Superfluid Heat Conduction in the Neutron Star Crust

Size: px
Start display at page:

Download "Superfluid Heat Conduction in the Neutron Star Crust"

Transcription

1 Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:

2 Thermal Conduction 101 C electron n e ( T E F ) C Phonon T 3 v 3 s Electrons dominate transport in conductors: C electron v F C Phonon v s k2 F T 2 v2 s In insulators lattice phonons dominate. Their conduction can be large since phonon mean free paths are typically large.

3 Electrons or Phonons? Typically electrons dominate - unless there is a large magnetic field. Magnetic field suppresses transverse conduction =Gyrofrequency = Collision time Canuto and Ventura (1977) Uripin & Yakovlev (1980)

4 Electrons or Phonons? Typically electrons dominate - unless there is a large magnetic field. Magnetic field suppresses transverse conduction =Gyrofrequency = Collision time Canuto and Ventura (1977) Uripin & Yakovlev (1980)

5 Phonon Conduction in the Outer Crust Lattice Phonons have large mean free paths. Mean free path set by: 1.Impurity scattering 2.Absorption by Electrons Perez-Azorin (2006) Chugunov and Haensel (2007)

6 Phonon Conduction in the Outer Crust Lattice Phonons have large mean free paths. Mean free path set by: 1.Impurity scattering 2.Absorption by Electrons Impurity Scattering Perez-Azorin (2006) Chugunov and Haensel (2007)

7 Phonon Conduction in the Outer Crust Lattice Phonons have large mean free paths. Mean free path set by: 1.Impurity scattering 2.Absorption by Electrons Impurity Scattering Electron Absorption Perez-Azorin (2006) Chugunov and Haensel (2007)

8 Phonon Conduction in the Outer Crust Lattice Phonons have large mean free paths. Mean free path set by: 1.Impurity scattering 2.Absorption by Electrons Impurity Scattering Electron Absorption Perez-Azorin (2006) Chugunov and Haensel (2007)

9 Superfluidity in the Crust Enhances Heat Conduction: Conventional Wisdom: Electrons dominate conduction At neutron drip and T=10 8 K

10 Superfluidity in the Crust Enhances Heat Conduction: Conventional Wisdom: Electrons dominate conduction At neutron drip and T=10 8 K At B = G

11 Superfluidity in the Crust Enhances Heat Conduction: Conventional Wisdom: Electrons dominate conduction At neutron drip and T=10 8 K At B = G

12 Heat Transport in the Inner Crust Neutron matter in the crust is superfluid. Neutron particle-hole excitations are gapped Δ (MeV) k F [fm -1 ] BCS Chen [26] Wambach [27] Schulze [28] Schwenk [29] Fabrocini [30] AFDMC [30] QMC k F a Gezerlis & Carlson (2008) Low energy degrees of freedom: 1.Electrons 2.Lattice Phonons (1 long. + 2 Trans.) 3.Superfluid Phonons

13 Dissipative Processes Electrons lphs sphs Electron-phonon processes Impurity (Rayleigh) scattering Multi electron and phonon processes

14 Dissipative Processes Electrons lphs sphs Electron-phonon processes Impurity (Rayleigh) scattering Multi electron and phonon processes

15 sph mean free path Rayleigh Scattering ro =Typical nuclear radii q = sph momentum Scattering dominated by impurities: Very large mean free path! If only impurity scattering is relevant:

16 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly!

17 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms

18 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms coupling to Fermions

19 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms coupling to Fermions self-coupling

20 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms coupling to Fermions self-coupling

21 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms coupling to Fermions self-coupling lph-sph mixing

22 Low Energy Theory Phonon coupling is derivative - Low momentum phonons interact weakly! kinetic terms coupling to Fermions self-coupling lph-sph mixing sph 2 lph

23 Electron-Phonon Coupling Fetter & Walecka

24 Electron-Phonon Coupling Fetter & Walecka Fluctuation in density due to displacement field :

25 Electron-Phonon Coupling Fetter & Walecka Fluctuation in density due to displacement field : Canonically normalized lattice phonon field

26 Electron-Phonon Coupling Fetter & Walecka Fluctuation in density due to displacement field : Canonically normalized lattice phonon field

27 Electron-Phonon Coupling Fetter & Walecka Fluctuation in density due to displacement field : Canonically normalized lattice phonon field

28 Neutron-lPh Interaction Low-energy neutron-nucleus potential (Fermi Potential)

29 Neutron-lPh Interaction Low-energy neutron-nucleus potential (Fermi Potential)

30 Neutron-lPh Interaction Low-energy neutron-nucleus potential (Fermi Potential)

31 Neutron-lPh Interaction Low-energy neutron-nucleus potential (Fermi Potential)

32 sph-lph Interactions Integrate-out neutron degree of freedom

33 sph-lph Interactions Integrate-out neutron degree of freedom In the neutron star crust:

34 sph-lph Interactions Integrate-out neutron degree of freedom In the neutron star crust: Now we are ready to calculate the sph mean free path

35 Mixing and Dissipation Mixing leads to oscillations Dissipation of lph leads to dissipation of sph

36 Mixing and Dissipation Mixing leads to oscillations Dissipation of lph leads to dissipation of sph

37 Mixing and Dissipation Mixing leads to oscillations Dissipation of lph leads to dissipation of sph sph mean free path lph mean free path

38 Mixing and Dissipation Mixing leads to oscillations Dissipation of lph leads to dissipation of sph sph mean free path lph mean free path

39 Mixing and Dissipation Mixing leads to oscillations Dissipation of lph leads to dissipation of sph sph mean free path lph mean free path Away from resonance

40 Superfluid Phonon Mean Free Path λ sph ( ω=3 T) cm T=10 8 K T=10 7 K T=10 6 K ρ (g/cm 3 )

41 Superfluid Phonon Mean Free Path λ sph ( ω=3 T) cm T=10 8 K T=10 7 K T=10 6 K neutron-drip ρ (g/cm 3 )

42 Superfluid Phonon Mean Free Path λ sph ( ω=3 T) cm T=10 8 K T=10 7 K T=10 6 K resonance neutron-drip ρ (g/cm 3 )

43 Thermal Conductivity

44 Consequences for Magnetar Cooling Surface temperature anisotropy due anisotropic conduction. θ sph can limit the anisotropy

45 Very Large Magnetic Fields - Dissipation Electrons are in a few Landau levels. Transitions are highly restricted. Anisotropic dissipation. Phonon propagation is nearly undamped in many directions. As the energy - momentum conservation is satisfied over a small range of angles. Sharma & Reddy (2009) in prep

46 Very Large Magnetic Fields - Screening Electrons screen ionion interactions. The screening length is sensitive to B for 1000 large B. B= G B=0 V (r) = Z2 e 2 g(r) r ( g(r) = exp r ) λ D λ D (fm) µ e (MeV) Sharma & Reddy (2009) in prep

47 Very Large Magnetic Fields - Screening Electrons screen ionion interactions. The screening length Friedel Oscillations is sensitive to B for 1000 large B. B= G B=0 Typically Friedel V (r) = Z2 e 2 oscillations are small g(r) r in the relativistic ( g(r) = exp r ) systems - but large B suppresses kf. λ D λ D (fm) µ e (MeV) Sharma & Reddy (2009) in prep

48 Conclusions New mode for heat conduction in the inner crust. Low energy EFT for sphs, lphs and electrons. sph conduction is likely to be important for thermal evolution of magnetars. Screening and Friedel oscillations can affect the mechanical structure and phase structure of the magnetar outer crusts.

49 Electron Thermal Conduction Electrons are degenerate & relativistic Electron mean free path set by collisions with ions. Energy transfer ~ T Momentum transfer ~ kfe

50 Neutron-Nucleus Interaction In medium Pauli blocking and effective range corrections can suppress the interaction.

51 Electron Scattering and the Dynamic Structure Factor Coulomb Logarithm Flowers & Itoh (1976) Yakovlev & Urpin (1980) Potekhin et al. (1999) Dynamic Structure Factor

52 Potekhin (1999) Plasma physics of the outer crust: Γ = Z2 e 2 Γ c 175 a kt ( ) 1/3 A 1 a 125 fm 50 ρ 10 kt = T 10 8 K fm 1

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Quantum Monte Carlo with

Quantum Monte Carlo with Quantum Monte Carlo with QuantumField Monte Carlo Interactions with Chiral Effective Theory Chiral Effective Field Theory Interactions From matter to nuclei Alexandros Gezerlis ECT*-EMMI Workshop Neutron-Rich

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Envelopes of neutron stars with strong magnetic fields

Envelopes of neutron stars with strong magnetic fields Envelopes of neutron stars with strong magnetic fields Alexander Y. Potekhin Alexander D. Kaminker Dmitry G. Yakovlev Ioffe Physical-Technical Institute (Saint-Petersburg, Russia) Introduction: neutron

More information

Transport in the Outer Core of Neutron Stars

Transport in the Outer Core of Neutron Stars Stephan Stetina Institute for Theoretical Physics Vienna UT Transport in the Outer Core of Neutron Stars SEWM 018, Barcelona Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle) [S. Stetina,

More information

star crusts M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 November 24, 2016

star crusts M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 November 24, 2016 Dark M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 1 Department of Fundamental Physics, University of Salamanca, Spain 2 Institute d Astrophysique, Paris, France November 24, 2016 (University of Salamanca)

More information

An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust

An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust Journal of Physics: Conference Series PAPER OPEN ACCESS An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust To cite this article: D D Ofengeim et

More information

Thermal structure of magnetized neutron star envelopes

Thermal structure of magnetized neutron star envelopes Thermal structure of magnetized neutron star envelopes Alexander Y. Potekhin, 1,2 A.D.Kaminker, 1 D.G.Yakovlev, 1 G. Chabrier 2 1 Ioffe Physico-Technical Institute, St.Petersburg, Russia 2 Ecole Normale

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA)

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA) Introduction to Dense Matter C. J. Pethick (U. of Copenhagen and NORDITA) Astro-Solids, Dense Matter, and Gravitational Waves INT, Seattle, April 16, 2018 Bottom lines Exciting time for neutron star studies:

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars:

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: PACIFIC 2018 (Feb. 14, 2018) Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models GW & C. J. Pethick, PRL 119, 062701 (2017). Gentaro Watanabe (Zhejiang

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

Ultracold atoms and neutron-rich matter in nuclei and astrophysics Ultracold atoms and neutron-rich matter in nuclei and astrophysics Achim Schwenk NORDITA program Pushing the boundaries with cold atoms Stockholm, Jan. 23, 2013 Outline Advances in nuclear forces 3N forces

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Neutrino Interactions in Dense Matter

Neutrino Interactions in Dense Matter Neutrino Interactions in Dense Matter 7th RESCEU International Symposium, Tokyo 11-14 November, 2008 C. J. Pethick Nordita and Niels Bohr International Academy Messages: Rates of neutrino processes important

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

arxiv:nucl-th/ v1 21 Mar 2001

arxiv:nucl-th/ v1 21 Mar 2001 Relativistic Hartree-Bogoliubov Calculation of Specific Heat of the Inner Crust of Neutron Stars arxiv:nucl-th/5v Mar akuya Nakano and Masayuki Matsuzaki Department of Physics, Kyushu University, Fukuoka

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

neutron star basics λ. λ

neutron star basics λ. λ neutron star basics A solar mass consists of ~ 10 57 nucleons. If they are separated by typical inter-nucleon distances, what would the radius of the volume containing them be? neutron star basics ( )

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Electrical Conductivity of the Neutron Star Crust at Low Temperatures

Electrical Conductivity of the Neutron Star Crust at Low Temperatures ISSN 1063-7737, Astronomy Letters, 2012, Vol. 38, No. 1, pp. 25 44. c Pleiades Publishing, Inc., 2012. Original Russian Text c A.I. Chugunov, 2012, published in Pis ma v Astronomicheskiĭ Zhurnal, 2012,

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Neutrino processes in supernovae from chiral EFT

Neutrino processes in supernovae from chiral EFT Neutrino processes in supernovae from chiral EFT Achim Schwenk CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Neutron Star Structure

Neutron Star Structure Shapiro and Teukolsky, Chapters 2, 8, 9 Neutron Star Structure We now enter the study of neutron stars. Like black holes, neutron stars are one of the three possible endpoints of stellar evolution (the

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Neutron-star properties with unified equations of state

Neutron-star properties with unified equations of state Neutron-star properties with unified equations of state Nicolas Chamel in collaboration with J. M. Pearson, S. Goriely, A. F. Fantina Institute of Astronomy and Astrophysics Université Libre de Bruxelles,

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Alexandros Gezerlis. Proton-neutron pairing and alpha-like quartet correlations in nuclei Workshop ECT*, Trento September 19, 2016

Alexandros Gezerlis. Proton-neutron pairing and alpha-like quartet correlations in nuclei Workshop ECT*, Trento September 19, 2016 Quantum Monte Carlo with Pairing from cold atoms Chiral Effectivestars Fieldand Theory Interactions to neutron heavy nuclei Alexandros Gezerlis Proton-neutron pairing and alpha-like quartet correlations

More information

The Stellar Black Hole

The Stellar Black Hole The Stellar Black Hole Kenneth Dalton e-mail: kxdalton@yahoo.com Abstract A black hole model is proposed in which a neutron star is surrounded by a neutral gas of electrons and positrons. The gas is in

More information

NSCool User s guide. The Control Files. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México

NSCool User s guide. The Control Files. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México NSCool User s guide The Control Files Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Cool_*.in 2 The Input Master File Cool_*.in The master input file: It is defined in NSCool.f

More information

The EOS of neutron matter and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter and the effect of Λ hyperons to neutron star structure The EOS of neutron matter and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) 54th International Winter Meeting on Nuclear Physics Bormio, Italy,

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Compact stars as laboratories to test matter at extreme conditions. Alessandro Drago Otranto, June 2009

Compact stars as laboratories to test matter at extreme conditions. Alessandro Drago Otranto, June 2009 Compact stars as laboratories to test matter at extreme conditions Alessandro Drago Otranto, June 2009 Plan of the lectures Introduction: the discovery of neutron stars and pulsars; main facts about their

More information

Constraining the nuclear EoS by combining nuclear data and GW observations

Constraining the nuclear EoS by combining nuclear data and GW observations Constraining the nuclear EoS by combining nuclear data and GW observations Michael McNeil Forbes Washington State University (Pullman) and University of Washington A Minimal Nuclear Energy Density Functional

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

Surface emission of neutron stars

Surface emission of neutron stars Surface emission of neutron stars NS Radii A NS with homogeneous surface temperature and local blackbody emission L 4 R 2 T 4 From dispersion measure F 4 L D 2 2 R / D T 4 From X-ray spectroscopy NS Radii

More information

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Astronomy 421. Lecture 23: End states of stars - Neutron stars Astronomy 421 Lecture 23: End states of stars - Neutron stars 1 Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2 Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~

More information

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México

Neutron Star Cooling. Dany Page. Instituto de Astronomía Universidad Nacional Autónoma de México Neutron Star Cooling Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México 1 Core: homogeneous matter Swiss cheese Lasagna Spaghetti B Crust: nuclei + neutron superfluid Atmosphere

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

MAGNETARS AS COOLING NEUTRON STARS

MAGNETARS AS COOLING NEUTRON STARS MAGNETARS AS COOLING NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Main coauthors: A.D. Kaminker, A.Y. Potekhin, D.A. Baiko February 2009, Aspen HISTORY The first

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals

Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals Properties of Neutron Star Crusts with Accurately Calibrated Nuclear Energy Density Functionals Nicolas Chamel Institute of Astronomy and Astrophysics Université Libre de Bruxelles, Belgium in collaboration

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1 Physics 663 Particle Physics Phenomenology April 23, 2002 Physics 663, lecture 4 1 Detectors Interaction of Charged Particles and Radiation with Matter Ionization loss of charged particles Coulomb scattering

More information

arxiv: v1 [astro-ph] 9 Dec 2007

arxiv: v1 [astro-ph] 9 Dec 2007 Draft version February 2, 2008 Preprint typeset using L A TEX style emulateapj v. 2/19/04 THE IMPACT OF MAGNETIC FIELD ON THE THERMAL EVOLUTION OF NEUTRON STARS Deborah N. Aguilera 1,2, José A. Pons 1,

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter Laura Tolós Outline Outline Neutron Star (I) first observations by the Chinese in 1054 A.D. and prediction by Landau

More information

Strong Interactions and QCD

Strong Interactions and QCD Strong Interactions and QCD Sourendu Gupta DTP: TIFR DIM 2009 TIFR, Mumbai November 4, 2009 SG (DTP: TIFR) Strong Interactions DIM 09 1 / 14 The experimental context of strong interactions 1 Thomson and

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

SUPERFLUID MAGNETARS AND QPO SPECTRUM

SUPERFLUID MAGNETARS AND QPO SPECTRUM SUPERFLUID MAGNETARS AND QPO SPECTRUM Andrea Passamonti Osservatorio Astronomico di Roma INAF. In collaboration with L. Stella, S. Lander SAIt Bologna 9/5/23 Magnetars Neutron stars with a strong magnetic

More information

liquid He

liquid He 8.333: Statistical Mechanics I Problem Set # 6 Due: 12/6/13 @ mid-night According to MIT regulations, no problem set can have a due date later than 12/6/13, and I have extended the due date to the last

More information

Quantum simula+ons of nuclear pasta

Quantum simula+ons of nuclear pasta Quantum simula+ons of nuclear pasta William Newton, Sarah Cantu, Mike Gearheart, Farrukh Fa=oyev, Bao-An Li Texas A&M University-Commerce Jirina Rikovska Stone, Helena Pais, Alex Kaltenborn University

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Neutrons on a surface of liquid helium.

Neutrons on a surface of liquid helium. Neutrons on a surface of liquid helium. P. Grigoriev*, O. Zimmer**, A. Grigoriev +, and T. Ziman** * L. D. Landau Institute for Theoretical Physics, Chernogolovka, Russia; **Institute Laue-Laungevin, Grenoble,

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Fermi energy of electrons in neutron stars with strong magnetic field and magnetars

Fermi energy of electrons in neutron stars with strong magnetic field and magnetars EPJ Web of Conferences 109, 07003 (2016) DOI: 10.1051/ epjconf/ 201610907003 C Owned by the authors, published by EDP Sciences, 2016 Fermi energy of electrons in neutron stars with strong magnetic field

More information

Density and temperature of fermions and bosons from quantum fluctuations

Density and temperature of fermions and bosons from quantum fluctuations Density and temperature of fermions and bosons from quantum fluctuations Hua Zheng and Aldo Bonasera 1 1 Laboratori Nazionali del Sud, INFN, via Santa Sofia, 6, 951 Catania, Italy In recent years, the

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) 12th International Conference on Hypernuclear and Strange Particle

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Superconductivity. The Discovery of Superconductivity. Basic Properties

Superconductivity. The Discovery of Superconductivity. Basic Properties Superconductivity Basic Properties The Discovery of Superconductivity Using liquid helium, (b.p. 4.2 K), H. Kamerlingh Onnes found that the resistivity of mercury suddenly dropped to zero at 4.2 K. H.

More information

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER 1 DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER B. Y. SUN School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, People s Republic of China E-mail: sunby@lzu.edu.cn Based

More information

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates.

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates. September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 Chapter 5 Noninteracting Fermi gas The consequences of the Pauli principle for an assembly of fermions that is localized in space has been discussed

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

FERMION PAIRINGS IN B!

FERMION PAIRINGS IN B! FERMION PAIRINGS IN B! Vivian de la Incera University of Texas at El Paso CSQCDIII Guaruja, December 11-15, 2012! OUTLINE! Fermion Pairings, B, & QCD Map Magnetoelectricity of the MCFL Phase Quarkyonic

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information