Ginzburg-Landau approach to inhomogeneous chiral phases of QCD

Size: px
Start display at page:

Download "Ginzburg-Landau approach to inhomogeneous chiral phases of QCD"

Transcription

1 Ginzburg-Landau approach to inhomogeneous chiral phases of QCD Hiroaki Abuki (a) thanks to Daisuke Ishibashi (b) and Katsuhiko Suzuki (a) (a) Tokyo University of Science, (b) Water Service of Tokyo City Office Ref: Phys. Rev. D85, 74 (1)

2 Inhomogeneous chiral condensate? T CP µ

3 Inhomogeneous chiral condensate? What?: Halfway state = femtoscale ordered phase separation) T D. Nickel, PRL9, PRD9 S. Carignano, M. Buballa, D.Nickel 1 CP µ

4 Inhomogeneous chiral condensate? What?: Halfway state = femtoscale ordered phase separation) Why?: Compromise of two conflicting effects: net quark density q-qbar pair density q + q qq T D. Nickel, PRL9, PRD9 S. Carignano, M. Buballa, D.Nickel 1 CP µ

5 Inhomogeneous chiral condensate? What?: Halfway state = femtoscale ordered phase separation) Why?: Compromise of two conflicting effects: net quark density q-qbar pair density Hierarchical chiral restoration at T= q + q qq T D. Nickel, PRL9, PRD9 S. Carignano, M. Buballa, D.Nickel 1 CP µ

6 Inhomogeneous chiral condensate? What?: Halfway state = femtoscale ordered phase separation) T D. Nickel, PRL9, PRD9 S. Carignano, M. Buballa, D.Nickel 1 Why?: Compromise of two conflicting effects: net quark density q-qbar pair density Hierarchical chiral restoration at T= Similar example: FFLO state q + q qq CP Pauli paramagnetism vs superconductivity µ

7 Two types of 1D Chiral Crystal Spatial modulation in the real space Larkin-Ovchinnikov (LO) type Spatial modulation (LO) qq Thies 6, Nickel 9 Anisotropy in the momentum space Flude-Ferrel (FF) type q + q c.f. Carignano, Buballa, Nickel 1 z Dual chiral density wave; Nakano, Tatsumi (4) Quarkyonic chiral spiral; Kojo, Hidaka, et al. (1)

8 Aims 1. Multidimensional modulations near CP? Low dimensional modulation in 3D might be unstable at finite T c.f. Landau-Peierls Theorem: Baym, Friman, Grinstein, NPB198 Several works related: Quarkyonic chiral spiral; Kojo et al.(11), NJL model analysis; Carignoano, Buballa(11).. How does the phase structure change going away from the critical point? Rich phase structure even in the chiral limit?

9 Rich phase structure? New state may appear at low T region far from LP Two types of FFLO states & New critical point 8th order terms in GL are needed! Lifshitz Point (LP) Matsuo, Higashitani, Nagato, Nagai, JPSJ 1997

10 Aims 1. Multidimensional modulations near CP?

11 Ginzburg-Landau approach Expansion of Free energy w.r.t. the condensate and its spatial derivative D. Nickel, PRL9 GL = M(x) M(x) M(x) ( M) M ( M) ( M) p i M i j M p j M M M M ij Based on the symmetry & model independent in the vicinity of CP; Also applicable for multidimensional modulations

12 GL phase diagram (1D structure) D. Nickel, PRL9 sgn( 4 ) SB -(8/3) -(36/5) -(16/3) Wigner (symmetric) M(z) [ 6 ]

13 GL phase diagram (1D structure) D. Nickel, PRL9 sgn( 4 ) SB -(8/3) -(36/5) -(16/3) Wigner (symmetric) M(z) [ 6-1 ] M sn (z) = qsn(qz, ) Solitonic chiral condensate Thies (6), Nickel (9)

14 Multidimensional modulations? D square lattice : M D-LO = M ave (sin(qx) + sin(qy)) egg-carton ansatz ; Carignano, Buballa (11) 3D cubic lattice : M 3D-LO = 3 M ave(sin(qx) + sin(qy) + sin(qz)) D square lattice contour plot 3D cubic lattice contour plot

15 . sgn( 4 ) SB [ 6-1 ] -(8/3) -(36/5) -(16/3) Wigner M(z) [ 4 3 / 6 ] D D 1D Homogeneous Wigner SN M sn (z) = qsn(qz, ) SN Wigner LO (1D) LO (D) LO (3D) aα [aα 6-1 ] M 1D-LO = M ave sin(qx) M D-LO = M ave (sin(qx) + sin(qy)) M 3D-LO = 3 M ave(sin(qx) + sin(qy) + sin(qz))

16 sgn( 4 ) SB [ 6-1 ] -(8/3) -(36/5) -(16/3) Wigner M(z) Averaged mass as an order parameter [ 4 3 / 6 ] LO (1D) aα [aα 6-1 ] LO (D) M 1D-LO = M ave sin(qx) M ave [ 4 1/ / 6 1/ ] M D-LO.4= M ave (sin(qx) + sin(qy)).3. M 3D-LO =.1 3D D 1D Homogeneous Wigner SN M sn (z) = qsn(qz, ) M ave = M(x) aα [aα 6-1 ].6.5 1D D 3D SN LO (1D) LO (D) LO (3D) SN LO (3D) SN (solitonic wave) Homogeneous state Wigner 3 M ave(sin(qx) + sin(qy) + sin(qz))

17 GL expansion at the critical point Optimizing over wavevector q, the potential can be expanded in powers of M 1D = a 3a 4 16 M ave + 6 a 4 4 M 4 ave + O(M 6 ave) D = a 3a 4 16 M ave + 9 a 4 4 M 4 ave + O(M 6 ave) 3D = a 3a 4 16 M ave + 1 a 4 4 M 4 ave + O(M 6 ave)

18 GL expansion at the critical point Optimizing over wavevector q, the potential can be expanded in powers of M 1D = a 3a 4 16 M ave + 6 a 4 4 M 4 ave + O(M 6 ave) D = a 3a 4 16 M ave + 9 a 4 4 M 4 ave + O(M 6 ave) 3D = a 3a 4 16 M ave + 1 a 4 4 M 4 ave + O(M 6 ave)

19 GL expansion at the critical point Optimizing over wavevector q, the potential can be expanded in powers of M 1D = a 3a 4 16 M ave + 6 a 4 4 M 4 ave + O(M 6 ave) D = a 3a 4 16 M ave + 9 a 4 4 M 4 ave + O(M 6 ave) 3D = a 3a 4 16 M ave + 1 a 4 4 M 4 ave + O(M 6 ave) quadratic coeff. critical point is shared

20 GL expansion at the critical point Optimizing over wavevector q, the potential can be expanded in powers of M 1D = a 3a 4 16 M ave + 6 a 4 4 M 4 ave + O(M 6 ave) D = a 3a 4 16 M ave + 9 a 4 4 M 4 ave + O(M 6 ave) 3D = a 3a 4 16 M ave + 1 a 4 4 M 4 ave + O(M 6 ave) quadratic coeff. critical point is shared

21 GL expansion at the critical point Optimizing over wavevector q, the potential can be expanded in powers of M 1D = a 3a 4 16 M ave + 6 a 4 4 M 4 ave + O(M 6 ave) D = a 3a 4 16 M ave + 9 a 4 4 M 4 ave + O(M 6 ave) 3D = a 3a 4 16 M ave + 1 a 4 4 M 4 ave + O(M 6 ave) quadratic coeff. critical point is shared quartic coeff. WΩ 1D < WΩ D < WΩ 3D

22 Aims. How does the phase structure change going away from the critical point?

23 Need to go beyond 6th order Derivative expansion straightforwardly applied Abuki, Ishibashi, Suzuki (11) GL = M(x) M(x) M(x) M(x) ( M) M ( M) ( M) + 8 M 4 ( M) + 4a ( M) 4 + 4b M M( M) 8 + 4c M ( M) + 6 ( M) Quark loop diagrams yield: = 14, 4a = 1 5, 4b = 18 5, 4c = 14 5, 6 = 1 5 Only one additional parameter aα 8 (>)!

24 Departing the critical point (aα 6>) [ 6 4 / 8 ] sgn( 4 ) SB -(8/3) -(36/5) Wigner M(z) [ 6 3 / 8 ]

25 Departing the critical point (aα 6>) -(8/3) -(36/5) [ 6 4 / 8 ] - Wigner sgn( 4 ) = SB 84 + M(z) [ 6 3 / 8 ]

26 Departing the critical point (aα 6>) [ 6 4 / 8 ] - -(8/3) -(36/5) = Wigner sgn( 4 ) = SB M(z) [ 6 3 / 8 ]

27 Going to new regime: aα 6<.4. cχ SB CP T L Wigner aα 6 < CP: (-1/7, 1/3) L: (, 5/18) T: (-.16,.7) 4 [ 6 / 8 ] SB P M(z) P: (.14,.16) [ 6 3 / 8 ]

28 Characterizing the triple point Three different forms of sym.-broken phase compete with each other and coexist at the triple point (T)! M M CP SB Wigner M(z) M.38.. q M(z) T L q L SB P M(z) Model independent universal ratios associated with T

29 Summary

30 Summary Multidimensional crystals, not favored!

31 Summary Multidimensional crystals, not favored! Extended the previous GL analysis to higher order and explored the phase structure away from the Lifshitz point.

32 Summary Multidimensional crystals, not favored! Extended the previous GL analysis to higher order and explored the phase structure away from the Lifshitz point. if aα 6>, non-linear effects; but qualitative phase structure unchanged.

33 Summary Multidimensional crystals, not favored! Extended the previous GL analysis to higher order and explored the phase structure away from the Lifshitz point. if aα 6>, non-linear effects; but qualitative phase structure unchanged. If aα 6<, phase structure becomes rather rich; Existence of Triple Point (T)!

34 Further questions Do we really have no suitable multidimensional chiral crystal? If no, how could one dimensional structure be stabilized against thermal fluctuations? c.f. Landau-Peierls Theorem Triple point in model? How Polyakov loop and/or vector interaction change aα 6 at TCP? How does isospin asymmetry affect the TCP and phase structure of its neighborhood? [see poster contribution by Yuhei Iwata]

35 Backups

36 How does GL map onto NJL phase diagram (µ, T,,G) = 1 G +4N aα 8< d 3 p 1.4 cn f aα 6< T ( ) 3 8 = [(i n n + µ) p ] d 3 p 1 4(µ, T, ) =4N c N f T ( ) 3 aα 8<.3 [(i n + µ) p ] T/.5 4 = 6(8)(µ, T ) =4N c N f T..1 aα 8> aα 6< n n d 3 p 1 ( ) 3 [(i n + µ) p ] 3(4) 6(µ, T )=f(t/µ)/µ 8(µ, T )=g(t/µ)/µ 4 =: g=. g=.5 g= µ/ 6 = aα 6> D. Nickel, PRL9

37 How does GL map onto NJL phase diagram Τ CP χsb L Wigner T E χsb M(z) µ

38 Dimensional analysis and Scaling Introducing dimensionless variables: = [ 4 / 6 ] M = m [ 4 / 6 ] = [ 4 3 / 6] x = x [ 6/ 4 ] Relevant parameters are reduced: = m + sgn( 4) (m 4 +( m) ) m 6 +5m ( m) + 1 ( m) Inhomogeneous phase appears when aα 4 becomes negative

39 One dimensional modulations Chiral Condensate: M(x) = G ( qq + i qi 5 3 q ) Fulde-Ferrell (1964) Chiral spiral Nakano-Tatsumi (5) M FF (z) = e iqz Complex Larkin-Ovchinnikov (1964) CDW; Nickel (9) M LO (z) = sin(qz) Real Solitonic chiral condensate Buzdin, Kachkachi (1997) Thies (6), Nickel (9) M sn (z) = qsn(qz, ) Real Higher harmonics truncated at N=5 M hh (z) = N N ne inqz Complex

40 Ejiri et al. 3 de Forcrand, Philipsen, 3 LR4; Fodor-Katz; µe/tτ E».7 LTE3; Ejiri et al., µe/tτ E».8 LTE4; Gavai, Guputa µe/tτ E».35

41 How does GL map onto (µ, TΤ )-phase diagram (µ, T,,G) = 1.4 G +4N cn f T 4(µ, T, ) =4N c N f T T/.5.3 6(8)(µ, T ) =4N c N f T..1 4 = LR4; F-K µe/tτ E».7 n n n d 3 p 1 ( ) 3 8 = [(i n + µ) p ] d 3 p 1 ( ) 3 [(i n + µ) p ] d 3 p 1 ( ) 3 [(i n + µ) p ] 3(4) 6(µ, T )=f(t/µ)/µ 8(µ, T )=g(t/µ)/µ 4 =: g=. g=.5 g= µ/ 6 = D. Nickel, PRL9

42 GL in the vicinity of critical point M sn (z) = q sn(qz, ) D. Nickel, PRL9 M =1 =.1 z

43 Soliton formation sgn( 4 ) SB -(8/3) -(36/5) -(16/3) Wigner M(z) [ 6 ]

44 Soliton formation sgn( 4 ) SB -(8/3) -(36/5) -(16/3) Wigner M(z) [ 6 ]

45 Soliton formation M [ 4 1/ / 6 1/ ] M(z) z [ 6 1/ 1/ / 4 ] sgn( 4 ) SB -(8/3) -(36/5) -(16/3) Wigner M(z) [ 6 ]

46 Soliton formation a=-.5 M [ 4 1/ / 6 1/ ] [ 4 3 / 6 ] M(z) z [ 6 1/ 1/ / 4 ] sgn( 4 ) SB -.4 -(8/3) -.6 -(36/5) -(16/3) Wigner M(z) z [ 6 1/ / 4 1/ ] [ 6 ]

47 Soliton formation a=-.5 M [ 4 1/ / 6 1/ ] [ 4 3 / 6 ] M(z) z [ 6 1/ 1/ / 4 ] sgn( 4 ) SB -.4 -(8/3) -.6 -(36/5) -(16/3) Wigner M(z) z [ 6 1/ / 4 1/ ] a= [ 6 ]

48 Soliton formation a=-.5 M [ 4 1/ / 6 1/ ] [ 4 3 / 6 ] M(z) z [ 6 1/ 1/ / 4 ] sgn( 4 ) SB -.4 -(8/3) -.6 -(36/5) -(16/3) Wigner M(z) z [ 6 1/ / 4 1/ ] a= at onset [ 6 ]

49 Energy density profile in detail (z) = M(z) M(z) M(z)6 + 4 M 4 + 5M ( M) 6 + ( M) 1 1: no derivative terms : Derivative term at 4 th order 3: Derivative terms at 6 th order.4. [ 4 3 / 6 ] Total z [ 6 1/ 1/ / 4 ]

50 Going to new regime: aα 6<.4 E SB Wigner 4 [ 6 / 8 ].3. T L SB P M(z) [ 6 3 / 8 ]

51 Going to new regime: aα 6<.6.4 [ 6 1/ / 8 1/ ] <M > 1/ cχ SB cχ SB M(z) q/ 4 [ 6 / 8 ].3. E SB T L Wigner [ 6 3 / 8 ] Wigner SB P M(z) [ 6 3 / 8 ]

52 More on the dimensionality d-dimensional extension of 3D-cubic LO M dd-lo = d M ave(sin(qx 1 ) + sin(qx )+ + sin(qx d )) Effective potential dd = a 3a 4 16 M ave d a 4 M 4 ave + O(M 6 ave) Taking the minimum dd = 1 a 4 a 3a /d + lim d dd 1D =.5

53 Dimensional & Scaling analysis again Introducing dimensionless variables: = 6 3 / 8 4 = 4 6 / 8 M = m 6 / 8 x = x 8/ 6 = 4 6 / 3 8 Relevant parameters are reduced: = m (m4 +( m) ) + sgn( 6) 6 m 6 +5m ( m) + 1 ( m) m m 4 ( m) 1 5 ( m) m m( m) m ( m) ( m)

54 GL in the vicinity of critical point D. Nickel, PRL9. Nothing interesting -. sgn( 4 ) 4 happens even if -.4 we go far away from Lifshitz point = SB = (16/3) -(8/3) -(36/5) -(16/3) Wigner M(z) [ 6 ]

55 GL in the vicinity of critical point D. Nickel, PRL9. Nothing interesting -. sgn( 4 ) 4 happens even if -.4 we go far away from Lifshitz point = SB = (16/3) -(8/3) -(36/5) -(16/3) Wigner M(z) Need to go beyond the minimal (6-th order) GL description -1 [ 6 ]

Ginzburg-Landau approach to inhomogeneous chiral condensates

Ginzburg-Landau approach to inhomogeneous chiral condensates Ginzburg-Landau approach to inhomogeneous chiral condensates Hiroaki Abuki (Science University of Tokyo) in collaboration with Daisuke Ishibashi, Katsuhiko Suzuki Ref: Abuki, Ishibashi, Suzuki, arxiv:

More information

Fluctuations in dual chiral density wave / T.-G. Lee et al.

Fluctuations in dual chiral density wave / T.-G. Lee et al. Fluctuations in dual chiral density wave Tong-Gyu Lee JAEA/Kochi Univ (YITP, Kyoto Univ) in collaboration with Eiji Nakano and Yasuhiko Tsue (Kochi Univ) Toshitaka Tatsumi (Kyoto Univ) and Bengt Friman

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

Inhomogeneous Chiral Phase in Quark Matter

Inhomogeneous Chiral Phase in Quark Matter Inhomogeneous Chiral Phase in Quark Matter T.Tatsumi (Kyoto U.) I. Introduction II. Inhomogeneous chiral phase (icp) and the nesting effect III. icp in the magnetic field IV. Fluctuation effects on the

More information

arxiv: v2 [hep-ph] 9 Jul 2014

arxiv: v2 [hep-ph] 9 Jul 2014 Inhomogeneous phases in the quark-meson model with vacuum fluctuations Stefano Carignano, 1 Michael Buballa, 2 and Bernd-Jochen Schaefer 3 1 Department of Physics, The University of Texas at El Paso, USA

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

arxiv: v2 [hep-ph] 19 Nov 2013

arxiv: v2 [hep-ph] 19 Nov 2013 Ginzburg-Landau phase diagram of QCD near chiral critical point chiral defect lattice and solitonic pion condensate Hiroaki Abuki Department of Physics, Tokyo University of Science, Kagurazaka -3, Shinjuku,

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Fluctuations In The Inhomogeneous Chiral Transition

Fluctuations In The Inhomogeneous Chiral Transition Fluctuations In The Inhomogeneous Chiral Transition Department of Physics, Kyoto University, Kyoto 606-8502, Japan E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp yo Yoshiike Department of Physics, Kyoto University,

More information

Solitonic ground states in (color) superconductivity

Solitonic ground states in (color) superconductivity Solitonic ground states in (color) superconductivity Michael Buballa (TU Darmstadt), Dominik Nickel (MIT) EMMI workshop Quark-Gluon Plasma meets Cold Atoms - Episode II, August 3-8, 29, Riezlern, Austria

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

FLUCTUATION EFFECTS IN THE INHOMOGENEOUS CHIRAL TRANSITION

FLUCTUATION EFFECTS IN THE INHOMOGENEOUS CHIRAL TRANSITION FLUCTUATION EFFECTS IN THE INHOMOGENEOUS CHIAL TANSITION T.T., T-G. Lee,. Yoshiike (Kyoto U.) efs: S. Karasawa, T.-G. Lee and T.T., PTEP (016). T.T., T.-G. Lee and. Yoshiike, in preparation I. Introduction

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

FFLO States in Holographic Superconductors

FFLO States in Holographic Superconductors FFLO States in Holographic Superconductors Lefteris Papantonopoulos Work in progress with J. Alsup and S. Siopsis, first results in [arxiv:1208.4582 [hep-th]] Dedicated to the memory of Petros Skamagoulis

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

Unconfined World. Unconfined World. Quarkyonic World. Confined World O(1) Confined World O(1) Large N. Conventional Wisdom

Unconfined World. Unconfined World. Quarkyonic World. Confined World O(1) Confined World O(1) Large N. Conventional Wisdom Quarkyonic Matter Larry McLerran, Rob Pisarski, Yoshimasa Hidaka and Toru Kojo Krzysztof Redlich (Wroclaw, GSI), Chihiro Sasaki (Munich) A. Andronic, D. Blaschke, J. Cleymans, K. Fukushima, H. Oeschler,

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Driven-dissipative chiral condensate

Driven-dissipative chiral condensate Driven-dissipative chiral condensate Masaru Hongo (RIKEN ithems) Recent Developments in Quark-Hadron Sciences, 018 6/14, YITP Based on ongoing collaboration with Yoshimasa Hidaka, and MH, Kim, Noumi, Ota,

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Studies of inhomogeneous superconducting states in novel materials

Studies of inhomogeneous superconducting states in novel materials Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 211 Studies of inhomogeneous superconducting states in novel materials Robert Pearson Beaird Louisiana State University

More information

Modulated Vacua July 2017, University of Pisa. Muneto Nitta (Keio U.)

Modulated Vacua July 2017, University of Pisa. Muneto Nitta (Keio U.) Modulated Vacua Topological Solitons, Nonperturbative Gauge Dynamics and Confinement 0-1 July 017, University of Pisa Muneto Nitta (Keio U.) with Shin Sasaki (Kitasato) & Ryo Yokokura (Keio) arxiv:1706.0938

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Chiral Random Matrix Model as a simple model for QCD

Chiral Random Matrix Model as a simple model for QCD Chiral Random Matrix Model as a simple model for QCD Hirotsugu FUJII (University of Tokyo, Komaba), with Takashi Sano T. Sano, HF, M. Ohtani, Phys. Rev. D 80, 034007 (2009) HF, T. Sano, Phys. Rev. D 81,

More information

Surprises in the Columbia plot

Surprises in the Columbia plot Surprises in the Columbia plot Philippe de Forcrand ETH Zürich & CERN Fire and Ice, Saariselkä, April 7, 2018 Fire and Ice Launch Audio in a New Window BY ROBERT FROST (1874-1963) Some say the world will

More information

Charmed meson masses in medium based on effec1ve chiral models

Charmed meson masses in medium based on effec1ve chiral models Charmed meson masses in medium based on effec1ve chiral models Masayasu Harada (Nagoya University) @ KEK theory center workshop on Hadron and Nuclear Physics in 217 (KEK, JAPAN, January 9, 217) Based on

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Kazu. Machida Okayama Univ collaborators M. Ichioka, T. Mizushima, H. Adachi, N. Nakai, Y. Tsutsumi Outline Phenomena related

More information

FERMION PAIRINGS IN B!

FERMION PAIRINGS IN B! FERMION PAIRINGS IN B! Vivian de la Incera University of Texas at El Paso CSQCDIII Guaruja, December 11-15, 2012! OUTLINE! Fermion Pairings, B, & QCD Map Magnetoelectricity of the MCFL Phase Quarkyonic

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry

Imry-Ma disordered state induced by defects of random local anisotropy type in the system with O(n) symmetry 1 Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry A.A. Berzin 1, A.I. Morosov 2, and A.S. Sigov 1 1 Moscow Technological University (MIREA),

More information

The critical point of QCD: what measurements can one make?

The critical point of QCD: what measurements can one make? The critical point of QCD: what measurements can one make? Sourendu Gupta ILGTI: TIFR Strong Interactions 2010 TIFR, Mumbai February 10, 2010 Lattice measurements The critical point NLS at finite µ B Experimental

More information

Effects of fluctuations for QCD phase diagram with isospin chemical potential

Effects of fluctuations for QCD phase diagram with isospin chemical potential Effects of fluctuations for QCD phase diagram with isospin chemical potential Kazuhio Kamiado (Yuawa Institute, Kyoto Univ) woring with Nils Strodthoff, Lorenz von Smeal and Jochen Wambach (TU Darmstadt)

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Magne&zed Hot and Dense Quark Ma3er. Marcus Benghi Pinto, Dept of Physics Universidade Federal de Santa Catarina Florianópolis, SC, Brazil

Magne&zed Hot and Dense Quark Ma3er. Marcus Benghi Pinto, Dept of Physics Universidade Federal de Santa Catarina Florianópolis, SC, Brazil Magne&zed Hot and Dense Quark Ma3er Marcus Benghi Pinto, Dept of Physics Universidade Federal de Santa Catarina Florianópolis, SC, Brazil HOWDY! (Theoretical) QCD Phase Diagram Only sure about X-over at

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ arxiv:hep-ph/0301209v1 23 Jan 2003 QCD PHASE DIAGRAM A SMALL DENSIIES FROM SIMULAIONS WIH IMAGINARY µ PH. DE FORCRAND EH Zürich, CH-8093 Zürich, Switzerland and CERN, CH-1211 Genève 23, Switzerland E-mail:

More information

1/31. arxiv:

1/31. arxiv: 1/31 D z 2/31 D 3/31 D - Quark Gluon Plasma - Chiral restored phase (RHIC, LHC) - Quarks are confined - Chiral broken phase (J- PARC, and so on) T 4/31 µ - Color superconducovity (?) - Chiral restored

More information

Supersolidity of excitons

Supersolidity of excitons Supersolidity of excitons Michał Matuszewski Institute of Physics, Polish Academy of Sciences, Warsaw Thomas R. Taylor and Alexey V. Kavokin University of Southampton, UK ISNP 2012, Phuket Outline 1. What

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase Latest results Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase 1 1 What do we know about the ground state of the color

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Higher order net baryon number cumulants in the strong coupling lattice QCD

Higher order net baryon number cumulants in the strong coupling lattice QCD Higher order net baryon number cumulants in the strong coupling lattice QCD Terukazu Ichihara in collaborate with Akira Ohnishi and Kenji Morita Department of Physics and YITP, Kyoto U. News! We got an

More information

The chiral and the Anderson transition in QCD

The chiral and the Anderson transition in QCD The chiral and the Anderson transition in QCD Tamás G. Kovács Institute for Nuclear Research, Debrecen March 11, 2015 Tamás G. Kovács The chiral and the Anderson transition in QCD 1/20 Collaboration: Falk

More information

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi The phases of hot/dense/magnetized QCD from the lattice Gergely Endrődi Goethe University of Frankfurt EMMI NQM Seminar GSI Darmstadt, 27. June 2018 QCD phase diagram 1 / 45 Outline relevance of background

More information

QCD Critical Point : Inching Towards Continuum

QCD Critical Point : Inching Towards Continuum QCD Critical Point : Inching Towards Continuum Rajiv V. Gavai T. I. F. R., Mumbai, India Introduction Lattice QCD Results Searching Experimentally Summary Work done with Saumen Datta & Sourendu Gupta New

More information

Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid

Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid G. Catelani and E. A. Yuzbashyan Center for Materials Theory, Department of Physics and Astronomy,

More information

arxiv:hep-lat/ v1 25 Jun 2005

arxiv:hep-lat/ v1 25 Jun 2005 TKYNT-05-16, 2005/June Lee-Yang zero analysis for the study of QCD phase structure Shinji Ejiri Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (March 1, 2008) Abstract arxiv:hep-lat/0506023v1

More information

On a phenomenological Ginzburg-Landau theory of charge density waves in dichalocogenides

On a phenomenological Ginzburg-Landau theory of charge density waves in dichalocogenides On a phenomenological Ginzburg-Landau theory of charge density waves in dichalocogenides Danielle Schaper Spring, 2014 Contents 1 Introduction 2 2 Transition metal dichalcogenides 3 3 Order Parameter and

More information

Weak Link Probes and Space-Time Translation Symmetry Breaking

Weak Link Probes and Space-Time Translation Symmetry Breaking Weak Link Probes and Space-Time Translation Symmetry Breaking Frank Wilczek Center for Theoretical Physics, MIT, Cambridge MA 02139 USA August 10, 2013 Abstract Intermittent weak link (Josephson type)

More information

Heavy-light Flavor Correlations on the QCD Phase Boundary

Heavy-light Flavor Correlations on the QCD Phase Boundary Heavy-light Flavor Correlations on the QCD Phase Boundary Chihiro Sasaki Institute of Theoretical Physics, University of Wroclaw, Poland [1] C.S., Phys. Rev. D 90, no. 11, 114007 (2014). [2] C.S. and K.

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young Chiral extrapolation of nucleon form factors from lattice data P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young 1. Introduction CHPT Finite-Range- Regularization 2. Magnetic form factors 3. Extrapolation

More information