Cardiff University, 3 University of

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

An empirical approach combining nuclear physics and dense nucleonic matter

An empirical approach combining nuclear physics and dense nucleonic matter An empirical approach combining nuclear physics and dense nucleonic matter Univ Lyon, Université Lyon 1, IN2P3-CNRS, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne, France E-mail: j.margueron@ipnl.in2p3.fr

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Realistic nucleon force and X-ray observations of neutron stars

Realistic nucleon force and X-ray observations of neutron stars Realistic nucleon force and X-ray observations of neutron stars Pawe l Haensel haensel@camk.edu.pl New perspectives on neutron star interiors ECT*, Trento, Italy, October Pawe l Haensel (CAMK) Nucleon

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

The Same Physics Underlying SGRs, AXPs and Radio Pulsars Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 273 278 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics The Same Physics Underlying SGRs, AXPs and Radio Pulsars Biping Gong National

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY International Journal of Modern Physics E Vol. 17, No. 8 (2008) 1441 1452 c World Scientific Publishing Company PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY J. LI, B.

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

Polarisation of high-energy emission in a pulsar striped wind

Polarisation of high-energy emission in a pulsar striped wind Polarisation of high-energy emission in a pulsar striped wind Jérôme Pétri Observatoire Astronomique de Strasbourg, Université de Strasbourg, France. X-ray polarimetry, November 2017, Strasbourg Jérôme

More information

Simulations of Glitches in Isolated Pulsars

Simulations of Glitches in Isolated Pulsars Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2002 Simulations of Glitches in Isolated Pulsars Michelle B. Larson Utah State University Bennett Link Follow this and

More information

Extreme gravity in neutron-star systems with XEUS

Extreme gravity in neutron-star systems with XEUS Extreme gravity in neutron-star systems with XEUS Mariano Méndez Kapteyn Astronomical Institute, University of Groningen, The Netherlands Probing strong gravitational fields Adapted from Kramer et al.

More information

Degenerate Matter and White Dwarfs

Degenerate Matter and White Dwarfs Degenerate Matter and White Dwarfs Summary of Post-Main-Sequence Evolution of Sun-Like Stars Formation of a Planetary Nebula Fusion stops at formation of C,O core. Core collapses; outer shells bounce off

More information

Proto-neutron star in generalized thermo-statistics

Proto-neutron star in generalized thermo-statistics Proto-neutron star in generalized thermo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract The proto-neutron star (PNS) is investigated for the rst time in the generalized thermo-statistics.

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015 Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as

More information

Black-Hole Binary Initial Data: Getting the Spin Right

Black-Hole Binary Initial Data: Getting the Spin Right Black-Hole Binary Initial Data: Getting the Spin Right Gregory B. Cook Wake Forest University November 4, 2005 Abstract Using the conformal thin-sandwich approach for constructing initial data together

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information