Are there plasminos in superconductors?

Size: px
Start display at page:

Download "Are there plasminos in superconductors?"

Transcription

1 Are there plasminos in superconductors? Barbara Betz and Dirk-H. Rischke Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main VI Workshop Rathen 2006 nucl-th/ Are there plasminos in superconductors? p.1/20

2 Contents Introduction/Motivation Are there plasminos in superconductors? p.2/20

3 Contents Introduction/Motivation Normal-conducting fermions Are there plasminos in superconductors? p.2/20

4 Contents Introduction/Motivation Normal-conducting fermions Self-energy Are there plasminos in superconductors? p.2/20

5 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Are there plasminos in superconductors? p.2/20

6 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Spectral density Are there plasminos in superconductors? p.2/20

7 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Spectral density Superconducting fermions Are there plasminos in superconductors? p.2/20

8 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Spectral density Superconducting fermions Self-energy Dispersion relation Spectral density Are there plasminos in superconductors? p.2/20

9 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Spectral density Superconducting fermions Self-energy Dispersion relation Spectral density Conclusions Are there plasminos in superconductors? p.2/20

10 Contents Introduction/Motivation Normal-conducting fermions Self-energy Dispersion relation Spectral density Superconducting fermions Self-energy Dispersion relation Spectral density Conclusions J.-P. Blaizot and J.-Y. Ollitrault, Phys.Rev.D 48,1390 (1993) R.D.Pisarski, Nucl.Phys. A 498,423c (1989) R.D.Pisarski, D.H. Rischke, Phys.Rev.D 60, (1999) Are there plasminos in superconductors? p.2/20

11 Introduction relativistic fermionic systems Are there plasminos in superconductors? p.3/20

12 Introduction relativistic fermionic systems high termperature/ density Are there plasminos in superconductors? p.3/20

13 Introduction relativistic fermionic systems high termperature/ density 2 types of excitations gt 4 p G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043 Are there plasminos in superconductors? p.3/20

14 Introduction relativistic fermionic systems high termperature/ density 2 types of excitations particles and antiparticles gt 4 p G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043 Are there plasminos in superconductors? p.3/20

15 Introduction relativistic fermionic systems high termperature/ density 2 types of excitations particles and antiparticles additional collective excitations: gt 4 G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043 p Are there plasminos in superconductors? p.3/20

16 Introduction relativistic fermionic systems high termperature/ density 2 types of excitations gt 4 particles and antiparticles p additional collective excitations: plasmino and anti-plasmino G. Baym, J.-P. Blaizot, B. Svetitsky, Phys. Rev. D 46 (1992) 4043 Are there plasminos in superconductors? p.3/20

17 Motivation realtivistic description T 160 MeV QGP hadrons 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Are there plasminos in superconductors? p.4/20

18 Motivation realtivistic description T 160 MeV heavy-ion collisions hadrons QGP 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Are there plasminos in superconductors? p.4/20

19 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Are there plasminos in superconductors? p.4/20

20 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP color superconductor 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Are there plasminos in superconductors? p.4/20

21 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP color superconductor 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Do plasminos occur in cold and superconducting matter? Are there plasminos in superconductors? p.4/20

22 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP color superconductor 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Do plasminos occur in cold and superconducting matter? consider ultrarelativistic fermions Are there plasminos in superconductors? p.4/20

23 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP color superconductor 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Do plasminos occur in cold and superconducting matter? consider ultrarelativistic fermions interacting via scalar boson exchange Are there plasminos in superconductors? p.4/20

24 Motivation realtivistic description T 160 MeV heavy-ion collisions compact stellar objects hadrons QGP color superconductor 10 MeV color superconductivity 308 MeV DHR, Prog. Part. Nucl. Phys. 52 (2004) 197 Do plasminos occur in cold and superconducting matter? consider ultrarelativistic fermions interacting via scalar boson exchange in the limit of T 0 Are there plasminos in superconductors? p.4/20

25 Normal-conducting fermions Self-energy fermions interacting with scalar bosons Are there plasminos in superconductors? p.5/20

26 Normal-conducting fermions Self-energy fermions interacting with scalar bosons L I = g ψψφ Are there plasminos in superconductors? p.5/20

27 Normal-conducting fermions Self-energy fermions interacting with scalar bosons q=k-p L I = g ψψφ one-loop self-energy Σ(P ) = g 2 T n Σ(p 0,p) = - d 3 k (2π) 3 D 0 (K P )G 0 (K) k (p 0,p) k Are there plasminos in superconductors? p.5/20

28 Normal-conducting fermions Self-energy fermions interacting with scalar bosons q=k-p L I = g ψψφ one-loop self-energy Σ(P ) = g 2 T n Σ(p 0,p) = - d 3 k (2π) 3 D 0 (K P )G 0 (K) k (p 0,p) k projection onto positive/negative-energy solution ] Σ ± (P ) 1 2 [Λ Tr ± p γ 0 Σ(P ) Are there plasminos in superconductors? p.5/20

29 Normal-conducting fermions Self-energy fermions interacting with scalar bosons q=k-p L I = g ψψφ one-loop self-energy Σ(P ) = g 2 T n Σ(p 0,p) = - d 3 k (2π) 3 D 0 (K P )G 0 (K) k (p 0,p) k projection onto positive/negative-energy solution ] Σ ± (P ) 1 2 [Λ Tr ± p γ 0 Σ(P ) imaginary part Im Σ ± (ω, p) = Im a(ω, p) ± p Im b(ω, p) Are there plasminos in superconductors? p.5/20

30 Normal-conducting fermions Self-energy fermions interacting with scalar bosons q=k-p L I = g ψψφ one-loop self-energy Σ(P ) = g 2 T n Σ(p 0,p) = - d 3 k (2π) 3 D 0 (K P )G 0 (K) k (p 0,p) k projection onto positive/negative-energy solution ] Σ ± (P ) 1 2 [Λ Tr ± p γ 0 Σ(P ) imaginary part Im Σ ± (ω, p) = Im a(ω, p) ± p Im b(ω, p) real part Re Σ ± (ω, p) = Re a(ω, p) ± p Re b(ω, p) Are there plasminos in superconductors? p.5/20

31 Normal-conducting fermions Imaginary part of the self-energy Im(a+b*p)/µ Im(a-b*p)/µ ω/µ p/µ ω/µ p/µ massless fermions (left panel) and antifermions (right panel) for g 2 /4π = 1, at T = 0 Are there plasminos in superconductors? p.6/20

32 Normal-conducting fermions Real part of the self-energy Re(a+b*p)/µ Re(a-b*p)/µ ω/µ p/µ ω/µ p/µ massless fermions (left panel) and antifermions (right panel) for g 2 /4π = 1, at T = 0 Are there plasminos in superconductors? p.7/20

33 Normal-conducting fermions Dispersion relation is given by the roots of the full inverse propagator G 1 ± (P ) G 1 0,± (P ) + Σ ±(P ) Are there plasminos in superconductors? p.8/20

34 Normal-conducting fermions Dispersion relation is given by the roots of the full inverse propagator G 1 ± (P ) G 1 0,± (P ) + Σ ±(P ) ω/µ particle plasmino anti-plasmino antiparticle add. coll. exc p/µ Are there plasminos in superconductors? p.8/20

35 Normal-conducting fermions Spectral density is determined from ρ ± (ω, p) = 1 π Im G ±(ω, p) Are there plasminos in superconductors? p.9/20

36 Normal-conducting fermions Spectral density is determined from ρ ± (ω, p) = 1 π Im G ±(ω, p) ω/µ p/µ Are there plasminos in superconductors? p.9/20

37 Superconducting fermions Self-energy taking the superconducting ground state as a basis Are there plasminos in superconductors? p.10/20

38 Superconducting fermions Self-energy taking the superconducting ground state as a basis self-energy is Σ(P ) = g 2 T n d 3 k (2π) 3 D 0 (K P ) G 0 (K) Are there plasminos in superconductors? p.10/20

39 Superconducting fermions Self-energy taking the superconducting ground state as a basis self-energy is Σ(P ) = g 2 T n d 3 k (2π) 3 D 0 (K P ) G 0 (K) quasifermion propagator G 0 G 0 (P ) = e=± p 0 (µ ep) p 2 0 (µ ep)2 φ e (P ) 2 Λ e p γ 0 Are there plasminos in superconductors? p.10/20

40 Superconducting fermions Self-energy taking the superconducting ground state as a basis self-energy is Σ(P ) = g 2 T n d 3 k (2π) 3 D 0 (K P ) G 0 (K) quasifermion propagator G 0 G 0 (P ) = e=± p 0 (µ ep) p 2 0 (µ ep)2 φ e (P ) 2 Λ e p γ 0 calculate imaginary and real part of the self-energy Are there plasminos in superconductors? p.10/20

41 Superconducting fermions Self-energy taking the superconducting ground state as a basis self-energy is Σ(P ) = g 2 T n d 3 k (2π) 3 D 0 (K P ) G 0 (K) quasifermion propagator G 0 G 0 (P ) = e=± p 0 (µ ep) p 2 0 (µ ep)2 φ e (P ) 2 Λ e p γ 0 calculate imaginary and real part of the self-energy gap function of particles φ + = 0.25 µ and gap function of antiparticles φ = 0 leads to... Are there plasminos in superconductors? p.10/20

42 Superconducting fermions Imaginary part of the self-energy Im(a+b*p)/µ Im(a-b*p)/µ ω/µ p/µ ω/µ p/µ massless superconducting fermions (left panel) and antifermions (right panel) for g 2 /4π = 1, at T = 0 Are there plasminos in superconductors? p.11/20

43 Superconducting fermions Real part of the self-energy Re(a+b*p)/µ Re(a-b*p)/µ ω/µ p/µ ω/µ p/µ massless superconducting fermions (left panel) and antifermions (right panel) for g 2 /4π = 1, at T = 0 Are there plasminos in superconductors? p.12/20

44 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± ) 1 Are there plasminos in superconductors? p.13/20

45 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± Σ + was computed above ) 1 Are there plasminos in superconductors? p.13/20

46 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± Σ + was computed above Σ (P ) C [ Σ + ( P ) ] T C 1 is self-energy for charge-conjugate particles ) 1 Are there plasminos in superconductors? p.13/20

47 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± Σ + was computed above Σ (P ) C [ Σ + ( P ) ] T C 1 is self-energy for charge-conjugate particles Φ + is order parameter for condensation Φ + (P ) = e=± φ e (P ) Λ e p γ 5 ) 1 Are there plasminos in superconductors? p.13/20

48 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± Σ + was computed above Σ (P ) C [ Σ + ( P ) ] T C 1 is self-energy for charge-conjugate particles Φ + is order parameter for condensation Φ + (P ) = e=± φ e (P ) Λ e p γ 5 projection onto positive and negative energies Σ + (P ) = γ 0 Σ e (P ) Λ e p e=± Σ (P ) = γ 0 Σ e ( P ) Λ e p e=± ) 1 Are there plasminos in superconductors? p.13/20

49 Superconducting fermions Dispersion relation To distinguish the solutions, we use G ± e (P ) 1 2 Tr [G ± (P ) γ 0 Λ e p ] Are there plasminos in superconductors? p.14/20

50 Superconducting fermions Dispersion relation To distinguish the solutions, we use G ± e (P ) 1 2 Tr [G ± (P ) γ 0 Λ e p G + + (P ) = p 0 µ+p Σ + ( P ) [p 0 +µ p+σ + (P )][p 0 µ+p Σ + ( P )] φ + (P ) 2 G + (P ) = 1 p 0 +µ+p+σ (P ) G + (P ) = 1 p 0 µ p Σ ( P ) G (P ) = p 0 +µ p+σ + (P ) [p 0 +µ p+σ + (P )][p 0 µ+p Σ + ( P )] φ + (P ) 2 ] Are there plasminos in superconductors? p.14/20

51 Superconducting fermions Dispersion relation ω/µ 1 ω/µ p/µ p/µ particle antiplasmino add. coll. exc. hole antiplasmino-hole plasmino antiparticle add. coll. exc. plasmino-hole antihole positive energy dispersion relation, g 2 /(4π) = 1, T = 0 negative energy dispersion relation, g 2 /(4π) = 1, T = 0 Are there plasminos in superconductors? p.15/20

52 Superconducting fermions Spectral density ρ ± e (ω, p) = 1 π Im G± e (ω, p) Are there plasminos in superconductors? p.16/20

53 Superconducting fermions Spectral density ρ ± e (ω, p) = 1 π Im G± e (ω, p) ω/µ 1 ω/µ p/µ p/µ spectral density ρ + + for g2 /(4π) = 1, T = 0 spectral density ρ for g2 /(4π) = 1, T = 0 Are there plasminos in superconductors? p.16/20

54 Superconducting fermions Spectral density ω/µ 0 ω/µ p/µ spectral density ρ + for g2 /(4π) = 1, T = p/µ spectral density ρ + for g2 /(4π) = 1, T = 0 Are there plasminos in superconductors? p.17/20

55 Conclusions We studied the fermionic excitation spectrum Are there plasminos in superconductors? p.18/20

56 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, Are there plasminos in superconductors? p.18/20

57 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, Are there plasminos in superconductors? p.18/20

58 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, vanishing temperature and finite chemical potential. Are there plasminos in superconductors? p.18/20

59 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, vanishing temperature and finite chemical potential. Plasminos occur Are there plasminos in superconductors? p.18/20

60 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, vanishing temperature and finite chemical potential. Plasminos occur in the normal-conducting as well as Are there plasminos in superconductors? p.18/20

61 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, vanishing temperature and finite chemical potential. Plasminos occur in the normal-conducting as well as in the superconducting systems. Are there plasminos in superconductors? p.18/20

62 Conclusions We studied the fermionic excitation spectrum in normal- and superconducting systems, for massless fermions interacting with massless bosons, vanishing temperature and finite chemical potential. Plasminos occur in the normal-conducting as well as in the superconducting systems. Superconducting excitation spectrum is the extension of the normal-conducting one. Are there plasminos in superconductors? p.18/20

63 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± ) 1 Are there plasminos in superconductors? p.19/20

64 Superconducting fermions Dispersion relation is given by the poles of the propagator G ± = ( [G ± 0 ] 1 + Σ ± Φ { [G 0 ] 1 + Σ } 1 Φ ± for quasiparticles G + = ([G 0 ] 1 + Σ ) {([G +0 ] 1 + Σ + )([G 0 ] 1 + Σ ) ) 1 Φ ( [G 0 ] 1 + Σ ) 1 Φ + ( [G 0 ] 1 + Σ )} 1 Are there plasminos in superconductors? p.19/20

65 Superconducting fermions Dispersion relation condensation occurs in the even-parity channel Φ + (P ) = e=± φ e (P ) Λ e p γ 5 Are there plasminos in superconductors? p.20/20

66 Superconducting fermions Dispersion relation condensation occurs in the even-parity channel Φ + (P ) = e=± φ e (P ) Λ e p γ 5 so we have Φ ( [G 0 ] 1 + Σ ) 1 Φ + ( [G 0 ] 1 + Σ ) = e=± φ e (P ) 2 Λ e p Are there plasminos in superconductors? p.20/20

67 Superconducting fermions Dispersion relation condensation occurs in the even-parity channel Φ + (P ) = e=± φ e (P ) Λ e p γ 5 so we have Φ ( [G 0 ] 1 + Σ ) 1 Φ + ( [G 0 ] 1 + Σ ) 2SC-Phase Φ ( [G 0 ] 1 +Σ ) 1 Φ + ( [G 0 ] 1 +Σ ) = = e=± e=± L p = (J 3 ) 2 (τ 2 ) 2 = (δ ij δ i3 δ j3 )δ fg φ e (P ) 2 Λ e p φ e (P ) 2 L p Λ e p Are there plasminos in superconductors? p.20/20

Transport in the Outer Core of Neutron Stars

Transport in the Outer Core of Neutron Stars Stephan Stetina Institute for Theoretical Physics Vienna UT Transport in the Outer Core of Neutron Stars SEWM 018, Barcelona Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle) [S. Stetina,

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons February 5, 28 13:17 WSPC/INSTRUCTION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-th/7276v1 23 Feb 27 Pion-nucleon scattering within a gauged linear

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Production of energetic dileptons with small invariant masses. from the quark-gluon plasma. Abstract

Production of energetic dileptons with small invariant masses. from the quark-gluon plasma. Abstract Production of energetic dileptons with small invariant masses from the quark-gluon plasma Markus H. Thoma and Christoph T. Traxler Institut für Theoretische Physik, Universität Giessen, 3539 Giessen, Germany

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

Author(s) Kitazawa, M; Koide, T; Kunihiro, T; Citation PHYSICAL REVIEW D (2004), 70(5)

Author(s) Kitazawa, M; Koide, T; Kunihiro, T; Citation PHYSICAL REVIEW D (2004), 70(5) TitlePseudogap of color superconductivit Author(s) Kitazawa, M; Koide, T; Kunihiro, T; Citation PHYSICAL REVIEW D (24), 7(5) Issue Date 24-9 URL http://hdl.handle.net/2433/552 RightCopyright 24 American

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

Investigation of Mach cones and the corresponding two-particle correlations in a microscopic transport model

Investigation of Mach cones and the corresponding two-particle correlations in a microscopic transport model Investigation of Mach cones and the corresponding two-particle correlations in a microscopic transport model Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 1, 60438

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

Photon Production in a Hadronic Transport Approach

Photon Production in a Hadronic Transport Approach Photon Production in a Hadronic Transport Approach Niklas Ehlert in collaboration with: Juan Torres-Rincon, Janus Weil and Hannah Petersen Transport Meeting, July 12, 2016 Outline Introduction and motivation

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Antibaryons in massive heavy ion reactions: Importance of potentials

Antibaryons in massive heavy ion reactions: Importance of potentials Antibaryons in massive heavy ion reactions: Importance of potentials C. Spieles, M. Bleicher, A. Jahns, R. Mattiello, H. Sorge, H. Stöcker, W. Greiner Institut für Theoretische Physik, J. W. Goethe Universität,

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Charmonium spectral functions in pa collision arxiv:7.0372v [nucl-th] 28 Nov 207 Gy. Wolf, G. Balassa, P. Kovács, M. Zétényi, Wigner RCP, Budapest, 525 POB 49, Hungary Su Houng Lee Department of Physics

More information

Department of Physics, Osaka University, Toyonaka , Japan

Department of Physics, Osaka University, Toyonaka , Japan Dilepton production spectrum above T c analyzed with a lattice quark propagator Department of Physics, Osaka University, Toyonaka 560-0043, Japan E-mail: kim@kern.phys.sci.osaka-u.ac.jp Masayuki Asakawa

More information

Astrophysics implications of dense matter phase diagram

Astrophysics implications of dense matter phase diagram Astrophysics implications of dense matter phase diagram Armen Sedrakian 1 1 Institute for Theoretical Physics, University of Frankfurt, Germany Hirschegg 2010 Januray 20, Hirschegg Introduction Phase diagram

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

The Quark-Gluon Plasma in Equilibrium

The Quark-Gluon Plasma in Equilibrium The Quark-Gluon Plasma in Equilibrium Dirk H. Rischke arxiv:nucl-th/0305030v2 13 Aug 2003 Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Germany February 4, 2008

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

arxiv: v1 [hep-ph] 28 Jan 2019

arxiv: v1 [hep-ph] 28 Jan 2019 Charmonium excitation functions in pa collisions arxiv:1901.09910v1 [hep-ph] 28 Jan 2019 Gy. Wolf, G. Balassa, P. Kovács, M. Zétényi, Wigner RCP, Budapest, 1525 POB 49, Hungary Su Houng Lee Department

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

arxiv:hep-ph/ v1 15 Aug 1997

arxiv:hep-ph/ v1 15 Aug 1997 Equilibrium and Non-Equilibrium Hard Thermal Loop Resummation in the Real Time Formalism Margaret E. Carrington 1, Hou Defu 2, and Markus H. Thoma 3,4 1 Department of Physics and Winnipeg Institute of

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions

Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions Enrico Speranza Institute for Theoretical Physics, Goethe University, D-6438 Frankfurt am Main, Germany and

More information

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso Neutrino nucleus scattering Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso Institut für Theoretische Physik Universität Gießen, Germany XL. Arbeitstreffen Kernphysik, Schleching 26. Februar

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

The Quest for Light Scalar Quarkonia from elsm

The Quest for Light Scalar Quarkonia from elsm Institut für Theoretische Physik Goethe-Universität Frankfurt am Main The Quest for Light calar Quarkonia from elm Denis Parganlija [Based on arxiv: 5.3647] In collaboration with Francesco Giacosa and

More information

Thermodynamics of strongly-coupled lattice QCD in the chiral limit

Thermodynamics of strongly-coupled lattice QCD in the chiral limit CERN-PH-TH-2017-012 Thermodynamics of strongly-coupled lattice QCD in the chiral limit Philippe de Forcrand Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland CERN, TH Division,

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

COLLECTIVE FERMIONIC EXCITATIONS IN SYSTEMS WITH A LARGE CHEMICAL POTENTIAL

COLLECTIVE FERMIONIC EXCITATIONS IN SYSTEMS WITH A LARGE CHEMICAL POTENTIAL arxiv:hep-th/9303070v1 11 Mar 1993 COLLECTIVE FERMIONIC EXCITATIONS IN SYSTEMS WITH A LARGE CHEMICAL POTENTIAL Jean-Paul BLAIZOT and Jean-Yves OLLITRAULT Service de Physique Théorique, CE-Saclay 91191

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

GENERATION OF COLORED NOISE

GENERATION OF COLORED NOISE International Journal of Modern Physics C, Vol. 12, No. 6 (2001) 851 855 c World Scientific Publishing Company GENERATION OF COLORED NOISE LORENZ BARTOSCH Institut für Theoretische Physik, Johann Wolfgang

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

arxiv:nucl-th/ v1 26 Apr 2000

arxiv:nucl-th/ v1 26 Apr 2000 Van der Waals Excluded Volume Model for Lorentz Contracted Rigid Spheres K.A. Bugaev,2, M.I. Gorenstein,2, H. Stöcker and W. Greiner arxiv:nucl-th/000406v 26 Apr 2000 Institut für heoretische Physik, Universität

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Hadronic Transportwith the GiBUU model

Hadronic Transportwith the GiBUU model Hadronic Transport with the GiBUU model Frankfurt Institute for Advanced Studies, Germany Workshop on Nuclear Photoproduction with GLUEX Jlab, April 28, 2016 Outline the GiBUU model basic features and

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

Static and covariant meson-exchange interactions in nuclear matter

Static and covariant meson-exchange interactions in nuclear matter Workshop on Relativistic Aspects of Two- and Three-body Systems in Nuclear Physics - ECT* - 19-23/10/2009 Static and covariant meson-exchange interactions in nuclear matter Brett V. Carlson Instituto Tecnológico

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

arxiv: v2 [hep-ph] 7 Apr 2008

arxiv: v2 [hep-ph] 7 Apr 2008 the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany Hadrons in Medium Theory meets Experiment arxiv:0801.4970v2 [hep-ph] 7 Apr 2008 U. Mosel 1 Institut für Theoretische

More information

arxiv:nucl-th/ v1 27 Nov 2002

arxiv:nucl-th/ v1 27 Nov 2002 1 arxiv:nucl-th/21185v1 27 Nov 22 Medium effects to the N(1535) resonance and η mesic nuclei D. Jido a, H. Nagahiro b and S. Hirenzaki b a Research Center for Nuclear Physics, Osaka University, Ibaraki,

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc TTK-10-34 Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments Nuclear aspects of neutrino energy reconstruction in current oscillation experiments Tina Leitner Oliver Buss, Luis Alvarez-Ruso, and Ulrich Mosel Institut für Theoretische Physik Universität Gießen, Germany

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and Charm quark transport in Pb+Pb reactions at s NN = 2.76 TeV from a (3+1) dimensional hybrid approach Thomas Lang 1,2, Hendrik van Hees 1,2, Jan Steinheimer 3, and Marcus Bleicher 1,2 1 Frankfurt Institute

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main he Quantum heory of Finite-emperature Fields: An Introduction Florian Divotgey Johann Wolfgang Goethe Universität Franfurt am Main Fachbereich Physi Institut für heoretische Physi 1..16 Outline 1 he Free

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

1 Introduction Recently it was pointed out that elementary particles with masses up to GeV may be produced with measurable cross sections in periphera

1 Introduction Recently it was pointed out that elementary particles with masses up to GeV may be produced with measurable cross sections in periphera Production of Supersymmetric Particles in Ultrarelativistic Heavy-Ion Collisions J. Rau, B. Muller, W. Greiner Institut fur Theoretische Physik, Johann Wolfgang Goethe - Universitat, Postfach 111 93, D-6

More information

arxiv: v1 [hep-ph] 29 Jun 2016

arxiv: v1 [hep-ph] 29 Jun 2016 arxiv:1606.0968v1 [hep-ph] 9 Jun 016 R Bucoveanu PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: rabucove@uni-mainz.de M Gorchtein PRISMA

More information

Charmonium production in antiproton-induced reactions on nuclei

Charmonium production in antiproton-induced reactions on nuclei Charmonium production in antiproton-induced reactions on nuclei Alexei Larionov Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany and National Research Center Kurchatov

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

Spectral function at high missing energies and momenta

Spectral function at high missing energies and momenta PHYSICAL REVIEW C 70, 024309 (2004) Spectral function at high missing energies and momenta T. Frick, 1 Kh. S. A. Hassaneen, 1 D. Rohe, 2 and H. Müther 1 1 Institut für Theoretische Physik, Universität

More information

Some applications of thermal field theory to quark-gluon plasma

Some applications of thermal field theory to quark-gluon plasma PRAMANA c Indian Academy of Sciences Vol. 66, No. 4 journal of April 2006 physics pp. 669 687 Some applications of thermal field theory to quark-gluon plasma MUNSHI G MUSTAFA Theory Group, Saha Institute

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Phenomenology of a pseudoscalar glueball and charmed mesons

Phenomenology of a pseudoscalar glueball and charmed mesons JUSTUS-LIEBßIG Universität Giessen T Phenomenology of a pseudoscalar glueball and charmed mesons Walaa I. Eshraim Yukawa Institute for Theoretical Physics, Kyoto University, Japan, June 15th, 2018 Introduction

More information

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, Non Fermi liquid effects in dense matter Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, 27.5.2004 1 Introduction Possible phases at high density...... all involve condensed

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Project B.5: Hadrons in Nuclear Matter

Project B.5: Hadrons in Nuclear Matter Project B.5: Hadrons in Nuclear Matter Janus Weil, Murat Kaskulov, Ulrich Mosel Institut für Theoretische Physik, JLU Giessen Arbeitstreffen SFB/TR 16 Bochum, 09.09.2010 Outline introduction/motivation

More information