Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Size: px
Start display at page:

Download "Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt"

Transcription

1 Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter under extreme conditions Relativistic heavy-ion collisions Erice, Sicily, September 16 24, 216 September 19, 216 Michael Buballa 1

2 Motivation QCD phase diagram (standard picture): T <qq> = <qq> = <qq> <qq> µ.. September 19, 216 Michael Buballa 2

3 Motivation QCD phase diagram (standard picture): T <qq> = <qq> = <qq> <qq> µ.. assumption: qq, qq constant in space September 19, 216 Michael Buballa 2

4 Motivation QCD phase diagram (standard picture): T <qq> = <qq> = <qq> <qq> µ.. assumption: qq, qq constant in space How about non-uniform phases? September 19, 216 Michael Buballa 2

5 NJL-model studies homogeneous phases only 1 T (MeV) qq = 2 qq = const µ (MeV) [D. Nickel, PRD (29)] September 19, 216 Michael Buballa 3

6 NJL-model studies including inhomogeneous phase 1 T (MeV) qq = 2 qq = const. inhom µ (MeV) [D. Nickel, PRD (29)] September 19, 216 Michael Buballa 3

7 NJL-model studies T (MeV) including inhomogeneous phase 1 8 qq = qq = const. inhom µ (MeV) 1st-order phase boundary completely covered by the inhomogeneous phase! Critical point Lifshitz point [D. Nickel, PRL (29)] [D. Nickel, PRD (29)] September 19, 216 Michael Buballa 3

8 NJL-model studies T (MeV) including inhomogeneous phase 1 8 qq = qq = const. inhom µ (MeV) [D. Nickel, PRD (29)] 1st-order phase boundary completely covered by the inhomogeneous phase! Critical point Lifshitz point [D. Nickel, PRL (29)] Inhomogeneous phase rather robust under model extensions and variations: vector interactions Polyakov-loop dynamics including strange quarks isospin imbalance magnetic fields [MB, S. Carignano, PPNP (215)] September 19, 216 Michael Buballa 3

9 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? September 19, 216 Michael Buballa 4

10 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? example: inhomogeneous continent September 19, 216 Michael Buballa 4

11 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? example: inhomogeneous continent = second inhomogeneous phase at large µ [S. Carignano, MB, Acta Phys. Polon. Supp. (212)] T (MeV) µ (MeV) September 19, 216 Michael Buballa 4

12 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? example: inhomogeneous continent = second inhomogeneous phase at large µ [S. Carignano, MB, Acta Phys. Polon. Supp. (212)] It this caused by the cutoff? T (MeV) µ (MeV) September 19, 216 Michael Buballa 4

13 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? example: inhomogeneous continent = second inhomogeneous phase at large µ [S. Carignano, MB, Acta Phys. Polon. Supp. (212)] It this caused by the cutoff? use renormalizable model: QM model T (MeV) µ (MeV) September 19, 216 Michael Buballa 4

14 Model limitations and open questions The NJL model is non-renormalizable. Are there cutoff artifacts? example: inhomogeneous continent = second inhomogeneous phase at large µ [S. Carignano, MB, Acta Phys. Polon. Supp. (212)] It this caused by the cutoff? use renormalizable model: QM model T (MeV) µ (MeV) Long-term goal: Study role of fluctuations beyond mean field (FRG) September 19, 216 Michael Buballa 4

15 Quark-meson model Lagrangian: L QM = L mes + L q Lmes = 1 2 ( µ σ µ σ + µ π µ π ) U(σ, π), U(σ, π) = λ 4 ( σ 2 + π 2 v 2) 2 hσ, chiral limit: h = Lq = ψ ( i / g(σ + iγ 5 τ π) ) ψ September 19, 216 Michael Buballa 5

16 Quark-meson model Lagrangian: L QM = L mes + L q Lmes = 1 2 ( µ σ µ σ + µ π µ π ) U(σ, π), U(σ, π) = λ 4 ( σ 2 + π 2 v 2) 2 hσ, chiral limit: h = Lq = ψ ( i / g(σ + iγ 5 τ π) ) ψ Thermodynamic potential: Ω(T, µ) = T V log DσD πd ψdψ exp ( d 4 x E (L QM + µ ψγ ψ) ) [, 1 T ] V September 19, 216 Michael Buballa 5

17 Quark-meson model Lagrangian: L QM = L mes + L q Lmes = 1 2 ( µ σ µ σ + µ π µ π ) U(σ, π), U(σ, π) = λ 4 ( σ 2 + π 2 v 2) 2 hσ, chiral limit: h = Lq = ψ ( i / g(σ + iγ 5 τ π) ) ψ Thermodynamic potential: Ω(T, µ) = T V log DσD πd ψdψ exp ( d 4 x E (L QM + µ ψγ ψ) ) [, 1 T ] V Mean-field approximation: σ(x) σ(x) S( x), π a (x) π a (x) P( x) δ a 3 S( x), P( x) time independent classical fields Retain space dependence! September 19, 216 Michael Buballa 5

18 Mean-Field Approximation Mean-field Lagrangian: L MF = L MF mes + ψ S 1 ψ mesonic part: L MF mes = (( 1 S) 2 + ( ) P) 2 U(S, P) 2 (entirely classical) quark part bilinear in ψ and ψ quark fields can be integrated out! inverse dressed quark propagator: S 1 (x) = i / g ( S( x) + iγ 5τ 3P( x) ) γ ( i H MF [S, P] ) September 19, 216 Michael Buballa 6

19 Mean-Field Approximation Mean-field Lagrangian: L MF = L MF mes + ψ S 1 ψ mesonic part: L MF mes = (( 1 S) 2 + ( ) P) 2 U(S, P) 2 (entirely classical) quark part bilinear in ψ and ψ quark fields can be integrated out! inverse dressed quark propagator: S 1 (x) = i / g ( S( x) + iγ 5τ 3P( x) ) γ ( i H MF [S, P] ) Thermodynamic potential: Ω MF = Ω mes + Ω q d 3 x (( σ) 2 + ( π) ) ) 2 + U(σ, π) Ωmes = 1 V V ( 1 2 Ωq = T V Tr Log [ 1 (i T H MF + µ) ] [ )] = 1 E λ µ + T log (1 + e E λ µ T, V 2 λ E λ = eigenvalues of H MF [S, P] in general difficult September 19, 216 Michael Buballa 6 straightforward

20 Condensate modulations Difficulty: H QM is nondiagonal in momentum space has been diagonalized only for certain condensate functions so far Generalized constituent quark mass functions: M( x) := g ( S( x) + ip( x) ) Modulations with analytically known eigenvalues: homogeneous matter: M = const. chiral density wave (CDW): M(z) = e iqz real kink crystal (RKC): M(z) = ν sn( z ν) September 19, 216 Michael Buballa 7

21 Condensate modulations Difficulty: H QM is nondiagonal in momentum space has been diagonalized only for certain condensate functions so far Generalized constituent quark mass functions: M( x) := g ( S( x) + ip( x) ) Modulations with analytically known eigenvalues: homogeneous matter: M = const. chiral density wave (CDW): M(z) = e iqz real kink crystal (RKC): M(z) = ν sn( z ν) With this one gets: { [ Ω q = de ρ(e; {S, P}) E + T log 1 + e E µ T ] [ + T log ρ(e; {S, P}) : analytically known density of states 1 + e E+µ T ] } September 19, 216 Michael Buballa 7

22 Standard and extended MFA Ω q = { [ de ρ(e; σ, π) E + T log 1 + e E µ T ] [ + T log 1 + e E+µ T separates into vacuum ( E) and medium ( T log[... ]) parts vacuum contribution ( Dirac sea ) divergent ] } September 19, 216 Michael Buballa 8

23 Standard and extended MFA Ω q = { [ de ρ(e; σ, π) E + T log 1 + e E µ T ] [ + T log 1 + e E+µ T separates into vacuum ( E) and medium ( T log[... ]) parts vacuum contribution ( Dirac sea ) divergent standard mean-field approximation (smfa): neglect the vacuum part completely ( no-sea approximation ) standard procedure for a long time hope: Dirac-sea effects can be absorbed in the meson-potential but: artifacts for the phase diagram [Skokov et al., PRD (21)] ] } September 19, 216 Michael Buballa 8

24 Standard and extended MFA Ω q = { [ de ρ(e; σ, π) E + T log 1 + e E µ T ] [ + T log 1 + e E+µ T separates into vacuum ( E) and medium ( T log[... ]) parts vacuum contribution ( Dirac sea ) divergent standard mean-field approximation (smfa): neglect the vacuum part completely ( no-sea approximation ) standard procedure for a long time hope: Dirac-sea effects can be absorbed in the meson-potential but: artifacts for the phase diagram [Skokov et al., PRD (21)] ] } extended mean-field approximation (emfa): include the Dirac sea September 19, 216 Michael Buballa 8

25 Standard and extended MFA Ω q = { [ de ρ(e; σ, π) E + T log 1 + e E µ T ] [ + T log 1 + e E+µ T separates into vacuum ( E) and medium ( T log[... ]) parts vacuum contribution ( Dirac sea ) divergent standard mean-field approximation (smfa): neglect the vacuum part completely ( no-sea approximation ) standard procedure for a long time hope: Dirac-sea effects can be absorbed in the meson-potential but: artifacts for the phase diagram [Skokov et al., PRD (21)] ] } extended mean-field approximation (emfa): include the Dirac sea This talk: emfa study of inhomogeneous (and homogeneous) phases [S. Carignano, MB, B.-J. Schaefer, PRD (214); S. Carignano, MB, W. Elkamhawy, PRD (216)] September 19, 216 Michael Buballa 8

26 Fixing the parameters Fit g, λ, and v to three vacuum observables : M vac = g σ, m σ, f π September 19, 216 Michael Buballa 9

27 Fixing the parameters Fit g, λ, and v to three vacuum observables : M vac = g σ, m σ, f π smfa: m 2 σ = 2 U σ 2 σ= σ, π= m 2 σ,tree, f π = σ (Goldberger-Treiman: M vac = g π f π ) September 19, 216 Michael Buballa 9

28 Fixing the parameters Fit g, λ, and v to three vacuum observables : M vac = g σ, m σ, f π smfa: m 2 σ = 2 U σ 2 σ= σ, π= m 2 σ,tree, Including the Dirac sea (usual identification): f π = σ (Goldberger-Treiman: M vac = g π f π ) m 2 σ = 2 Ω σ 2 σ= σ, π= m 2 σ,curv, f π = σ September 19, 216 Michael Buballa 9

29 Fixing the parameters Fit g, λ, and v to three vacuum observables : M vac = g σ, m σ, f π smfa: m 2 σ = 2 U σ 2 σ= σ, π= m 2 σ,tree, Including the Dirac sea (usual identification): f π = σ (Goldberger-Treiman: M vac = g π f π ) m 2 σ = 2 Ω σ 2 σ= σ, π= m 2 σ,curv, f π = σ Correct procedure meson propagator with loop corrections: D j (q 2 ) = 1 q 2 m 2 j,tree +g2 Π j (q 2 )+iɛ m σ m σ,pole, f π = Mvac g π,ren = 1 Zπ σ = Z j + reg. terms, j = σ, π q 2 m 2 j,pole +iɛ September 19, 216 Michael Buballa 9

30 Fixing the parameters M 2 vac 2 σ 4Mvac 2 g 2 =, λ = fπ M2 vac L 2() 2g2 m [1 12 g2 ( 1 4M2 vac m 2 σ ) ] L 2(mσ) 2, v 2 = M2 vac g2 L 1 g 2 λ ; L 1 = 4iN f N c d 4 p (2π) 4 1 p 2 M 2 vac +iɛ, L2(q2 ) = 4iN f N c d 4 p (2π) 4 1 [(p+q) 2 M 2 vac +iɛ][p2 M 2 +iɛ] September 19, 216 Michael Buballa 1

31 Fixing the parameters M 2 vac 2 σ 4Mvac 2 g 2 =, λ = fπ M2 vac L 2() 2g2 m [1 12 g2 ( 1 4M2 vac m 2 σ ) ] L 2(mσ) 2, v 2 = M2 vac g2 L 1 g 2 λ ; L 1 = 4iN f N c d 4 p (2π) 4 1 p 2 M 2 vac +iɛ, L2(q2 ) = 4iN f N c d 4 p (2π) 4 1 [(p+q) 2 M 2 vac +iɛ][p2 M 2 +iɛ] Hands-on renormalization : Regularize L 1 and L 2 (here: Pauli-Villars). Increase cutoff Λ, keeping M vac, m σ, and f π fixed. September 19, 216 Michael Buballa 1

32 λ Fixing the parameters M 2 vac 2 σ 4Mvac 2 g 2 =, λ = fπ M2 vac L 2() 2g2 m [1 12 g2 ( 1 4M2 vac m 2 σ ) ] L 2(mσ) 2, v 2 = M2 vac g2 L 1 g 2 λ ; L 1 = 4iN f N c d 4 p (2π) 4 1 p 2 M 2 vac +iɛ, L2(q2 ) = 4iN f N c d 4 p (2π) 4 1 [(p+q) 2 M 2 vac +iɛ][p2 M 2 +iɛ] Hands-on renormalization : Regularize L 1 and L 2 (here: Pauli-Villars). Increase cutoff Λ, keeping M vac, m σ, and f π fixed. Results for M vac = 3 MeV, f π = 88 MeV, m σ = 6 MeV: g Λ (MeV) September 19, 216 Michael Buballa Λ (MeV) v MeV

33 Phase diagram for homogeneous matter September 19, 216 Michael Buballa 11

34 Phase diagram for homogeneous matter T (MeV) no sea µ (MeV) September 19, 216 Michael Buballa 11

35 Phase diagram for homogeneous matter T (MeV) no sea O µ (MeV) September 19, 216 Michael Buballa 11

36 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV µ (MeV) September 19, 216 Michael Buballa 11

37 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O µ (MeV) September 19, 216 Michael Buballa 11

38 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O3 6 PV µ (MeV) September 19, 216 Michael Buballa 11

39 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O µ (MeV) September 19, 216 Michael Buballa 11

40 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O3 1 PV µ (MeV) September 19, 216 Michael Buballa 11

41 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O3 1 PV 1 O µ (MeV) September 19, 216 Michael Buballa 11

42 Phase diagram for homogeneous matter T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O3 1 PV 1 O3 2 PV µ (MeV) September 19, 216 Michael Buballa 11

43 Phase diagram for homogeneous matter 18 T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O3 1 PV 1 O3 2 PV 2 O µ (MeV) September 19, 216 Michael Buballa 11

44 Phase diagram for homogeneous matter 18 T (MeV) no sea O3 3 PV 3 O3 6 PV 6 O3 1 PV 1 O3 2 PV 2 O3 5 PV µ (MeV) September 19, 216 Michael Buballa 11

45 Phase diagram for homogeneous matter T (MeV) no sea 12 O3 3 PV 3 O3 6 9 PV 6 O3 1 6 PV 1 O3 2 3 PV 2 O3 5 PV Convergence reached at Λ 2 GeV. µ (MeV) September 19, 216 Michael Buballa 11

46 Phase diagram for inhomogeneous matter CDW modeluation: M( x) g ( S( x) + ip( x) ) = e iqz September 19, 216 Michael Buballa 12

47 Phase diagram for inhomogeneous matter CDW modeluation: M( x) g ( S( x) + ip( x) ) = e iqz smfa: Λ = T (MeV) µ (MeV) September 19, 216 Michael Buballa 12

48 Phase diagram for inhomogeneous matter CDW modeluation: M( x) g ( S( x) + ip( x) ) = e iqz Λ = 6 MeV T (MeV) µ (MeV) September 19, 216 Michael Buballa 12

49 Phase diagram for inhomogeneous matter CDW modeluation: M( x) g ( S( x) + ip( x) ) = e iqz T (MeV) renormalized (Λ = 5 GeV) µ (MeV) September 19, 216 Michael Buballa 12

50 Phase diagram for inhomogeneous matter CDW modeluation: M( x) g ( S( x) + ip( x) ) = e iqz T (MeV) renormalized (Λ = 5 GeV) µ (MeV) inhomogeneous island gets smaller but survives. Lifshitz point ˆ= critical point September 19, 216 Michael Buballa 12

51 Ginzburg-Landau analysis Expansion of the thermodynamic potential: Ω(M) = Ω() + 1 V d 3 x { 1 γ 2 2 M( x) 2 + 1γ 4 4,a M( x) 4 + 1γ 4 4,b M( x) }, September 19, 216 Michael Buballa 13

52 Ginzburg-Landau analysis Expansion of the thermodynamic potential: Ω(M) = Ω() + 1 V d 3 x { 1 γ 2 2 M( x) 2 + 1γ 4 4,a M( x) 4 + 1γ 4 4,b M( x) }, γi > restored phase (M ) γ2 <, γ 4b > homogeneous broken phase (M = const. ) γ4b < inhomogeneous phase September 19, 216 Michael Buballa 13

53 Ginzburg-Landau analysis Expansion of the thermodynamic potential: Ω(M) = Ω() + 1 V d 3 x { 1 γ 2 2 M( x) 2 + 1γ 4 4,a M( x) 4 + 1γ 4 4,b M( x) }, γi > restored phase (M ) γ2 <, γ 4b > homogeneous broken phase (M = const. ) γ4b < inhomogeneous phase Critical point: γ 2 = γ 4,a = Lifshitz point: γ 2 = γ 4,b = September 19, 216 Michael Buballa 13

54 Ginzburg-Landau analysis Expansion of the thermodynamic potential: Ω(M) = Ω() + 1 V d 3 x { 1 γ 2 2 M( x) 2 + 1γ 4 4,a M( x) 4 + 1γ 4 4,b M( x) }, γi > restored phase (M ) γ2 <, γ 4b > homogeneous broken phase (M = const. ) γ4b < inhomogeneous phase Critical point: γ 2 = γ 4,a = Lifshitz point: γ 2 = γ 4,b = NJL: γ 4,a = γ 4,b CP = LP [Nickel, PRL (29)] September 19, 216 Michael Buballa 13

55 Ginzburg-Landau analysis Expansion of the thermodynamic potential: Ω(M) = Ω() + 1 V d 3 x { 1 γ 2 2 M( x) 2 + 1γ 4 4,a M( x) 4 + 1γ 4 4,b M( x) }, γi > restored phase (M ) γ2 <, γ 4b > homogeneous broken phase (M = const. ) γ4b < inhomogeneous phase Critical point: γ 2 = γ 4,a = Lifshitz point: γ 2 = γ 4,b = NJL: γ 4,a = γ 4,b CP = LP [Nickel, PRL (29)] QM-model: γ 4,a = γ 4,b if m σ = 2M vac (as always in NJL!), but in general CP and LP do not coincide. September 19, 216 Michael Buballa 13

56 Sigma-mass dependence GL results and phase diagrams for m σ = 55, 59, 61, 65 MeV: T (MeV) µ (MeV) CP LP 65 T (MeV) µ (MeV) Size of the inhomogeneous phase very sensitive to m σ! September 19, 216 Michael Buballa 14

57 Different parameter fixing RP : f π = σ Zπ, m σ = m σ,pole BC : f π = σ, m σ = m σ,curv September 19, 216 Michael Buballa 15

58 Different parameter fixing RP : f π = σ Zπ, m σ = m σ,pole BC : f π = σ, m σ = m σ,curv Parameters: g 2 λ v September 19, 216 Michael Buballa 15

59 Different parameter fixing RP : f π = σ Zπ, m σ = m σ,pole BC : f π = σ, m σ = m σ,curv Parameters: completely different September 19, 216 Michael Buballa 15

60 Different parameter fixing RP : f π = σ Zπ, m σ = m σ,pole BC : f π = σ, m σ = m σ,curv Parameters: completely different Homogeneous phase diagram: identical for mσ = 2M vac (moderate differences for m σ 2M vac ) reason: Ωhom depends only on the ratio λ g 4 September 19, 216 Michael Buballa 15

61 Different parameter fixing RP : f π = σ Zπ, m σ = m σ,pole BC : f π = σ, m σ = m σ,curv Parameters: completely different Homogeneous phase diagram: identical for mσ = 2M vac (moderate differences for m σ 2M vac ) reason: Ωhom depends only on the ratio λ g 4 Ginzburg-Landau: γ2 and γ 4,a UV finite in both schemes γ RP 2 γ2 BC = Mvac 2 η(mσ 2 ), γrp 4,a γbc 4,a = η(m2 σ ). η(m 2 σ ) UV finite, vanishes for m σ = 2M vac September 19, 216 Michael Buballa 15

62 Different parameter fixing Inhomogeneous phase diagram: qualitatively different! September 19, 216 Michael Buballa 16

63 Different parameter fixing Inhomogeneous phase diagram: RP 1 Λ = 2 MeV BC 1 September 19, 216 Michael Buballa 16

64 Different parameter fixing Inhomogeneous phase diagram: RP 1 Λ = 3 MeV BC 1 September 19, 216 Michael Buballa 16

65 Different parameter fixing Inhomogeneous phase diagram: RP 1 Λ = 4 MeV BC 1 September 19, 216 Michael Buballa 16

66 Different parameter fixing Inhomogeneous phase diagram: RP 1 qualitatively different! BC 1 September 19, 216 Michael Buballa 16

67 Different parameter fixing Inhomogeneous phase diagram: RP 1 Ginzburg-Landau: qualitatively different! BC 1 γ4,b = 2 g 2 L 2 () M= + UV finite terms RP: 2/g 2 = L 2 ()+ finite UV divergences cancel BC: g = const. UV divergence persists September 19, 216 Michael Buballa 16

68 Different parameter fixing Inhomogeneous phase diagram: RP 1 Ginzburg-Landau: qualitatively different! BC 1 γ4,b = 2 g 2 L 2 () M= + UV finite terms RP: 2/g 2 = L 2 ()+ finite UV divergences cancel BC: g = const. UV divergence persists no renormalized limit! September 19, 216 Michael Buballa 16

69 Different parameter fixing So far we discussed: RP : fπ = σ Zπ, m σ = m σ,pole BC : fπ = σ, m σ = m σ,curv September 19, 216 Michael Buballa 17

70 Different parameter fixing So far we discussed: RP : fπ = σ Zπ, m σ = m σ,pole BC : fπ = σ, m σ = m σ,curv How about the two other possibilities? BP : fπ = σ, m σ = m σ,pole RC : fπ = σ Zπ, m σ = m σ,curv September 19, 216 Michael Buballa 17

71 Different parameter fixing So far we discussed: RP : fπ = σ Zπ, m σ = m σ,pole BC : fπ = σ, m σ = m σ,curv How about the two other possibilities? BP : fπ = σ, m σ = m σ,pole RC : fπ = σ Zπ, m σ = m σ,curv Does not even work for homogeneous phases: γ BP 2 = m 2 σ 4 L 2 ()+ fiinite chiral symmetry gets never restored γ RC 2 = m2 σ 4 L 2 ()+ fiinite chiral symmetry is never broken September 19, 216 Michael Buballa 17

72 Fate of the inhomogeneous continent NJL model 1 8 T (MeV) µ (MeV) September 19, 216 Michael Buballa 18

73 Fate of the inhomogeneous continent NJL model QM model, Λ = T (MeV) 6 4 T (MeV) µ (MeV) µ (MeV) no continent September 19, 216 Michael Buballa 18

74 Fate of the inhomogeneous continent NJL model QM model, Λ = 6 MeV T (MeV) 6 4 T (MeV) µ (MeV) µ (MeV) The continent appears... September 19, 216 Michael Buballa 18

75 Fate of the inhomogeneous continent NJL model QM model, Λ = 5 GeV T (MeV) 6 4 T (MeV) µ (MeV) µ (MeV)... and melts away September 19, 216 Michael Buballa 18

76 Fate of the inhomogeneous continent NJL model QM model, Λ = 5 GeV T (MeV) 6 4 T (MeV) µ (MeV) µ (MeV)... and melts away Problem: Ω MF not bounded from below w.r.t. large amplitudes when λ < w.r.t. large wave numbers q when g 2 < September 19, 216 Michael Buballa 18

77 Vacuum instabilities Thermodynamic potential for T = µ = Λ = 6 MeV Ω vac ( ) - Ω vac () (MeV/fm 3 ) (MeV) Ω vac ( ) - Ω vac () (MeV/fm 3 ) Λ = 5 GeV (MeV) September 19, 216 Michael Buballa 19

78 Vacuum instabilities Thermodynamic potential for T = µ = Λ = 6 MeV Ω vac ( ) - Ω vac () (MeV/fm 3 ) (MeV) Ω vac ( ) - Ω vac () (MeV/fm 3 ) Λ = 5 GeV (MeV) known instability [Skokov et al., PRD 21] symptomatic of the renormalized one-loop approximation [Coleman,Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem. September 19, 216 Michael Buballa 19

79 Vacuum instabilities Thermodynamic potential for T = µ = Λ = 6 MeV Ω vac ( ) - Ω vac () (MeV/fm 3 ) (MeV) Ω vac ( ) - Ω vac () (MeV/fm 3 ) Λ = 5 GeV (MeV) known instability [Skokov et al., PRD 21] symptomatic of the renormalized one-loop approximation [Coleman,Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem. similar behavor in q direction [Broniowski, Kutschera, PLB (199)] September 19, 216 Michael Buballa 19

80 Vacuum instabilities Thermodynamic potential for T = µ = Λ = 6 MeV Ω vac ( ) - Ω vac () (MeV/fm 3 ) (MeV) Ω vac ( ) - Ω vac () (MeV/fm 3 ) Λ = 5 GeV (MeV) known instability [Skokov et al., PRD 21] symptomatic of the renormalized one-loop approximation [Coleman,Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem. similar behavor in q direction [Broniowski, Kutschera, PLB (199)] Can the problem be cured by including bosonic fluctuations ( FRG)? September 19, 216 Michael Buballa 19

81 Summary Inhomogeneous phases in the QCD phase diagram should be considered! September 19, 216 Michael Buballa 2

82 Summary Inhomogeneous phases in the QCD phase diagram should be considered! Investigation of inhomogeneous phases in the QM model with fermionic vacuum fluctuations (Dirac sea): Increasing cutoff: Inhomogeneous phase shrinks, but generally survives High sensitivity to the sigma-meson mass; m σ = 2M vac LP = CP Consistent loop corrections to mσ and f π crucial Vacuum instabilities w.r.t. large amplitudes and wave numbers September 19, 216 Michael Buballa 2

83 Outlook Towards including bosonic fluctuations: Repeat present analysis of fermionic fluctuations within the FRG framework [Carignano, Schaefer, MB; work in progress] Identify phase boundary of the inhomogeneous phase as onset of p-wave pion condensation [ talk by R.A. Tripolt]: Dπ 1 (ω =, p = q) = Analyze bosonic excitation spectrum in the inhomogeneous phase [ M. Schramm, next talk] September 19, 216 Michael Buballa 21

arxiv: v2 [hep-ph] 9 Jul 2014

arxiv: v2 [hep-ph] 9 Jul 2014 Inhomogeneous phases in the quark-meson model with vacuum fluctuations Stefano Carignano, 1 Michael Buballa, 2 and Bernd-Jochen Schaefer 3 1 Department of Physics, The University of Texas at El Paso, USA

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Ginzburg-Landau approach to inhomogeneous chiral phases of QCD

Ginzburg-Landau approach to inhomogeneous chiral phases of QCD Ginzburg-Landau approach to inhomogeneous chiral phases of QCD Hiroaki Abuki (a) thanks to Daisuke Ishibashi (b) and Katsuhiko Suzuki (a) (a) Tokyo University of Science, (b) Water Service of Tokyo City

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Ginzburg-Landau approach to inhomogeneous chiral condensates

Ginzburg-Landau approach to inhomogeneous chiral condensates Ginzburg-Landau approach to inhomogeneous chiral condensates Hiroaki Abuki (Science University of Tokyo) in collaboration with Daisuke Ishibashi, Katsuhiko Suzuki Ref: Abuki, Ishibashi, Suzuki, arxiv:

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

Fluctuations in dual chiral density wave / T.-G. Lee et al.

Fluctuations in dual chiral density wave / T.-G. Lee et al. Fluctuations in dual chiral density wave Tong-Gyu Lee JAEA/Kochi Univ (YITP, Kyoto Univ) in collaboration with Eiji Nakano and Yasuhiko Tsue (Kochi Univ) Toshitaka Tatsumi (Kyoto Univ) and Bengt Friman

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Study of Inhomogeneous Phases in the Walecka Model

Study of Inhomogeneous Phases in the Walecka Model Study of Inhomogeneous Phases in the Walecka Model Untersuchung von Inhomogenen Phasen im Walecka Modell Bachelor-Thesis von Marco Schramm December 1 Fachbereich Physik Institut für Kernphysik NHQ Study

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Kinetics of the chiral phase transition

Kinetics of the chiral phase transition Kinetics of the chiral phase transition Hendrik van Hees, Christian Wesp, Alex Meistrenko and Carsten Greiner Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young Chiral extrapolation of nucleon form factors from lattice data P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young 1. Introduction CHPT Finite-Range- Regularization 2. Magnetic form factors 3. Extrapolation

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Fluctuations and observables: volume fluctuations, critical dynamics

Fluctuations and observables: volume fluctuations, critical dynamics Fluctuations and observables: volume fluctuations, critical dynamics Vladimir Skokov (RBRC BNL) September 28, 2016 VSkokov@bnl.gov Fluctuations RHIC/AGS Users meeting 1 / 36 Outline Volume fluctuations:

More information

Solitonic ground states in (color) superconductivity

Solitonic ground states in (color) superconductivity Solitonic ground states in (color) superconductivity Michael Buballa (TU Darmstadt), Dominik Nickel (MIT) EMMI workshop Quark-Gluon Plasma meets Cold Atoms - Episode II, August 3-8, 29, Riezlern, Austria

More information

Inhomogeneous Chiral Phase in Quark Matter

Inhomogeneous Chiral Phase in Quark Matter Inhomogeneous Chiral Phase in Quark Matter T.Tatsumi (Kyoto U.) I. Introduction II. Inhomogeneous chiral phase (icp) and the nesting effect III. icp in the magnetic field IV. Fluctuation effects on the

More information

arxiv: v2 [hep-ph] 18 Nov 2008

arxiv: v2 [hep-ph] 18 Nov 2008 The three-flavor chiral phase structure in hot and dense QCD matter B.-J. Schaefer, and M. Wagner, Institut für Physik, Karl-Franzens-Universität, A-8 Graz, Austria Institut für Kernphysik, TU Darmstadt,

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

Symmetry breaking: Pion as a Nambu-Goldstone boson

Symmetry breaking: Pion as a Nambu-Goldstone boson Symmetry breaking: Pion as a Nambu-Goldstone boson Stefan Kölling Universität Bonn Seminar zur theoretischen Teilchenphysik, 20.04.06 Structure 1 General theory of sponatneous symmetry breaking What it

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

arxiv: v3 [nucl-th] 10 Dec 2014

arxiv: v3 [nucl-th] 10 Dec 2014 Magnetic catalysis in nuclear matter arxiv:1409.045v3 [nucl-th] 10 Dec 014 Alexander Haber, 1, Florian Preis, 1, and Andreas Schmitt 1, 1 Institut für Theoretische Physik, Technische Universität Wien,

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter Partial Chiral Symmetry restoration and QCD Scalar Susceptibilities in Nuclear Matter M. Ericson, P. Guichon, M. Martini, D. Davesne, G.C Chiral restoration in hadronic matter Scalar and pseudoscalar susceptibilities

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

The Quest for Light Scalar Quarkonia from elsm

The Quest for Light Scalar Quarkonia from elsm Institut für Theoretische Physik Goethe-Universität Frankfurt am Main The Quest for Light calar Quarkonia from elm Denis Parganlija [Based on arxiv: 5.3647] In collaboration with Francesco Giacosa and

More information

arxiv:hep-ph/ v1 5 Dec 2002

arxiv:hep-ph/ v1 5 Dec 2002 Few-Body Systems Suppl. 0, 1 6 (2008) Few- Body Systems c by Springer-Verlag 2008 Printed in Austria Baryons as Solitons in Chiral Quark Models arxiv:hep-ph/0212077v1 5 Dec 2002 B. Golli 1, W. Broniowski

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Fluctuations In The Inhomogeneous Chiral Transition

Fluctuations In The Inhomogeneous Chiral Transition Fluctuations In The Inhomogeneous Chiral Transition Department of Physics, Kyoto University, Kyoto 606-8502, Japan E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp yo Yoshiike Department of Physics, Kyoto University,

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

arxiv: v2 [hep-ph] 8 May 2009

arxiv: v2 [hep-ph] 8 May 2009 Pion Superfluidity beyond Mean Field Approximation In Nambu Jona-Lasinio Model Chengfu Mu, Pengfei Zhuang Physics Department, Tsinghua University, Beijing 184, China (Dated: May 11, 29) We investigate

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

Meson-Nucleon Coupling. Nobuhito Maru

Meson-Nucleon Coupling. Nobuhito Maru Meson-Nucleon Coupling from AdS/QCD Nobuhito Maru (Chuo Univ.) with Motoi Tachibana (Saga Univ.) arxiv:94.3816 (Accepted in in EPJC) 7/9/9 workshop@yitp Plan 1: Introduction : Meson sector (review) 3:

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Catalytic effects of monopole in QCD

Catalytic effects of monopole in QCD Catalytic effects of monopole in QCD Masayasu Hasegawa Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Lattice and Functional Techniques for Exploration of Phase Structure

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Charmed meson masses in medium based on effec1ve chiral models

Charmed meson masses in medium based on effec1ve chiral models Charmed meson masses in medium based on effec1ve chiral models Masayasu Harada (Nagoya University) @ KEK theory center workshop on Hadron and Nuclear Physics in 217 (KEK, JAPAN, January 9, 217) Based on

More information

1/31. arxiv:

1/31. arxiv: 1/31 D z 2/31 D 3/31 D - Quark Gluon Plasma - Chiral restored phase (RHIC, LHC) - Quarks are confined - Chiral broken phase (J- PARC, and so on) T 4/31 µ - Color superconducovity (?) - Chiral restored

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Effects of fluctuations for QCD phase diagram with isospin chemical potential

Effects of fluctuations for QCD phase diagram with isospin chemical potential Effects of fluctuations for QCD phase diagram with isospin chemical potential Kazuhio Kamiado (Yuawa Institute, Kyoto Univ) woring with Nils Strodthoff, Lorenz von Smeal and Jochen Wambach (TU Darmstadt)

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information