文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )

Size: px
Start display at page:

Download "文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )"

Transcription

1 Investigation on the oscillation modes of neutron stars 文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) collaborators Bao-An Li, William Newton, Plamen Krastev Department of Physics and astronomy, Texas A&M University-Commerce 2012 超重核合成与性质研讨会兰州

2 Outline I. W-modes in neutron stars II. R-modes in neutron stars

3 I. W-modes in neutron star Introduction of axial w-mode The non-radial neutron star oscillations could be triggered by various mechanisms such as gravitational collapse, a pulsar glitch or a phase transition of matter in the inner core. Axial mode: under the angular transformation θ π θ, ϕ π+ ϕ, a spherical harmonic function with index l transforms as ( 1) l+1 for the expanding metric functions. Polar mode: transforms as ( 1) l Oscillating neutron star

4 Axial w-mode: not accompanied by any matter motions and only the perturbation of the spacetime, exists for all relativistic stars, including neutron star and black holes. One major characteristic of the axial w-mode is its high frequency accompanied by very rapid damping.

5 Motivation (1) The w-modes are very important for astrophysical applications. The gravitational wave frequency of the axial w-mode depends on the neutron star s structure and properties, which are determined by the EOS of neutron-rich stellar matter. (2) It is helpful to the detection of gravitational waves to investigate the imprint of the nuclear symmetry energy constrained by very recent terrestrial nuclear laboratory data on the gravitational waves from the axial w-mode.

6 Key equation of axial w-mode The equation for oscillation of the axial w-mode is give by 1 where 2 d z dr 2 * 2 + [ ω V ( r)] z = 0 ω = ω 0 + iω i d dr * = e ν λ d dr or r * r = 0 e ν λ dr Inner the star (l=2) V 2ν e 3 = [6r + r ( ρ 3 r p) 6m] Outer the star V = 6e r 2ν 3 [ r M ] 1 S.Chandrasekhar and V. Ferrari, Proc. R. Soc. London A, 432, 247(1991) Nobel prize in 1983

7 EOS constrained by terrestrial laboratory data It was shown that only values of x in the range between 1 (MDIx-1) and 0 (MDIx0) are consistent with the isospindiffusion and isoscaling data at sub-saturation densities. Here we assume that the EOS can be extrapolated to suprasaturation densities according to the MDI predictions. 1. L.W.Chen, C. M. Ko, and B. A. Li, Phys. Rev. Lett. 94, (2005). 2.B. A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. 464, 113 (2008).

8 M-R relation Wen D. H., Li B.A. and Krastev P.G., Phys. Rev. C 80, (2009)

9 Numerical Result and Discussion Frequency damping time Wen D. H., Li B.A. and Krastev P.G., Phys. Rev. C 80, (2009)

10 Scaling characteristic 1 Wen D. H., Li B.A. and Krastev P.G., Phys. Rev. C 80, (2009)

11 Exists linear fit Wen D. H., Li B.A. and Krastev P.G., Phys. Rev. C 80, (2009) Based on this linear dependence of the scaled frequency, the w II -mode is found to exist about compactness M/R>

12 Conclusion 1. The density dependence of the nuclear symmetry energy affects significantly both the frequencies and the damping times of axial w-mode. 2. Obtain a better scaling characteristic through scaling the eigen-frequency by the gravitational energy. 3. Give a general limit, M/R~0.1078, based on the linear scaling characteristic of w II, below this limit, w II - mode will disappear.

13 II. R-modes in neutron star (I) Background and Motivation Euler equations in the rotating frame In Newtonian theory, the fundamental dynamical equation (Euler equations) that governs the fluid motion in the co-rotating frame is Acceleration u where is the fluid velocity and Coriolis force external force centrifugal force Φ represents the gravitational potential.

14 Definition of r-mode For the rotating stars, the Coriolis force provides a restoring force for the toroidal modes, which leads to the so-called r-modes. Its eigen-frequency is 2mΩ ωr = [1 ω2 l( l + 1) 3 R Ω M It is shown that the structure parameters (M and R) make sense for the through the second order of Ω. ω r 2 ] or ω r 2mΩ l ( l + 1) Class. Quantum Grav. 20 (2003) R105P111/p1

15 CFS instability and canonical energy APJ,222(1978)281 canonical energy (conserved in absence of radiation and viscosity): The function E c govern the stability to nonaxisymmetric perturbations as: (1) if E ( ξ ) 0, stable; (2) if E c ( ξ ) 0, unstable. c For the r-mode, The condition E c < 0 is equivalent to a change of sign in the pattern speed as viewed in the inertial frame, which is always satisfied for r-mode. σ r = 2Ω l( l+ 1) σ i = σ r + Ω = Ω 2( l 1)( l+ 2) l( l+ 1) gr-qc/ v1

16 Images of the motion of r-modes id=1484;mode=research;research description id=333 The fluid motion has no radial component, and is the same inside the star although smaller by a factor of the square of the distance from the center. Fluid elements (red buoys) move in ellipses around their unperturbed locations. Seen by a non-rotating observer (star is rotating faster than the r-mode pattern speed) seen by a co-rotating observer. Looks like it's moving backwards Note: The CFS instability is not only existed in GR, but also existed in Newtonian theory.

17 Viscous damping instability The r-modes ought to grow fast enough that they are not completely damped out by viscosity. Two kinds of viscosity, bulk and shear viscosity, are normally considered. At low temperatures (below a few times 10 9 K) the main viscous dissipation mechanism is the shear viscosity arises from momentum transport due to particle scattering.. At high temperature (above a few times 10 9 K) bulk viscosity is the dominant dissipation mechanism. Bulk viscosity arises because the pressure and density variations associated with the mode oscillation drive the fluid away from beta equilibrium.

18 The r-mode instability window Condition: To have an instability we need t gw to be smaller than both t sv and t bv. For l = m = 2 r-mode of a canonical neutron star (R = 10 km and M = 1.4M and Kepler period P K 0.8 ms (n=1 polytrope)). Int.J.Mod.Phys. D10 (2001) 381

19 Motivations (a) Old neutron stars (having crust) in LMXBs with rapid rotating frequency (such as EXO ) may have high core temperature (arxiv: v1.); which hints that there may exist r-mode instability in the core. (b) The discovery of massive neutron star (PRS J , Nature 467, 1081(2010) and EXO , Nature 441, 1115(2006)) reminds us restudy the r-mode instability of massive NS, as most of the previous work focused on the 1.4M sun neutron star. (c) The constraint on the symmetric energy at sub-saturation density range and the core-crust transition density by the terrestrial nuclear laboratory data could provide constraints on the r-mode instability.

20 (II). Basic equations for r-mode instability window of neutron star with rigid crust The viscous timescale for dissipation in the boundary layer: The subscript c denotes the quantities at the outer edge of the core. Here only considers l=2, I 2 = And the viscosity η c is density and temperature dependent: T<10 9 K: T>10 9 K: PhysRevD

21 The gravitational radiation timescale: According to, the critical rotation frequency is obtained: Based on the Kepler frequency, the critical temperature defined as: PhysRevD

22 (III). Numerical Results

23 Equation of states W. G. Newton, M. Gearheart, and B.-A. Li, arxiv: v1. The EOSs are calculated using a model for the energy density of nuclear matter and probe the dependence on the symmetry energy by varying the slope of the symmetry energy at saturation density L from 25 MeV (soft) to 105 MeV (stiff). The crust-core transition density, and thus crustal thickness, is calculated consistently with the core EOS. D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012)

24 The mass-radius relation and the core radius D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012)

25 Comparing the time scale The gravitational radiation timescale D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012) The viscous timescale

26 The lower boundary of the r-mode instability window for a 1.4M sun (a) and a 2.0M sun (b) neutron star over the range of the slope of the symmetry energy L consistent with experiment. D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012)

27 The location of the observed short-recurrence-time LMXBs in frequency-temperature space, for a 1.4M sun (a) and a 2.0M sun (b) neutron star. D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012) The temperatures are derived from their observed accretion luminosity and assuming the cooling is dominant by the modified Urca neutrino emission process for normal nucleons or by the modified Urca neutrino emission process for neutrons being super-fluid and protons being super-conduction. Phys. Rev. Lett. 107, (2011)

28 The critical temperature Tc for the onset of the CFS instability vs the crust-core transition densities over the range of the slope of the symmetry energy L consistent with experiment for 1.4M sun and 2.0M sun stars. D.H. Wen, W. G. Newton, and B.A. Li,Phys. Rev. C 85, (2012)

29 Conclusion (1)Smaller values of L help stabilize neutron stars against runaway r-mode oscillations; (2) A massive neutron star has a wider instability window; (3)Treating consistently the crust thickness and core EOS, and concluding that a thicker crust corresponds to a lower critical temperature.

30 THANKS!

31 The standard axial w-mode is categorized as w I. The high order axial w-modes are marked as the second w- mode (w I2 -mode), the third mode (w I3 -mode) and so on. An interesting additionally family of axial w-modes is categorized as w II.

32 Constrain by the flow data relativistic heavy-ion reactions P. Danielewicz, R. Lacey and W.G. Lynch, Science 298 (2002) M.B. Tsang, et al, Phys. Rev. Lett. 92, (2004) 2. B. A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. 464, 113 (2008).

33 The gravitational energy is calculated from 1 S.Weinberg, Gravitation and cosmology, (New York: Wiley,1972)

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves Farrukh J. Fattoyev Bao-An Li, William G. Newton Texas A&M University-Commerce 27 th Texas Symposium on Relativistic Astrophysics

More information

arxiv: v2 [astro-ph.sr] 1 Jan 2012

arxiv: v2 [astro-ph.sr] 1 Jan 2012 Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy De-Hua Wen, 1,2 W. G. Newton, 1 and Bao-An Li 1 1 Department of Physics and Astronomy,

More information

Gravitational Waves from Neutron Stars

Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

THE EVOLUTION OF THE F-MODE INSTABILITY

THE EVOLUTION OF THE F-MODE INSTABILITY THE EVOLUTION OF THE F-MODE INSTABILITY Andrea Passamonti University of Tübingen In collaboration with E. Gaertig and K. Kokkotas 9 July 202, SFB Video Seminar Motivation GW driven f-mode instability of

More information

High-density Symmetry Energy, Non-Newtonian Gravity and the Structure of Neutron Stars. Bao-An Li

High-density Symmetry Energy, Non-Newtonian Gravity and the Structure of Neutron Stars. Bao-An Li High-density Symmetry Energy, Non-Newtonian Gravity and the Structure of Neutron Stars Bao-An Li Bao-An Li Collaborators: F. Fattoyev, J. Hooker, Weikang Lin and W. G. Newton, TAMU-Commerce Lie-Wen Chen,

More information

Inner crust composition and transition densities

Inner crust composition and transition densities Inner crust composition and transition densities W.G.Newton 1, Bao-An Li 1, J.R.Stone 2,3 M. Gearheart 1, J. Hooker 1 1 Texas A&M University - Commerce 2 University of Oxford, UK 3 Physics Division, ORNL,

More information

Neutron Star Seismology with Accreting Millisecond Pulsars

Neutron Star Seismology with Accreting Millisecond Pulsars Neutron Star Seismology with Accreting Millisecond Pulsars Simin Mahmoodifar University of Maryland July 14, 2014 T. Strohmayer & S. Mahmoodifar, ApJ 784, 72 (2014) [arxiv:1310.5147 [astro-ph.he]] T. Strohmayer

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Missing pieces in the r-mode puzzle

Missing pieces in the r-mode puzzle Missing pieces in the r-mode puzzle Southampton Theory Astronomy Gravity Centre for Fundamental Physics Nils Andersson accreting systems Accreting neutron stars in LMXBs may be relevant gravitational-wave

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

Matching the Equation of State of Dense Neutron-Rich Matter Constrained by Terrestrial Experiments and Astrophysical Observations.

Matching the Equation of State of Dense Neutron-Rich Matter Constrained by Terrestrial Experiments and Astrophysical Observations. Matching the Equation of State of Dense Neutron-Rich Matter Constrained by Terrestrial Experiments and Astrophysical Observations Bao-An Li Collaborators: Farrooh J. Fattoyev, Indiana University Plamen

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009 Gravitational Wave emission mechanisms in accreting systems INAF-Milano 26/11/2009 GWs from rotating neutron stars LMXBs and accretion models Emission mechanisms Crustal and core mountains Magnetic mountains

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Studies of self-gravitating tori around black holes and of self-gravitating rings

Studies of self-gravitating tori around black holes and of self-gravitating rings Studies of self-gravitating tori around black holes and of self-gravitating rings Pedro Montero Max Planck Institute for Astrophysics Garching (Germany) Collaborators: Jose Antonio Font (U. Valencia) Masaru

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

Probing Neutron Star Physics using Thermonuclear X-ray Bursts Probing Neutron Star Physics using Thermonuclear X-ray Bursts Sudip Bhattacharyya University of Maryland (CRESST) NASA s Goddard Space Flight Center Outline Neutron Stars: why do we care? Thermonuclear

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

SUPERFLUID MAGNETARS AND QPO SPECTRUM

SUPERFLUID MAGNETARS AND QPO SPECTRUM SUPERFLUID MAGNETARS AND QPO SPECTRUM Andrea Passamonti Osservatorio Astronomico di Roma INAF. In collaboration with L. Stella, S. Lander SAIt Bologna 9/5/23 Magnetars Neutron stars with a strong magnetic

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Gravitational waves from neutron stars and the nuclear equation of state

Gravitational waves from neutron stars and the nuclear equation of state Gravitational waves from neutron stars and the nuclear equation of state Ian Jones School of Mathematics, University of Southampton, UK University of Surrey, 18th October 2011 Context: the hunt for gravitational

More information

Universal Relations for the Moment of Inertia in Relativistic Stars

Universal Relations for the Moment of Inertia in Relativistic Stars Universal Relations for the Moment of Inertia in Relativistic Stars Cosima Breu Goethe Universität Frankfurt am Main Astro Coffee Motivation Crab-nebula (de.wikipedia.org/wiki/krebsnebel) neutron stars

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory 6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory Accretion 1st class study material: Chapter 1 & 4, accretion power in astrophysics these slides at http://home.strw.leidenuniv.nl/~emr/coa/

More information

Effective Interactions In Neutron-Rich Matter

Effective Interactions In Neutron-Rich Matter Effective Interactions In Neutron-Rich Matter P. G. Krastev 1,F.Sammarruca 2,Bao-AnLi 1,andA.Worley 1 1 Texas A&M University-Commerce, Commerce, TX 75429, U.S.A. 2 University of Idaho, Moscow, ID 83843,

More information

NEUTRON STAR DYNAMICS

NEUTRON STAR DYNAMICS NEUTRON STAR DYNAMICS Kostas Kokkotas Theoretical Astrophysics, IAAT, Eberhard Karls University of Tübingen Erice 23/09/10 1 Gravitational Wave Asteroseismology We can estimate their masses, radii, equations

More information

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1 Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars Qiu-he Peng a,b ( qhpeng@nju.edu.cn ) Zhi quan Luo a,c a School of Physics and electronic

More information

Continuous-wave gravitational radiation from pulsar glitch recovery

Continuous-wave gravitational radiation from pulsar glitch recovery 1 Continuous-wave gravitational radiation from pulsar glitch recovery Mark Bennett Anthony van Eysden & Andrew Melatos University of Melbourne 1 September 2010, ET WG4 Nice Meeting 2 Talk Outline Pulsar

More information

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course Relativistic Astrophysics Neutron Stars, Black Holes & Grav. Waves... A brief description of the course May 2, 2009 Structure of the Course Introduction to General Theory of Relativity (2-3 weeks) Gravitational

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab

Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Stability of Stellar Filaments in Modified Gravity Speaker: Dr. Zeeshan Yousaf Assistant Professor Department of Mathematics University of the Punjab Lahore-Pakistan Hot Topics in Modern Cosmology, XIIth

More information

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University Nuclear Symmetry Energy Constrained by Cluster Radioactivity Chang Xu ( 许昌 ) Department of Physics, Nanjing University 2016.6.13-18@NuSym2016 Outline 1. Cluster radioactivity: brief review and our recent

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries Astronomical Institute Anton Pannekoek Low Mass X-ray Binaries Mass is stripped from the donor Forms

More information

DYNAMICS OF MIXED BINARIES

DYNAMICS OF MIXED BINARIES DYNAMICS OF MIXED BINARIES Luciano Rezzolla Albert Einstein Institute, Golm, Germany In collaboration with Frank Löffler & Marcus Ansorg [Phys. Rev. D 74 104018 (2006)] SISSA (Trieste, Italy), AEI (Golm,

More information

From space-time to gravitation waves. Bubu 2008 Oct. 24

From space-time to gravitation waves. Bubu 2008 Oct. 24 From space-time to gravitation waves Bubu 008 Oct. 4 Do you know what the hardest thing in nature is? and that s not diamond. Space-time! Because it s almost impossible for you to change its structure.

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

arxiv:nucl-th/ v1 6 Dec 2003

arxiv:nucl-th/ v1 6 Dec 2003 Observable effects of symmetry energy in heavy-ion collisions at RIA energies Bao-An Li arxiv:nucl-th/322v 6 Dec 23 Department of Chemistry and Physics P.O. Box 49, Arkansas State University State University,

More information

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences HPC in Physics (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences 1 Gravitational Wave Einstein s Unfinished Symphony Marcia Bartuciak Predicted

More information

Heavy-ion reactions and the Nuclear Equation of State

Heavy-ion reactions and the Nuclear Equation of State Heavy-ion reactions and the Nuclear Equation of State S. J. Yennello Texas A&M University D. Shetty, G. Souliotis, S. Soisson, Chen, M. Veselsky, A. Keksis, E. Bell, M. Jandel Studying Nuclear Equation

More information

Nuclear symmetry energy and neutron star cooling

Nuclear symmetry energy and neutron star cooling Nuclear symmetry energy and neutron star cooling Nguyen Van Giai(1), Hoang Sy Than(2), Dao Tien Khoa(2), Sun Bao Yuan(3) 2 1) Institut de Physique Nucléaire, Univ. Paris-Sud 2) VAEC, Hanoi 3) RCNP, Osaka

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Neutron star Equa-ons of State: An ideal to aim towards

Neutron star Equa-ons of State: An ideal to aim towards Neutron star Equa-ons of State: An ideal to aim towards Astrophysical modeling generally requires EOS tables more extensive than tradi-onal pressure versus energy density: Chemical poten-als, density-

More information

EXTREME NEUTRON STARS

EXTREME NEUTRON STARS EXTREME NEUTRON STARS Christopher Thompson Canadian Institute for Theoretical Astrophysics University of Toronto SLAC Summer Institute 2005 Extreme Magnetism: B ~ 10 8-9 G (Low-mass X-ray binaries, millisecond

More information

Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75.

Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75. Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75 Luca Franci (1) in collaboration with Roberto De Pietri (1), Alessandra Feo

More information

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA The Secret Life of Neutron Stars Jeremy Heyl Harvard-Smithsonian CfA The Life of a 10 M Star PNS 10 5 yr 10 6 yr 10 7 yr 10 8 yr 10 9 yr 10 10 yr PMS MS Radio Pulsars Thermal Accretion-, Nuclear-, GWpowered

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

Laboratory, Michigan State University, East Lansing, MI 48824, USA. East Lansing, MI 48824, USA. Abstract

Laboratory, Michigan State University, East Lansing, MI 48824, USA. East Lansing, MI 48824, USA. Abstract Constraints on the density dependence of the symmetry energy M.B. Tsang( 曾敏兒 ) 1,2*, Yingxun Zhang( 张英逊 ) 1,3, P. Danielewicz 1,2, M. Famiano 4, Zhuxia Li( 李祝霞 ) 3, W.G. Lynch( 連致標 ) 1,2, A. W. Steiner

More information

Neutron Stars. Melissa Louie

Neutron Stars. Melissa Louie Neutron Stars Melissa Louie 11-08-10 Outline History, Formation, Properties Detection Pulsars Crab Nebula Pulsar Pulsar Timing Pulsars in Binary Systems Isolated Neutron Stars J185635-3754 Summary 2 The

More information

Internal dissipation and thermal emission from old neutron stars: rotochemical heating and constraints on dg/dt

Internal dissipation and thermal emission from old neutron stars: rotochemical heating and constraints on dg/dt Internal dissipation and thermal emission from old neutron stars: rotochemical heating and constraints on dg/dt Andreas Reisenegger Pontificia Universidad Católica de Chile (PUC) with Rodrigo Fernández

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Equation-of-State of Nuclear Matter with Light Clusters

Equation-of-State of Nuclear Matter with Light Clusters Equation-of-State of Nuclear Matter with Light Clusters rmann Wolter Faculty of Physics, University of Munich, D-878 Garching, Germany E-mail: hermann.wolter@lmu.de The nuclear equation-of-state (EoS)

More information

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan Nuclear Symmetry Energy and its Density Dependence Chang Xu Department of Physics, Nanjing University 2016.8.17-21@RIKEN, Wako, Japan Outline 1. Brief Review: Nuclear symmetry energy 2. What determines

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Accretion Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk April 01 Accretion - Accretion efficiency - Eddington

More information

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Astronomy 421. Lecture 23: End states of stars - Neutron stars Astronomy 421 Lecture 23: End states of stars - Neutron stars 1 Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2 Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Constraining the Radius of Neutron Stars Through the Moment of Inertia

Constraining the Radius of Neutron Stars Through the Moment of Inertia Constraining the Radius of Neutron Stars Through the Moment of Inertia Neutron star mergers: From gravitational waves to nucleosynthesis International Workshop XLV on Gross Properties of Nuclei and Nuclear

More information

Advanced Stellar Astrophysics

Advanced Stellar Astrophysics v Advanced Stellar Astrophysics William K. Rose University of Maryland College Park CAMBRIDGE UNIVERSITY PRESS Contents Preface xiii Star formation and stellar evolution: an overview 1 1 A short history

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Cooling of isolated neutron stars as a probe of superdense matter physics

Cooling of isolated neutron stars as a probe of superdense matter physics Cooling of isolated neutron stars as a probe of superdense matter physics, Alexander Potekhin and Dmitry Yakovlev Ioffe Physical Technical Institute - Politekhnicheskaya 26, 194021 Saint-Petersburg, Russia

More information

Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars

Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars Gravitational Wave Astronomy and the Internal Properties of Hypermassive Neutron Stars N E U TRON STA R S IN FUTURE RESEARCH, 1 1. D E CEMBER 2017 MAX- P L A NCK- INSTITUT F Ü R R A D I OASTRONOMIE B ONN,

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget: Compschool, Copenhagen 2009 Core-Collapse Supernovae M. Liebendörfer University of Basel Collapse phase: Dynamics & ν-interactions Postbounce phase: ν-transport & explosion mechanisms Models: Approximations

More information

Crustal cooling in accretion heated neutron stars

Crustal cooling in accretion heated neutron stars Crustal cooling in accretion heated neutron stars Ed Cackett ecackett@umich.edu University of Michigan Collaborators: Rudy Wijnands, Jon Miller, Jeroen Homan, Walter Lewin, Manuel Linares Outline X-ray

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Neutron Star Observations and Their Implications for the Nuclear Equation of State

Neutron Star Observations and Their Implications for the Nuclear Equation of State Neutron Star Observations and Their Implications for the Nuclear Equation of State J. M. Lattimer Department of Physics & Astronomy Stony Brook University May 24, 2016 24 May, 2016, JINA-CEE International

More information

Center for Gravitation and Cosmology University of Wisconsin-Milwaukee. John Friedman

Center for Gravitation and Cosmology University of Wisconsin-Milwaukee. John Friedman Center for Gravitation and Cosmology University of Wisconsin-Milwaukee Binary Neutron Stars: Helical Symmetry and Waveless Approximation John Friedman I. EINSTEIN EULER SYSTEM II. HELICAL SYMMETRY AND

More information

EFFECTS OF DIFFERENTIAL ROTATION ON THE MAXIMUM MASS OF NEUTRON STARS Nicholas D. Lyford, 1 Thomas W. Baumgarte, 1,2 and Stuart L.

EFFECTS OF DIFFERENTIAL ROTATION ON THE MAXIMUM MASS OF NEUTRON STARS Nicholas D. Lyford, 1 Thomas W. Baumgarte, 1,2 and Stuart L. The Astrophysical Journal, 583:41 415, 23 January 2 # 23. The American Astronomical Society. All rights reserved. Printed in U.S.A. EFFECTS OF DIFFERENTIAL ROTATION ON THE AXIU ASS OF NEUTRON STARS Nicholas

More information

Testing GR with Compact Object Binary Mergers

Testing GR with Compact Object Binary Mergers Testing GR with Compact Object Binary Mergers Frans Pretorius Princeton University The Seventh Harvard-Smithsonian Conference on Theoretical Astrophysics : Testing GR with Astrophysical Systems May 16,

More information

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto UNIVERSAL I-LOVE OVE-Q Q RELATIONSR IN Q R NEUTRON STARS AND THEIR APPLICATIONS TO ASTROPHYSICS STROPHYSICS,, GRAVITATIONAL G RAVITATIONAL-WAVE AVE, G AND FUNDAMENTAL PHYSICS Kent Yagi with N. Yunes Montana

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

arxiv:astro-ph/ v1 31 Dec 1997

arxiv:astro-ph/ v1 31 Dec 1997 Oceanography of Accreting Neutron Stars: Non-Radial Oscillations and Periodic X-Ray Variability arxiv:astro-ph/9712358v1 31 Dec 1997 Lars Bildsten, Andrew Cumming, & Greg Ushomirsky Department of Physics,

More information

General Relativistic MHD Simulations of Neutron Star Mergers

General Relativistic MHD Simulations of Neutron Star Mergers General Relativistic MHD Simulations of Neutron Star Mergers Luca Baiotti Osaka University with Luciano Rezzolla, Bruno Giacomazzo, Kentaro Takami Plan of the talk Brief overview of the status of BNS simulations

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

General relativistic computation of shocks in accretion disc and bipolar jets

General relativistic computation of shocks in accretion disc and bipolar jets General relativistic computation of shocks in accretion disc and bipolar jets Rajiv Kumar Co-author Dr. Indranil Chattopadhyay Aryabhatta Research Institute of observational sciences (ARIES) rajiv.k@aries.res.in

More information

Viscosity in General Relativity

Viscosity in General Relativity 1/25 Viscosity in General Relativity Marcelo M. Disconzi Department of Mathematics, Vanderbilt University. AstroCoffee, Goethe University. July, 2016. Marcelo M. Disconzi is partially supported by the

More information

Nuclear burning on! accreting neutron stars. Andrew Cumming! McGill University

Nuclear burning on! accreting neutron stars. Andrew Cumming! McGill University Nuclear burning on accreting neutron stars Andrew Cumming McGill University An exciting time to study accreting neutron stars Type I X-ray bursts H/He layer heavy element ocean 1 105 1cm outer crust 109

More information

Pulsar glitch dynamics in general relativity

Pulsar glitch dynamics in general relativity Pulsar glitch dynamics in general relativity Jérôme Novak (jerome.novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel &

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Novel Tests of Gravity Using Astrophysics

Novel Tests of Gravity Using Astrophysics Novel Tests of Gravity Using Astrophysics Jeremy Sakstein University of Pennsylvania Department of Physics & Astronomy University of Mississippi 1 st November 2016 Some Thoughts on Gravitational Physics

More information

Chapter 14: The Bizarre Stellar Graveyard

Chapter 14: The Bizarre Stellar Graveyard Lecture Outline Chapter 14: The Bizarre Stellar Graveyard 14.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf?

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Bao-An Li. Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong

Bao-An Li. Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong Probing High-Density Symmetry Energy with Heavy-Ion Reactions Bao-An Li Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong Outline What is symmetry energy? Why

More information

Chapter 18 The Bizarre Stellar Graveyard

Chapter 18 The Bizarre Stellar Graveyard Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

The Stellar Black Hole

The Stellar Black Hole The Stellar Black Hole Kenneth Dalton e-mail: kxdalton@yahoo.com Abstract A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in

More information