Solitonic ground states in (color) superconductivity

Size: px
Start display at page:

Download "Solitonic ground states in (color) superconductivity"

Transcription

1 Solitonic ground states in (color) superconductivity Michael Buballa (TU Darmstadt), Dominik Nickel (MIT) EMMI workshop Quark-Gluon Plasma meets Cold Atoms - Episode II, August 3-8, 29, Riezlern, Austria

2 Strongly Interacting Matter under Extreme Conditions International Workshop XXXVIII on Gross Properties of Nuclei and Nuclear excitations Waldemar Petersen Haus, Hirschegg, Kleinwalsertal, Austria January 17 23, 21 Hirschegg 21: Topics: QCD phase diagram critical end point and critical fluctations transport properties of strongly interacting matter hadronic and electromagnetic signals heavy ion collisions at the highest energies Strongly Interacting Matter under Extreme Conditions Organizers: P. Braun Munzinger, B. Frimann, K. Langanke, J. Wambach (coordinator) Program advisors: F. Antinori (CERN), A. Drees (Stony Brook), R. Rapp (Texas A & M), D. Rischke (Frankfurt), U. Wiedemann (CERN), Nu Xu (LBNL Berkeley) Invited speakers: A. Andronic (Darmstadt), H. Appelshäuser (Frankfurt), R. Arnaldi (Torino), J. P. Blaizot (Gif sur Yvette), K. Eskola (Jyväskylä), W. Florkowski (Cracow), V. Greco (Catania), H. van Hees (Gießen), T. Hemmick (Stony Brook), C. Höhne (Darmstadt), A. Kisiel (Warsaw), E. Laermann (Bielefeld), D. Miskowiec (Darmstadt), J. Y. Ollitrault (Gif sur Yvette), M. Ploskon (Berkeley), K. Redlich (Wroclaw), B. J. Schaefer (Graz), R. Snellings (Amsterdam), P. Sorensen (Upton), J. Stachel (Heidelberg), G. Usai (Monserrato) Further information: darmstadt.de/hirschegg/ Registration deadline: October 31, 29

3 Motivation We have already heard about: imbalanced Fermi liquids (M. Zwierlein ) asymmetric nuclear matter (X.-G. Huang ) FFLO in one-dimensional optical lattices (R. Bakhtiari ) color superconductivity (A. Schmitt )

4 Motivation We have already heard about: imbalanced Fermi liquids (M. Zwierlein ) asymmetric nuclear matter (X.-G. Huang ) FFLO in one-dimensional optical lattices (R. Bakhtiari ) color superconductivity (A. Schmitt ) This talk is about: LOFF (= FFLO) phases in color superconducting asymmetric quark matter T M. Alford (23) RHIC QGP = color superconducting crystal? gas liq CFL nuclear compact star µ based on: D. Nickel, M.B., Phys. Rev. D79, 549 (29) [arxiv:811.24].

5 Outline 1 Introduction imbalanced pairing in CSC 2 Model NJL model for inhomogeneous pairing 3 Numerical Results one-dimensional solutions 4 Outlook

6 Color superconductivity diquark condensates: q T O q Pauli principle: O = O spin O color O flavor = totally antisymmetric most attractive channel: spin (= antisymmetric) color 3 (= antisymmetric) antisymmetric in flavor pairing between unequal flavors example : q T Cγ 5 τ 2 λ 2 q ( ) (r g g r) (ud du)

7 Neutral quark matter constraints in compact stars: color neutrality: n r = n g = n b electric neutrality: n Q = 2 3 n u 1 3 n d 1 3 n s n e = β equilibrium: µ e = µ d µ u n e n u,d

8 Neutral quark matter constraints in compact stars: color neutrality: (minor n r effect) = n g = n b } electric neutrality: n Q = 2 3 n u 1 3 n d 1 3 n s n e = 2 3 n u 1 3 n d 1 3 n s β equilibrium: µ e = µ d µ u n e n u,d

9 Neutral quark matter constraints in compact stars: color neutrality: (minor n r effect) = n g = n b } electric neutrality: n Q = 2 3 n u 1 3 n d 1 3 n s n e = 2 3 n u 1 3 n d 1 3 n s β equilibrium: µ e = µ d µ u n e n u,d all flavors have different Fermi momenta imbalanced pairing unavoidable (Rajagopal & Schmitt, PRD (26))

10 BCS pairing Cooper instability: Fermi gas free energy E - µ p F

11 BCS pairing Cooper instability: Fermi gas + attraction condensation of Cooper pairs free energy E - µ p F

12 BCS pairing Cooper instability: Fermi gas + attraction condensation of Cooper pairs reorganisation of the Fermi surface gaps free energy p F

13 BCS pairing Cooper instability: Fermi gas + attraction condensation of Cooper pairs reorganisation of the Fermi surface gaps Cooper pairs in BCS theory: close to the Fermi surface opposite momenta free energy p F

14 BCS pairing Cooper instability: Fermi gas + attraction condensation of Cooper pairs reorganisation of the Fermi surface gaps Cooper pairs in BCS theory: close to the Fermi surface opposite momenta free energy p F works only if p a F = pb F

15 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F

16 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing

17 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta

18 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta

19 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta then pair

20 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta then pair

21 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta then pair favored if δp F 2 (Chandrasekhar, Clogston (1962))

22 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta then pair favored if δp F 2 (Chandrasekhar, Clogston (1962)) option 2: phase separation (globally neutral mixed phases) Coulomb and surface effects? pattern sizes?

23 Imbalanced pairing unequal Fermi momenta: p a,b F = p F ± δp F option 1: still BCS-like pairing first equalize Fermi momenta then pair favored if δp F 2 (Chandrasekhar, Clogston (1962)) option 2: phase separation (globally neutral mixed phases) Coulomb and surface effects? pattern sizes? option 3: gapless phases (= Sarma phases = breached pairing) chromomagnetic instabilities

24 Inhomogeneous phases option 4: pairs with nonzero total momentum p a F pb F no problem

25 Inhomogeneous phases option 4: pairs with nonzero total momentum p a F pb F no problem FF (Fulde, Ferrell, 1964): single plane wave q( x)q( x) e 2i q x for fixed q disfavored by phase space

26 Inhomogeneous phases option 4: pairs with nonzero total momentum p a F pb F no problem FF (Fulde, Ferrell, 1964): single plane wave q( x)q( x) e 2i q x for fixed q disfavored by phase space LO (Larkin, Ovchinnikov, 1964): multiple plane waves (e.g., cos(2 q x)) Ginzburg-Landau expansion

27 Inhomogeneous phases in color superconductivity CSC literature so far: single plane wave (Alford, Bowers, Rajagopal, 21)

28 Inhomogeneous phases in color superconductivity CSC literature so far:.4 X a.2 single plane wave (Alford, Bowers, Rajagopal, 21) superposition of several plane waves Y a.2.4 (e.g., Bowers, Rajagopal, 22; Casalbuoni et al., ) different directions, but equal wave lengths mostly Ginzburg-Landau.4.2 (Rajagopal, Sharma, 26) Z a

29 Inhomogeneous phases in color superconductivity CSC literature so far:.4 X a.2 single plane wave (Alford, Bowers, Rajagopal, 21) superposition of several plane waves Y a.2.4 (e.g., Bowers, Rajagopal, 22; Casalbuoni et al., ) different directions, but equal wave lengths mostly Ginzburg-Landau.4.2 (Rajagopal, Sharma, 26) Z a aim of our work: NJL model for inhomogeneous pairing beyond Ginzburg-Landau superimpose different wave lengths

30 Model Model Lagrangian with NJL-type qq interaction: L = q (i / + ˆµγ ) q + L int L int = H ( q iγ 5 τ A λ A q c )( q c iγ 5 τ A λ A q), A,A =2,5,7 q c = C q T

31 Model Model Lagrangian with NJL-type qq interaction: L = q (i / + ˆµγ ) q + L int L int = H ( q iγ 5 τ A λ A q c )( q c iγ 5 τ A λ A q), A,A =2,5,7 q c = C q T bosonize: ϕ AA (x) = 2H q c (x) γ 5 τ A λ A q(x) L int = 1 { ( q γ 5 τ A λ A q c ) ϕ AA + h.c. 1 } 2 2H ϕ AA ϕ AA A,A

32 Model Model Lagrangian with NJL-type qq interaction: L = q (i / + ˆµγ ) q + L int L int = H ( q iγ 5 τ A λ A q c )( q c iγ 5 τ A λ A q), A,A =2,5,7 q c = C q T bosonize: ϕ AA (x) = 2H q c (x) γ 5 τ A λ A q(x) L int = 1 { ( q γ 5 τ A λ A q c ) ϕ AA + h.c. 1 } 2 2H ϕ AA ϕ AA A,A mean-field approximation: ϕ AA (x) = A (x) δ AA, ϕ AA (x) = A(x) δ AA A (x) classical fields retain space-time dependence!

33 Mean-field model Lagrangian: L MF (x) = Ψ(x) S 1 (x) Ψ(x) 1 4H Nambu-Gor kov bispinors: A (x) 2 ) A Ψ(x) = 1 2 ( q(x) q c (x) inverse dressed propagator: ( ) i / + ˆµγ S 1 ˆ (x) γ5 (x) = ˆ, ˆ (x) := (x) γ 5 i / ˆµγ A (x) τ A λ A A

34 Mean-field model Lagrangian: L MF (x) = Ψ(x) S 1 (x) Ψ(x) 1 4H Nambu-Gor kov bispinors: A (x) 2 ) A Ψ(x) = 1 2 ( q(x) q c (x) inverse dressed propagator: ( ) i / + ˆµγ S 1 ˆ (x) γ5 (x) = ˆ, ˆ (x) := (x) γ 5 i / ˆµγ A (x) τ A λ A Thermodynamic potential: Ω MF (T, µ) = 1 T S 1 Tr ln 2 V T + T V A [, 1 T ] V d A 4 x A(x) 2 4H Tr ln S 1 nontrivial because of x-dependent gap functions!

35 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3

36 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3 Fourier decomposition: ˆ (x) = ( ) ˆ qk e iqk x, q k =, q k q k q k a i 2π Z

37 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3 Fourier decomposition: ˆ (x) = ( ) ˆ qk e iqk x, q k =, q k q k q k a i 2π Z inverse propagator: (p/ n + ˆµγ ) δ pm,p n ˆ qk δ qk,p m p n γ 5 Sp 1 q m,p n = k ˆ qk δ qk,p n p m γ 5 (p/ n ˆµγ ) δ pm,p n q k

38 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3 Fourier decomposition: ˆ (x) = ( ) ˆ qk e iqk x, q k =, q k q k q k a i 2π Z inverse propagator: (p/ n + ˆµγ ) δ pm,p n ˆ qk δ qk,p m p n γ 5 Sp 1 q m,p n = k ˆ qk δ qk,p n p m γ 5 (p/ n ˆµγ ) δ pm,p n q k condensates couple different momenta! q k qk p m p n

39 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3 Fourier decomposition: ˆ (x) = ( ) ˆ qk e iqk x, q k =, q k q k q k a i 2π Z inverse propagator: (p/ n + ˆµγ ) δ pm,p n ˆ qk δ qk,p m p n γ 5 Sp 1 q m,p n = k ˆ qk δ qk,p n p m γ 5 (p/ n ˆµγ ) δ pm,p n q k condensates couple different momenta! q k qk p m p n

40 Crystalline ansatz gap functions: time-independent, periodic in space ˆ (x) ˆ ( x) = ˆ ( x + a i ), i = 1, 2, 3 Fourier decomposition: ˆ (x) = ( ) ˆ qk e iqk x, q k =, q k q k q k a i 2π Z inverse propagator: (p/ n + ˆµγ ) δ pm,p n ˆ qk δ qk,p m p n γ 5 Sp 1 q m,p n = k ˆ qk δ qk,p n p m γ 5 (p/ n ˆµγ ) δ pm,p n q k condensates couple different momenta! q k diagonal in energy Matsubara sum as usual qk p m p n

41 Hamiltonian The inverse propagator can be put into the form S 1 p m,p n = γ (iω pn H pm, p n ) δ ωpm,ω pn H = effective Hamilton operator ω n independent not diagonal in 3-momentum hermitean can be diagonalized (in principle)

42 Hamiltonian The inverse propagator can be put into the form S 1 p m,p n = γ (iω pn H pm, p n ) δ ωpm,ω pn H = effective Hamilton operator ω n independent not diagonal in 3-momentum hermitean can be diagonalized (in principle) thermodynamic potential: Ω MF = 1 [ 4V Eλ + 2T ln ( 1 + 2e E λ/t )] + A E λ : λ eigenvalues of H q k A,qk 2 4H

43 Thermodynamic potential remaining problem: diagonalize H (γ p/ n ˆµ) δ pm, p n ˆ qk γ γ 5 δ qk, p m p n q H pm, p n = k q k ˆ qk γ γ 5 δ qk, p n p m (γ p/ n + ˆµ) δ pm, p n

44 Thermodynamic potential remaining problem: diagonalize H (γ p/ n ˆµ) δ pm, p n ˆ qk γ γ 5 δ qk, p m p n q H pm, p n = k q k ˆ qk γ γ 5 δ qk, p n p m (γ p/ n + ˆµ) δ pm, p n q k form a discrete reciprocal lattice H is block diagonal in momentum space (one block H( k) for each vector k in the Brioullin zone

45 Thermodynamic potential remaining problem: diagonalize H (γ p/ n ˆµ) δ pm, p n ˆ qk γ γ 5 δ qk, p m p n q H pm, p n = k q k ˆ qk γ γ 5 δ qk, p n p m (γ p/ n + ˆµ) δ pm, p n q k form a discrete reciprocal lattice H is block diagonal in momentum space (one block H( k) for each vector k in the Brioullin zone We finally obtain: Ω MF = 1 4 d 3 k (2π) 3 B.Z. λ [ ( )] E λ ( k) + 2T ln 1 + 2e E λ( k)/t + A q k A,qk 2 4H E λ ( k): eigenvalues of H( k).

46 Simplified model consider only 2SC-like pairing strange quarks and blue quarks decouple

47 Simplified model consider only 2SC-like pairing strange quarks and blue quarks decouple chemical potentials: µ u = µ + δµ, µ d = µ δµ

48 Simplified model consider only 2SC-like pairing strange quarks and blue quarks decouple chemical potentials: µ u = µ + δµ, µ d = µ δµ high-density approximations to simplify Dirac structure

49 Simplified model consider only 2SC-like pairing strange quarks and blue quarks decouple chemical potentials: µ u = µ + δµ, µ d = µ δµ high-density approximations to simplify Dirac structure remaining diagonalization problem: ( ) (pm µ δµ) δ pm, p (H,δµ ) pm, p n = n pm p n (p m µ + δµ) δ pm, p n p n p m

50 Regularization unregularized expression for Ω MF divergent needs to be regularized 3-momentum cutoff? inhom. phases: H depends on two momenta! cut off both of them, e.g., p m, p n Λ? strong regularization artifacts: large q suppressed, e.g., q < 2Λ violates model independent low-energy results Pauli-Villars-like scheme: F(E λ ) 2 F(E λ,j ), E λ,j ( k) = j= E 2 λ ( k) + jλ 2

51 Numerical results external parameters: T, µ, δµ here: T =, µ = 4 MeV only δµ is varied

52 Numerical results external parameters: T, µ, δµ here: T =, µ = 4 MeV only δµ is varied model parameters: H, Λ Λ = 4 MeV H BCS = 8 MeV

53 Numerical results external parameters: T, µ, δµ here: T =, µ = 4 MeV only δµ is varied model parameters: H, Λ Λ = 4 MeV H BCS = 8 MeV crystal structure: general problem (too) difficult consider one-dimensional modulations (in 3+1 D): (z) = k k e 2ikqz further restriction: (z) = real k = k

54 step 1: minimize Ω at fixed q

55 step 1: minimize Ω at fixed q example: δµ =.7 BCS (z) [MeV] 5 q=.1 BCS q=.2 BCS q=.5 BCS q= 1. BCS z [π/ BCS ]

56 step 1: minimize Ω at fixed q example: δµ =.7 BCS (z) [MeV] 5 q=.1 BCS q=.2 BCS q=.5 BCS q= 1. BCS q.5 BCS : sinusoidal z [π/ BCS ]

57 step 1: minimize Ω at fixed q example: δµ =.7 BCS (z) [MeV] 5-5 q=.1 BCS q=.2 BCS q=.5 BCS q= 1. BCS q.5 BCS : sinusoidal q.5 BCS : soliton lattice shape of transition region almost independent of q z [π/ BCS ] amplitude BCS

58 step 1: minimize Ω at fixed q example: δµ =.7 BCS (z) [MeV] 5-5 q=.1 BCS q=.2 BCS q=.5 BCS q= 1. BCS q.5 BCS : sinusoidal q.5 BCS : soliton lattice shape of transition region almost independent of q z [π/ BCS ] amplitude BCS parametrization of the gap function: (z) = A sn ( κ(z z ); ν ) (works extremely well)

59 step 2: minimize Ω w.r.t. q

60 step 2: minimize Ω w.r.t. q 1 preferred q:.8 q/ BCS.6.4 q 1D q FF δµ/ BCS inhom. - BCS: q 2nd order (FF - BCS: 1st order)!

61 step 2: minimize Ω w.r.t. q preferred q: amplitude: q/ BCS.6.4 q 1D q FF qmax () [MeV] 6 4 1D FF δµ/ BCS δµ/ BCS inhom. - BCS: q 2nd order (FF - BCS: 1st order)! inhom. - normal: 1st order (FF - normal: 2nd order)!

62 step 2: minimize Ω w.r.t. q preferred q: amplitude: q/ BCS.6.4 q 1D q FF qmax () [MeV] 6 4 1D FF δµ/ BCS δµ/ BCS inhom. - BCS: q 2nd order (FF - BCS: 1st order)! inhom. - normal: 1st order (FF - normal: 2nd order)! inhom. FF

63 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.695 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

64 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS = qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

65 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.696 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

66 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.7 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

67 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.71 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

68 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.72 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

69 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.74 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

70 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.76 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

71 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.78 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

72 Gap functions putting everything together: amplitude: 1 (z) [MeV] δµ/ BCS =.79 qmax () [MeV] D FF δµ/ BCS preferred q: z [fm] q/ BCS q 1D q FF δµ/ BCS

73 General one-dimensional solutions free-energy gain: 1e+7 δω [MeV 4 ] -1e+7-2e+7-3e+7 δω 1D δω FF δω BCS δµ/ BCS

74 General one-dimensional solutions free-energy gain: 1e+7 δω [MeV 4 ] -1e+7-2e+7-3e+7 δω 1D δω FF δω BCS LO window 2 FF window δµ/ BCS

75 Quasiparticle spectra anisotropic dispersion relations: E λ ( k) = E λ ( k, k z )

76 Quasiparticle spectra anisotropic dispersion relations: E λ ( k) = E λ ( k, k z ) typical examples at fixed k :

77 Band structure superposition of the eigenvalue spectra of all k z : sinusoidal (q =.9 BCS ) soliton lattice (q =.2 BCS ) E(k) [MeV] E(k) [MeV] k [MeV] k [MeV] almost gapped regions between low- and high-lying modes low-lying modes related to solitons: q E

78 Outlook I to be done: globally neutral two-flavor quark matter in beta equilibrium density profiles (example: A. Bulgac, M.M. Forbes, PRL (28), Density Functional Theory calculation for polarized Fermi systems at unitarity) n(z)/n Delta(z) three flavors (including masses) finite temperature, phase diagram two- and three-dimensional crystals -5 5 z/l

79 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations

80 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D

81 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D phase diagram: 15 T MeV Μ q MeV

82 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D phase diagram: T MeV Μ q MeV

83 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D phase diagram: T MeV Μ q MeV 1st-order line covered by the inhomogeneous phase

84 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D phase diagram: M2 (z), wave vector q T MeV Μ q MeV M z MeV q MeV Μ q MeV 1st-order line covered by the inhomogeneous phase

85 Chiral phase transition (D. Nickel, arxiv: , arxiv: ) constituent quark mass M(z) with 1 dimensional modulations analytically known solutions for 1+1 D can be lifted to 3+1 D phase diagram: M2 (z), wave vector q T MeV Μ q MeV M z MeV q MeV Μ q MeV 1st-order line covered by the inhomogeneous phase all phase boundaries 2nd order

86 Outlook II to be done: include Polyakov loop three flavors two- and three-dimensional crystals combine with color superconductivity

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

Ginzburg-Landau approach to the three flavor LOFF phase of QCD

Ginzburg-Landau approach to the three flavor LOFF phase of QCD Ginzburg-Landau approach to the three flavor LOFF phase of QCD R. Casalbuoni Dipartimento di Fisica, Università di Firenze, I-50019 Firenze, Italia and I.N.F.N., Sezione di Firenze, I-50019 Firenze, Italia

More information

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase Latest results Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase 1 1 What do we know about the ground state of the color

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Neutral color superconductivity including inhomogeneous phases at finite temperature

Neutral color superconductivity including inhomogeneous phases at finite temperature PHYSICAL REVIEW D 75, 363 (27) Neutral color superconductivity including inhomogeneous phases at finite temperature Lianyi He, 1, * Meng Jin, 1,2, and Pengfei Zhuang 1, 1 Physics Department, Tsinghua University,

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

COLOR SUPERCONDUCTIVITY

COLOR SUPERCONDUCTIVITY COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 Outline Motivations Superconductors Color

More information

Color superconductivity in quark matter

Color superconductivity in quark matter Fedora GNU/Linux; L A TEX 2ǫ; xfig Color superconductivity in quark matter Mark Alford Washington University Saint Louis, USA Outline I Quarks at high density Cooper pairing, color superconductivity II

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Ginzburg-Landau approach to inhomogeneous chiral condensates

Ginzburg-Landau approach to inhomogeneous chiral condensates Ginzburg-Landau approach to inhomogeneous chiral condensates Hiroaki Abuki (Science University of Tokyo) in collaboration with Daisuke Ishibashi, Katsuhiko Suzuki Ref: Abuki, Ishibashi, Suzuki, arxiv:

More information

FERMION PAIRINGS IN B!

FERMION PAIRINGS IN B! FERMION PAIRINGS IN B! Vivian de la Incera University of Texas at El Paso CSQCDIII Guaruja, December 11-15, 2012! OUTLINE! Fermion Pairings, B, & QCD Map Magnetoelectricity of the MCFL Phase Quarkyonic

More information

Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD

Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD BARI-TH 468/0 CERN-TH/00-171 UGVA-DPT-00-07/1107 Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD R. Casalbuoni a1, R. Gatto b, M. Mannarelli c,d, G. Nardulli c,d, M.

More information

arxiv:hep-ph/ v2 20 Dec 2006

arxiv:hep-ph/ v2 20 Dec 2006 Chromomagnetic instability in two-flavor quark matter at nonzero temperature O. Kiriyama Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt am Main, Germany (Dated: December 2,

More information

Ginzburg-Landau approach to inhomogeneous chiral phases of QCD

Ginzburg-Landau approach to inhomogeneous chiral phases of QCD Ginzburg-Landau approach to inhomogeneous chiral phases of QCD Hiroaki Abuki (a) thanks to Daisuke Ishibashi (b) and Katsuhiko Suzuki (a) (a) Tokyo University of Science, (b) Water Service of Tokyo City

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

arxiv:hep-ph/ v2 4 May 2001

arxiv:hep-ph/ v2 4 May 2001 Annu. Rev. Nucl. Part. Sci. 2001?? Color superconducting quark matter Mark Alford Dept. of Physics and Astronomy, Glasgow University, Glasgow G12 8QQ, UK arxiv:hep-ph/0102047 v2 4 May 2001 KEYWORDS: quark

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Cold quarks stars from hot lattice QCD

Cold quarks stars from hot lattice QCD 12.10.2009 Cold quarks stars from hot lattice QCD Robert Schulze TU Dresden, FZ Dresden-Rossendorf with B. Kämpfer 1. hot lattice QCD and quasiparticles 2. quasiparticle model: going to μ > 0 3. cold quark

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Are there plasminos in superconductors?

Are there plasminos in superconductors? Are there plasminos in superconductors? Barbara Betz and Dirk-H. Rischke Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main VI Workshop Rathen 2006 nucl-th/0609019 Are

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Probing QCD Phase Diagram in Heavy Ion Collisions

Probing QCD Phase Diagram in Heavy Ion Collisions LQCD LHC Probing QCD Phase Diagram in Heavy Ion Collisions QCD Phase Diagram from LQCD Fluctuations of conserved charges as probe of thermalization and QCD phase boundary Linking LQCD results to HIC data

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

arxiv: v2 [hep-ph] 9 Jul 2014

arxiv: v2 [hep-ph] 9 Jul 2014 Inhomogeneous phases in the quark-meson model with vacuum fluctuations Stefano Carignano, 1 Michael Buballa, 2 and Bernd-Jochen Schaefer 3 1 Department of Physics, The University of Texas at El Paso, USA

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

Unconfined World. Unconfined World. Quarkyonic World. Confined World O(1) Confined World O(1) Large N. Conventional Wisdom

Unconfined World. Unconfined World. Quarkyonic World. Confined World O(1) Confined World O(1) Large N. Conventional Wisdom Quarkyonic Matter Larry McLerran, Rob Pisarski, Yoshimasa Hidaka and Toru Kojo Krzysztof Redlich (Wroclaw, GSI), Chihiro Sasaki (Munich) A. Andronic, D. Blaschke, J. Cleymans, K. Fukushima, H. Oeschler,

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

arxiv: v2 [hep-ph] 8 May 2009

arxiv: v2 [hep-ph] 8 May 2009 Pion Superfluidity beyond Mean Field Approximation In Nambu Jona-Lasinio Model Chengfu Mu, Pengfei Zhuang Physics Department, Tsinghua University, Beijing 184, China (Dated: May 11, 29) We investigate

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

arxiv: v1 [hep-ph] 11 Dec 2009

arxiv: v1 [hep-ph] 11 Dec 2009 Compact stars in the QCD phase diagram II (CSQCD II) May 0-4, 009, KIAA at Peking University, Beijing - P. R. China http://vega.bac.pku.edu.cn/rxxu/csqcd.htm Cold and Dense Matter in a Magnetic Field arxiv:091.375v1

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

The Origin of the Visible Mass in the Universe

The Origin of the Visible Mass in the Universe The Origin of the Visible Mass in the Universe Or: Why the Vacuum is not Empty Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Cyclotron REU Program 2007 Texas

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Lecture Overview... Modern Problems in Nuclear Physics I

Lecture Overview... Modern Problems in Nuclear Physics I Lecture Overview... Modern Problems in Nuclear Physics I D. Blaschke (U Wroclaw, JINR, MEPhI) G. Röpke (U Rostock) A. Sedrakian (FIAS Frankfurt, Yerevan SU) 1. Path Integral Approach to Partition Function

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Fluctuations in dual chiral density wave / T.-G. Lee et al.

Fluctuations in dual chiral density wave / T.-G. Lee et al. Fluctuations in dual chiral density wave Tong-Gyu Lee JAEA/Kochi Univ (YITP, Kyoto Univ) in collaboration with Eiji Nakano and Yasuhiko Tsue (Kochi Univ) Toshitaka Tatsumi (Kyoto Univ) and Bengt Friman

More information

Photons in gapless color-flavor-locked quark matter arxiv:hep-ph/ v2 28 Apr 2005

Photons in gapless color-flavor-locked quark matter arxiv:hep-ph/ v2 28 Apr 2005 Photons in gapless color-flavor-locked quark matter arxiv:hep-ph/050078v2 28 Apr 2005 Mark Alford and Qinghai Wang Department of Physics Washington University St. Louis, MO 6330 USA April 6, 2005 Abstract

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

arxiv:hep-ph/ v1 5 Dec 2002

arxiv:hep-ph/ v1 5 Dec 2002 Few-Body Systems Suppl. 0, 1 6 (2008) Few- Body Systems c by Springer-Verlag 2008 Printed in Austria Baryons as Solitons in Chiral Quark Models arxiv:hep-ph/0212077v1 5 Dec 2002 B. Golli 1, W. Broniowski

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

annihilation of charm quarks in the plasma

annihilation of charm quarks in the plasma Quarkonia Production suppression vs enhancement quarkonia suppression ingredients and assumptions quarkonia in the QGP confrontation with data quarkonia enhancement ingredients and assumptions annihilation

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Two lectures on color superconductivity

Two lectures on color superconductivity Two lectures on color superconductivity arxiv:nucl-th/0410091v2 8 Nov 2004 Igor A. Shovkovy Frankfurt Institute for Advanced Studies and Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität,

More information