David Blaschke (Univ. Wroclaw & JINR Dubna)

Size: px
Start display at page:

Download "David Blaschke (Univ. Wroclaw & JINR Dubna)"

Transcription

1 David Blaschke (Univ. Wroclaw & JINR Dubna) INT Workshop, Seattle, August 15 th, 28

2 David Blaschke (Univ. Wroclaw & JINR Dubna) NCQM as a tool for strong QCD T,µ Mean-field: order params. & phase diagram Flucuations: mesons & Mott effect Gibbs constr: compact stars vs. CBM et al. INT Workshop, Seattle, August 15 th, 28

3 3. 2SC DBHF Hybrid 4. d-csl DBHF hybrid Partition function for chiral Quark Field theory { β Z[T, V, µ] = D ψdψ exp dτ V d 3 x[ ψ(iγ µ µ m γ µ)ψ L int ] Current-current coupling (4-fermion interaction) L int = M=π,σ,... G M( ψγ M ψ) 2 D G D( ψ C Γ D ψ) 2 Bosonisation (Hubbard-Stratonovich Transformation) { Z[T, V, µ] = Dφ M D D D D exp φ 2 M 4G M M D Collective (stochastic) Fields: Mesons (φ M ) and Diquarks ( D ) Systematic Evaluation: Mean field Fluctuations } } D 2 1 4G D 2 Tr lns 1 [{M M }, { D }] Mean-field Approximation: Order parameter for Phase transitions (Gap equations) Fluctuations (2. Order): Hadronic Correlations (Bound- & Scattering states) Fluctuations of higher Order: Hadron-Hadron Interaction

4 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary Euclidean action at T, µ = { S E = d 4 x ψ(x) ( i/ m) ψ(x) G M 2 jf M (x)jf M (x) G } D 2 [ja D(x)] jd(x) a Two alternatives to introduce nonlocality Model I Instanton Liquid Model inspired j f M (x) = j a D(x) = d 4 y d 4 z r(y x) r(x z) ψ(y) Γ f ψ(z), d 4 y d 4 z r(y x) r(x z) ψ C (y) iγ 5 τ 2 λ a ψ(z) Model II One-Gluon- Exchange inspired j f M (x) = j a D(x) = d 4 z g(z) ψ(x z 2 ) Γ f ψ(x z 2 ), d 4 z g(z) ψ C (x z 2 ) iγ 5τ 2 λ a ψ(x z 2 ) r(x y) and g(z) are nonlocal regulators, ψ C (x) = γ 2 γ 4 ψt (x), Γ f = (1, iγ 5 τ) Gomez-Dumm, D.B., Grunfeld, Scoccola, arxiv:hep-ph/512218; Phys. Rev. D 73 (26).

5 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Map of Armenia: Three phases of quark matter: confined, deconfined, superconducting Ararat

6 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Armenia in Europe: Three phases of quark matter: confined, deconfined, superconducting Ararat T [MeV] % 5% 8% Crossover Critical endpoint 1 st order Confinement phase,1,2,3,4,5 µ [GeV] transitions T 2sc T χ Normal quark matter phase 2 nd order transitions 2SC phase

7 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Map of routes: Route 1: deconfined confined T [MeV] 15 2% 8% 1 5 5% Crossover Critical endpoint 1 st order Confinement phase 2SC phase,1,2,3,4,5 µ [GeV] The Olgas transitions T 2sc T χ Normal quark matter phase 2 nd order transitions

8 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Map of routes: Route 1 : deconfined confined T [MeV] 15 2% 8% 1 5 5% Crossover Critical endpoint 1 st order Confinement phase 2SC phase,1,2,3,4,5 µ [GeV] Mount Rainier transitions T 2sc T χ Normal quark matter phase 2 nd order transitions

9 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Map of routes: Route 2: confined superconducting T [MeV] 15 2% 8% 1 5 5% Crossover Critical endpoint 1 st order Confinement phase 2SC phase,1,2,3,4,5 µ [GeV] Schneekoppe transitions T 2sc T χ Normal quark matter phase 2 nd order transitions

10 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s Map of routes: Route 3: deconfined superconducting T [MeV] 15 2% 8% 1 5 5% Crossover Critical endpoint 1 st order Confinement phase 2SC phase,1,2,3,4,5 µ [GeV] Mount Everest transitions T 2sc T χ Normal quark matter phase 2 nd order transitions

11 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary Instanton model (left) vs. One-Gluon-Exchange model (right) H =.5 G H =.5 G T [ MeV ] CSB NQM 2SC EP NQM 4 2 EP g2sc CSB T [ MeV ] CSB H =.75 G EP 3P NQM g2sc 2SC Mixed EP CSB H =.75 G 3P NQM 2SC g2sc Mixed T [ MeV ] CSB H = G NQM 3P 2SC g2sc CSB EP 3P H = G NQM g2sc 2SC µ [ MeV ] µ [ MeV ]

12 3. 2SC DBHF hybrid 4. d-csl hybrid p (GeV) BHAGWAT, PICHOWSKY, ROBERTS, TANDY, PHYS. REV. C68 (23) 1523 S(p) 1 = i/pa(p 2 ) B(p 2 ), M(p 2 ) = B(p 2 )/A(p 2 ) Z(p 2 ) = 1/A(p 2 ) S(p) sum of N pairs of complex conj. mass poles N { 1 zi z } i S(p) = Z 2 i/p m i i/p m = i/pσ V (p 2 ) σ S (p 2 ) i i=1 Representation of the scalar amplitude N { } σ S (p 2 ) = Z2 1 zi m i p 2 m 2 z i m i i p 2 m i 2 i=1 Derivation of the equivalent separable model (in Feynman-like gauge) D µν (p q) = δ µν D(p, q) and D(p, q) = f (p 2 ) f (q 2 ) f 1 (p 2 ) p q f 1 (q 2 ) f 1 (p 2 ) = A(p2 ) 1 ; f (p 2 ) = B(p2 ) m c a b b 2 = 16 3 a 2 = 8 3 Λ q Λ q [B(q 2 ) m c ]σ s (q 2 ) [A(q 2 ) 1] q2 4 σ v(q 2 )

13 3. 2SC DBHF hybrid 4. d-csl hybrid nq /T 3 Ψ Ψ Ψ Ψ T T GeV µ=.6 Tc T/T c Grand canonical thermodynamical potential Ω(T, µ; Φ, m) = σ2 d 3 2G 6N p f (2π) 3E p θ ( Λ 2 p 2) d 3 p { 2N f T (2π) 3 Trc ln [1 ] L e (E p µ)/t Tr c ln [1 ] L e (E p } ( ) µ)/t U Φ, Φ, T Appearance of quarks below T c largely suppressed: [ ] ln det 1 L e (E p µ)/t ln det [1 ] L e (E p µ)/t [ = ln 1 3 (Φ Φe ) ] (E p µ)/t e (E p µ)/t e 3 (E p µ)/t [ ln 1 3 ( Φ ) ] Φe (E p µ)/t e (E p µ)/t e 3 (E p µ)/t. Accordance with QCD lattice susceptibilities! Example: n q (T, µ) = 1 Ω (T, µ), T 3 T 3 µ Ratti, Thaler, Weise, PRD 73 (26) 1419.

14 3. 2SC DBHF hybrid 4. d-csl hybrid rank-1 separable, two-flavor, Instanton model rank-2 separable, three-flavor, OGE model 1 w Polyakov loop w/o Polyakov loop m d / m d vac and Φ susceptibilities N f =21 dφ(τ)/dt dm u,d (T)/dT dm s (T)/dT N f = T, GeV D.B., Buballa, Radzhabov, Volkov, arxiv: Yad. Fiz. (28) in press temperature T[GeV] temperature T[GeV] D.B., Horvatic, Klabucar, Radzhabov, in prep.

15 3. 2SC DBHF hybrid 4. d-csl hybrid [ Ω(T ) = = U(Φ, Φ) T Tr p,n,α,f,d ln{s 1 f (pα n, T )} 1 ] 2 Σ f(p α n, T ) S f (p α n, T ), (1) where the full quark propagator for the flavor f = u, d, s, S 1 f (pα n, T ) = S 1 f, (pα n, T ) Σ 1 f (pα n, T ) = i γ p A f ((p α n) 2, T ) iγ 4 ω n C f ((p α n) 2, T ) B f ((p α n) 2, T ), (2) is defined by the DSE for the quark selfenergy Σ, see below. The Polyakov-loop potential is of the form: U(Φ, Φ) T 4 = 1 2 a(t )Φ Φ b(t ) ln [ 1 6Φ Φ 4(Φ 3 Φ 3 ) 3(Φ Φ) 2]. (3) The Matsubara 4-momenta are defined as (p α n )2 = (ωn α)2 p 2, ωn α = ω n αφ 3, α = 1,, 1, and are coupled to the Polyakov-loop variable Φ = Φ ( ) ( )) = 1 N c 1 e iφ 3 T e iφ 3 T = 1 N c (1 2 cos φ3. via the parameter φ T 3. Employing for the effective gluon propagator in a Feynman-like gauge, g 2 D eff µν (p q) = δ µν D(p 2, q 2, p q), a rank-2 separable ansatz D(p 2, q 2, p q) = D F (p 2 )F (q 2 ) D 1 F 1 (p 2 )(p q)f 1 (q 2 ), (4) the propagator amplitudes are given by B f (p 2 n, T ) = m f b f (T )F (p 2 n), (5) A f (p 2 n, T ) = 1 a f(t )F 1 (p 2 n ), (6) C f (p 2 n, T ) = 1 c f (T )F 1 (p 2 n), (7)

16 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling 5. Summary Thermodynamic Potential Ω(T, µ) = T ln Z[T, µ] Ω(T, µ) = φ2 u φ2 d φ2 s 8G S ud 2 us 2 ds 2 4G D T n d 3 p 1 Tr ln (2π) 3 2 ( ) 1 T S 1 (iω n, p) Ω e Ω. InverseNambu GorkovPropagator S 1 (iω n, p) = [ γ µ p µ M( p) µγ ( p) ( p) γ µ p µ M( p) µγ ], kγ = 2G D q iα iγ 5 ɛ αβγ ɛ ijk g( q)q C jβ. ( p) = iγ5 ɛ αβγ ɛ ijk kγ g( p). Fermion Determinant (Tr ln D = ln det D) ( ) 1 lndet T S 1 (iω n, p) = 2 18 Result for the thermodynamic Potential (Meanfield approximation) Ω(T, µ) = φ2 u φ 2 d φ2 s ud 2 us 2 ds 2 d 3 p 8G S 4G D (2π) 3 Neutrality constraints: n Q = n 8 = n 3 =, n i = Ω/ µ i =, Equations of state: P = Ω, etc. a=1 ( ω 2 ln n λ a ( p) 2 ). T 2 18 a=1 [ ( )] λ a 2T ln 1 e λ a/t Ω e Ω.

17 1. Introduction 2. Hadronic Cooling 3. Quark Substructure and Phases 4. Hybrid Star Cooling s, M [MeV] M s M u M d M u, M d ud us, ds E [MeV] ur-dg-sb ub-sr, db-sg ug-dr, ur-dg-sb ug-dr ub-sr db-sg (gapless) µ [MeV] 2 4 P [MeV] P [MeV] Dynamical quark masses and diquark gaps at T = for intermediate diquark coupling G D =.75 G S Dispersion relations for G D =.75 G S, T =, µ = 465 MeV (left), G D = 1. G S, T = 59 MeV, µ = 5 MeV (right) Rüster et al, PRD 72 (25) 344; Blaschke et al, PRD 72 (25) 652

18 3. 2SC DBHF hybrid 4. d-csl hybrid T [MeV] NQ χ 2SC =1 NQ-2SC g2sc 2SC gusc gcfl usc 2 CFL M s =175 MeV µ [MeV] Rüster et al, PRD 72 (25) 344; Blaschke et al, PRD 72 (25) 652; Abuki, Kunihiro, NPA768 (26) 118; Warringa et al, PRD 72 (25) 1415 The phases are: NQ: ud = us = ds = ; NQ-2SC: ud, us = ds =, χ 2SC 1; 2SC: ud, us = ds = ; usc: ud, us, ds = ; CFL: ud, ds, us ; Result: Gapless phases only at high T, CFL only at high chemical potential, At T 25-3 MeV: mixed NQ-2SC phase, Critical point (T c,µ c )=(48 MeV, 353 MeV), Strong coupling, G D = G S, similar, no NQ-2SC mixed phase.

19 3. 2SC DBHF hybrid 4. d-csl hybrid M [M sun ] causality constraint 4U U DBHF (Bonn A) η D =.92, η V =. η D = 1., η V =.5 η D = 1.2, η V =.5 η D = 1.3, η V =.5 η D = 1., η V =..7 XTE J RX J EXO z =.1 P [MeV fm -3 ] Flow constraint DBHF η D =.92, η V =. η D = 1., η V =.25 η D = 1.2, η V =.25 η D = 1.3, η V = R [km] n [fm -3 ].8 1 Large Mass ( 2 M ) and radius (R 12 km) stiff quark matter EoS; Note: DU problem of DBHF removed by deconfinement! and: CFL core Hybrids unstable! Flow in Heavy-Ion Collisions not too stiff EoS! Note: Quark matter removes violation by DBHF at high densities Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, Phys. Lett. B567, 16 (27)

20 3. 2SC DBHF hybrid 4. d-csl hybrid η D =.92 η V =. T [MeV] NM (DD-F4) 2SC η D = 1.3 η V =.25 η D =.933 η V =. η D =.75 η V =. CFL T [MeV] 5 NM (DDF4) 2SC CFL n B [fm -3 ] n B [fm -3 ] Phase diagrams for isospin-symmetric matter, for hybrid star maximum mass M max = 2.1 M (left-hand side) and M max = 1.7 M (right-hand side). D. B., F. Sandin, S. Typel, in preparation.

21 3. 2SC DBHF hybrid 4. d-csl hybrid T [ MeV ] χsb First order transition Second order transition Smooth crossover EP NQM [ MeV ] T = T = 5 MeV T = 1 MeV 5 χsb - 2SC 2SC µ [ MeV ] µ [ MeV ] Effect of the color neutrality constraint on the Polyakov-loop NJL phase diagram: Coexistence of χsb and 2SC phase = BEC-BCS crossover in the hadronic freezout region! D. Gomez-Dumm, D. B., G.A. Grunfeld, N.N. Scoccola, arxiv: [hep-ph]

22 free quarks bound quarks (nucleons) µd µu µd µu µd µu µe µc µe µe pure nuclear matter (NM) d quark drip (NM d CSL phase) 2 flavor quark matter (2SC phase) D.B., F. Sandin, T. Kla hn, J. Berdermann, arxiv: [nucl-th] Sequential deconfinement of quark flavors Mass and Flow constraint Chiral Quark model 2SC DBHF hybrid d-csl hybrid Conclusion

23 3. 2SC DBHF hybrid 4. d-csl hybrid µ d µ u µ s µ d µ u µ s µ d µ u µ s µ d µ u µ s µ e M u M d M s dd ud us, ds m d m u µ e m s µ e µ e, M [MeV] 1 1 CSL 2SC CFL 1 pure nuclear matter (NM) d quark drip (NM d CSL phase) 2 flavor quark matter (2SC phase) 3 flavor quark matter (CFL phase) D.B., F. Sandin, T. Klähn, J. Berdermann, 1 arxiv: [nucl-th] µ B [MeV], M [MeV] 1 1 CSL 2SC CSL 2SC CFL

24 3. 2SC DBHF hybrid 4. d-csl hybrid Ansatz: isotropic Color-spin-locking (CSL) ˆ = (γ 3 λ 2 γ 1 λ 7 γ 2 λ 5 ) E i [MeV] i = 1 i = 3 i = 5 M = 33 MeV p [MeV] M = 4 MeV p [MeV] Μ (p=) [MeV] [MeV] M = 33 MeV µ [MeV] NJL L1 L5 L3 M = 4 MeV µ [MeV] See also: Schmitt, Wang, Rischke, PRD 66, 1141 (22) Aguilera et al., PRD 72 (25) 348; PRD 74 (26) 1145

25 3. 2SC DBHF hybrid 4. d-csl hybrid Dash-dotted lines: border between oppositely charged phases -1 DBHF 2SC -1 Shen 2SC µ Q [MeV] µ Q [MeV] -2 d-csl NQ -2 d-csl NQ -3 nd = 13 n u µ B [MeV] -3 nd = 13 n u µ B [MeV] D.B., F. Sandin, T. Klähn, J. Berdermann, in preparation.

26 3. 2SC DBHF hybrid 4. d-csl hybrid Equation of state Configuration Sequences P [MeV/fm 3 ] Nuclear-CSL DBHF-NJL, η D =.75 Shen-NJL, η D =.75 2SC-NQ 2SC-CSL n B [fm -3 ] CFL M [M sun ] causality 4U 1636 RXJ R [km] ShenCSL DBHFCSL 2SCCSL 2SCNQ 2SCNQ CFL CFL Nuclear (DBHF) Hybrid (DBHF QM) Hybrid (Shen QM) n B (r=) [fm -3 ] D. B., F. Sandin, T. Klähn, J. Berdermann, arxiv: [nucl-th]

27 3. 2SC DBHF hybrid 4. d-csl hybrid d-quark drip at crust-core boundary: Candidate for deep crustal heating (DCH) process? 1 Total density Nuclear matter d-csl phase Haensel and Zdunik,A& A 227, 431 (199) Ushomirsky and Rutledge, MNRAS 325, 1157 (21) Page and Cumming,ApJ 635, L157 (25): Superbursts & Strange Stars Stejner and Madsen,A& A 458, 523 (26): SS Transient Cooling Shternin, Yakovlev, Haensel and Potekhin, MNRAS 382, L43 (27): KS1731 n B [fm -3 ].1 M = 1.4 M sun M = 2. M sun m B - dm/dn [MeV] 2 1 DBHF DBHFCSL 1 MeV 7 MeV r [km] r [km] D. B., F. Sandin, T. Klähn, J. Berdermann, arxiv: [nucl-th] 1 2 N [N sun ]

28 3. 2SC DBHF hybrid 4. d-csl hybrid Cooling: processes in single-flavor quark matter are blocked! log(t s [K]) PSR J2564 in 3C58 d-csl phase: Quark processes are excluded Cooling for HJ EoS (AV18) Our crust, with medium effects, 3P 2 *.1 Crab RX J Crust: Tsuruta law; Gaps: AV18 1E RX J log(t[yr]) Vela CTA 1 D. B., F. Sandin, H. Grigorian, in preparation. M/M sun = PSR Geminga PSR RX J Quark Urca - d ν e- Momentum conservation triangle du p F,u p F,d ue de u p F,e not operative since u-quark Fermi sea not populated (p F,u = )

29 Constraints on the high-density EoS Compact star masses 2 M require stiff EoS Flow data provide upper limits on the stiffness Local charge neutrality: 2SC DBHF hybrid diquark coupling lowers phase transition density vector meanfield stiffens quark matter EoS Global charge neutrality: d-csl DBHF hybrid single flavor phase (d-csl) as consequence of dynamical χsr no d-csl in symmetric matter: x p,crit <.2 no Urca cooling processes no neutrino trapping? apply to superbursts, X-ray transients, high-mass supernovae extend to inhomogeneous phases: surface tension and Coulomb effects

David Blaschke Univ. Wroclaw & JINR Dubna

David Blaschke Univ. Wroclaw & JINR Dubna David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, Thursday 14 th February, 28 David Blaschke Univ. Wroclaw & JINR Dubna Phase Diagram & Chiral Quark Model Mass and Flow constraint on high-density EoS

More information

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58

David Blaschke Univ. Wroclaw & JINR Dubna. Krakow, May 18, PSR J in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Krakow, May 18, 2007 PSR J020564 in 3C58 David Blaschke Univ. Wroclaw & JINR Dubna Astro-Hadron Physics: HIC & Compact Stars Phase Diagrams Quark Matter Quark

More information

David Blaschke Univ. Wroclaw & JINR Dubna

David Blaschke Univ. Wroclaw & JINR Dubna David Blaschke Univ. Wroclaw & JINR Dubna Warszawa, 28 th November 2007 David Blaschke Univ. Wroclaw & JINR Dubna Mass & Spin Phase diagram Mass clustering = Phase transition High density EoS with Phase

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN

ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN ERFORSCHUNG DES QCD PHASENDIAGRAMMS MIT SCHWERIONENSTÖSSEN UND KOMPAKTEN STERNEN EXPLORATION OF THE QCD PHASE DIAGRAM WITH HEAVY-ION COLLISIONS AND COMPACT STARS David Blaschke Institute for Theoretical

More information

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES David Blaschke Universität Bielefeld & JINR Dubna Collaboration: D. Aguilera, H. Grigorian, D. Voskresensky EoS and QCD Phase Transition

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

arxiv: v1 [hep-ph] 25 Apr 2010

arxiv: v1 [hep-ph] 25 Apr 2010 Accessibility of color superconducting quark matter phases in heavy-ion collisions arxiv:1004.4375v1 [hep-ph] 5 Apr 010 D. B. Blaschke Institute for Theoretical Physics, University of Wroc law, 50-04 Wroc

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Color superconductivity in quark matter

Color superconductivity in quark matter Fedora GNU/Linux; L A TEX 2ǫ; xfig Color superconductivity in quark matter Mark Alford Washington University Saint Louis, USA Outline I Quarks at high density Cooper pairing, color superconductivity II

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

Hadronization as Mott-Anderson localization in cqm

Hadronization as Mott-Anderson localization in cqm Hadronization as Mott-Anderson localization in cqm David Blaschke University of Wroclaw, Poland & JINR Dubna, Russia PSR J0348+0432 PSR J1614-2230 ECT* Workshop Hadronization & Statistical Model, Trento,

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Cristoforetti, and Wolfram Weise Physik Department Technische Universität München INT Workshop The QCD Critical Point July 28 August 22, 2008

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

David Blaschke (Univ. Wrocław & JINR Dubna)

David Blaschke (Univ. Wrocław & JINR Dubna) ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) STIαS, April 6 th, ÈÖÓ Ò Ò Å ØØ Ö Û Ø ÓÑÔ Ø ËØ Ö David Blaschke (Univ. Wrocław & JINR Dubna) T. Klähn, R. Łastowiecki, D. Zabłocki

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

PoS(Confinement X)249

PoS(Confinement X)249 , David E. Alvarez Castillo, Institute for Theoretical Physics, University of Wrocław, Wrocław, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia E-mail: blaschke@ift.uni.wroc.pl,

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

Neutral color superconductivity including inhomogeneous phases at finite temperature

Neutral color superconductivity including inhomogeneous phases at finite temperature PHYSICAL REVIEW D 75, 363 (27) Neutral color superconductivity including inhomogeneous phases at finite temperature Lianyi He, 1, * Meng Jin, 1,2, and Pengfei Zhuang 1, 1 Physics Department, Tsinghua University,

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi The phases of hot/dense/magnetized QCD from the lattice Gergely Endrődi Goethe University of Frankfurt EMMI NQM Seminar GSI Darmstadt, 27. June 2018 QCD phase diagram 1 / 45 Outline relevance of background

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

EXPLORING THE QCD PHASE TRANSITION AT HIGHEST BARYON

EXPLORING THE QCD PHASE TRANSITION AT HIGHEST BARYON EXPLORING THE QCD PHASE TRANSITION AT HIGHEST BARYON DENSITIES WITH NICA-MPD AND FAIR-CBM David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

arxiv: v1 [hep-ph] 27 Mar 2014

arxiv: v1 [hep-ph] 27 Mar 2014 arxiv:1403.6965v1 [hep-ph] 7 Mar 014 Temperature dependence of Quark and Gluon condensate In The Dyson-Schwinger Equations At Finite Temperature ) Zhou Li-Juan 1, Zheng Bo 1, Zhong Hong-wei 1, Ma Wei-xing

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase Latest results Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase 1 1 What do we know about the ground state of the color

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a p. 1/30 Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

Deconfinement transition at neutron star cores: the role of fluctuations

Deconfinement transition at neutron star cores: the role of fluctuations Deconfinement transition at neutron star cores: the role of fluctuations Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Santa Adélia 166, 0910-170, Santo André, Brazil E-mail:

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Towards a Unified Quark-Hadron Equation of State 1

Towards a Unified Quark-Hadron Equation of State 1 Towards a Unified Quark-Hadron Equation of State 1 David Blaschke Institute of Theoretical Physics, University Wroc law, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia YITP long-term

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Quark matter in compact stars: the Constant Sound Speed parameterization

Quark matter in compact stars: the Constant Sound Speed parameterization Quark matter in compact stars: the Constant Sound Speed parameterization Prof. Mark Alford Washington University in St. Louis Alford, Han, Prakash, arxiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà,

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

Ginzburg-Landau approach to the three flavor LOFF phase of QCD

Ginzburg-Landau approach to the three flavor LOFF phase of QCD Ginzburg-Landau approach to the three flavor LOFF phase of QCD R. Casalbuoni Dipartimento di Fisica, Università di Firenze, I-50019 Firenze, Italia and I.N.F.N., Sezione di Firenze, I-50019 Firenze, Italia

More information

Thermodynamics of an exactly solvable confining quark model

Thermodynamics of an exactly solvable confining quark model Journal of Physics: Conference Series PAPER OPEN ACCESS Thermodynamics of an exactly solvable confining quark model To cite this article: Bruno W. Mintz 26 J. Phys.: Conf. Ser. 76 422 View the article

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information