The Role of the Quark-Gluon Vertex in the QCD Phase Transition

Size: px
Start display at page:

Download "The Role of the Quark-Gluon Vertex in the QCD Phase Transition"

Transcription

1 The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, Markus Hopfer University of Graz (A. Windisch, R. Alkofer)

2 Outline 1 Motivation A Physical Motivation Calculations at Finite Temperatures 2 Towards a Solution of the Quark-Gluon Vertex The Coupled System Solution Strategies Numerics 3 Preliminary Results 4 Summary and Outlook

3 A Physical Motivation The Phase Diagram of QCD no free quarks observed in nature Connement how can three light quarks constitute a heavy hadron? Dynamical Breaking of Chiral Symmetry (D χsb) quarks behave massless for high T chiral symmetry restored possible relation between the two phenomena? Why studying the Quark-Gluon Vertex? quark-gluon vertex interaction between quarks/gluons no full self-consistent solution of this object at T = 0 only models available for T 0 and/or µ 0

4 A Theoretical Description - The Formalism +

5 Dyson-Schwinger Equations (DSEs) The - Approach (F.J. Dyson) (J. Schwinger) Derivation of DSEs: cf. Talk by Valentin Mader

6 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator = + S (p) = Z 2S 0 (p) Z 2C F g 2 4 d k (2π) 4 γµ S(k) Γ ν (p, k) D γ µν (q) Some Comments Dyson-Schwinger equations (DSEs) non-perturbative approach (coupled) integral equations µ T -plane accessible innite tower truncations Momentum Conventions p... external momentum k... loop momentum q = p-k... gluon momentum

7 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator = + S (p) = Z 2S 0 (p) Z 2C F g 2 k0 2π 3 d k (2π) 3 γµ S(k) Γ ν (p, k) D γ µν (q) Going to nite Temperature treat 0-component of all 4-vectors dierently heat bath breaks Lorentz symmetry, i.e. (Euclidean) O(4) symmetry replace integral in time direction by Matsubara sum Momentum Conventions p (ω p, p) k (ω k, k) q (ω q, q) p 2 = (ω p, p) 2 = ω 2 q + p 2

8 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator = + S (p) = Z 2S 0 (p) Z 2C F g 2 T ω k (φ) 3 d k (2π) 3 γµ S(k) Γ ν (p, k) D γ µν (q) Going to nite Temperature treat 0-component of all 4-vectors dierently heat bath breaks Lorentz symmetry, i.e. (Euclidean) O(4) symmetry replace integral in time direction by Matsubara sum Momentum Conventions p (ω p, p) k (ω k, k) q (ω q, q) p 2 = (ω p, p) 2 = ω 2 q + p 2

9 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator = + S (p) = Z 2S 0 (p) Z 2C F g 2 T ω k (φ) 3 d k (2π) 3 γµ S(k) Γ ν (p, k) D γ µν (q) Modication of the Quark Propagator S (p) = i /pa(p 2 ) + B(p 2 ) S (ω p, p) = i ω pγ 0C(ω p, p 2 ) + i / pa(ω p, p 2 ) + B(ω p, p 2 ) generalized Matsubara modes: ω p(φ) = 2πT (n p + φ/2π) φ = π... usual (fermionic) anti-periodic boundary conditions φ = 0... usual (bosonic) periodic boundary conditions solve self-consistently further input needed gluon propagator & quark-gluon vertex

10 Further Ingredients

11 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator = + S (p) = Z 2S 0 (p) Z 2C F g 2 T ω k (φ) 3 d k (2π) 3 γµ S(k) Γ ν (p, k) D γ µν (q) Modication of the Gluon Propagator gluon (in Landau gauge) is purley transversal vector particle splits into transversal and longitudinal part at T 0 D γ µν (q) D µν (ωq, q) + Dµν (ωq, q) γ,t γ,l take from lattice results [Fischer, Maas and Mueller, 2010]

12 Dyson-Schwinger Equations and Matsubara Formalism Temperature Dependent Gluon Propagator D µν(ω p, p) = ZT (p2 ) Pµν(p) T + ZL(p 2 ) Pµν(p) L, p = (ω p, p) p 2 p 2 longitudinal part sensitive to phase transition, i.e. drops at T c Figure: quenched lattice data for SU(3) [Fischer, Maas and Mueller, 2010]

13 Dyson-Schwinger Equations and Matsubara Formalism Dyson-Schwinger Equation for the Quark Propagator S (p) = Z 2S 0 (p) Z 2C F g 2 T = + ω k (φ) 3 d k (2π) 3 γµ S(k) Γ ν (p, k) D γ µν (q) Models for the Quark-Gluon Vertex vertex model taken from [Fischer, 2009], cf. [Fischer and Mueller, 2009] Γ ν (ω p, p; ω k, { } { } ν d1 k) = kinematical term d q 2 UV blue term STI motivated kinematical expression red term phenomenological model new parameters: d 1, d 2 ( proper perturbative running: UV k 2 β0α(µ) ln[ q2 Λ 2 + 1] Λ 2 + q 2 4π ) 2δ

14 DSEs In Practical Application: Doing Physics

15 The Model Dependence of Observables Quark/Chiral Condensate φ (T ) ψψ φ = Z 2N c T ω p(φ) 3 d p { } (2π) 3 tr D S(ω p(φ), p) order parameter for chiral phase transition in the χ limit ϕ [GeV 3 ] ϕ/2π T [MeV]

16 The Model Dependence of Observables Quark/Chiral Condensate order parameter for chiral symmetry breaking no crossover because of quenched gluon input! quark-gluon vertex models work remarkably well! see e.g. plots of QCD phase diagram [C. Fischer, J. Luecker, 2012] but: introduce new parameters x to physical observables (e.g. fπ) 0,2 0,15 d1 = 4.6 π (T) [GeV 3 ] 0,1 CHIRAL SYMMETRY 0,05 BROKEN CHIRAL SYMMETRY RESTORED T [ MeV] [Fischer, Maas and Mueller, 2010]

17 The Model Dependence of Observables Quark/Chiral Condensate order parameter for chiral symmetry breaking no crossover because of quenched gluon input! quark-gluon vertex models work remarkably well! π (T) [GeV 3 ] but: introduce new parameters x to physical observables (e.g. fπ) goal: better understanding of the quark-gluon vertex function 0,2 0,15 0,1 0,05 CHIRAL SYMMETRY BROKEN d1 = 5.5 d1 = 4.6 d1 = 4.0 d1 = 3.5 d1 = 3.3 d1 = 3.0 CHIRAL SYMMETRY RESTORED T [ MeV]

18 The Model Dependence of Observables Dual Quark Condensate cf. [Gattringer, 2006], [E. Bilgici et al., 2008], [Fischer, 2009],... 2π dφ π dφ Σ 1 = 0 2π e iφ ψψ φ = 0 π cos φ ψψ φ order parameter for center symmetry transforms as Polyakov loop Dual Quark Condensate 0,14 0,12 0,1 0,08 0,06 0,04 0, T [MeV]

19 The Model Dependence of Observables Dual Quark Condensate cf. [Gattringer, 2006], [E. Bilgici et al., 2008], [Fischer, 2009],... 2π dφ π dφ Σ 1 = 0 2π e iφ ψψ φ = 0 π cos φ ψψ φ order parameter for center symmetry transforms as Polyakov loop 0,14 Dual Quark Condensate 0,12 0,1 0,08 0,06 0,04 0,02 d1 = 5.5 d1 = 4.6 d1 = 4.0 d1 = 3.3 d1 = T [MeV]

20 The Quark-Gluon Vertex Seems To Be Important!! Can We Solve It? The Quark-Gluon Vertex - Earlier Investigations

21 The Infrared Behaviour of the System Yang-Mills Sector of QCD Kugo-Ojima Connement Scenario (and similar in Gribov-Zwanziger scenario) Gluon Propagator p 2 A(p)A( p) p2 0 0 vanishes for small momenta Ghost Propagator p 2 c(p) c( p) p2 0 diverges for small momenta Scaling vs. Decoupling

22 Scaling vs. Decoupling Scaling and Decoupling Solution(s) for Gluon/Ghost Dressing Functions Z(x) x = p 2 [GeV 2 ] MH, R. Alkofer and G. Haase, 2012 blue line: ghost dressing function red line : gluon dressing function dashed/dashed-dotted lines: decoupling solutions G(x)

23 Scaling vs. Decoupling Non-Perturbative Running Coupling 4 3 α(x) x = p 2 [GeV 2 ] MH, R. Alkofer and G. Haase, 2012 running coupling approaches an IR xed point in scaling scenario dashed/dashed-dotted lines: decoupling solutions

24 The Infrared Behaviour of the System Yang-Mills Sector of QCD Kugo-Ojima Connement Scenario (and similar in Gribov-Zwanziger scenario) Gluon Propagator p 2 A(p)A( p) p2 0 0 vanishes for small momenta Ghost Propagator p 2 c(p) c( p) p2 0 diverges for small momenta The Role of the Quark-Gluon Vertex? Linear rising quark potential? D χsb eective quark interaction strength enhanced quark-gluon vertex? Running coupling infrared xed point?

25 Dyson-Schwinger Equations Dyson-Schwinger Equation for the Quark Propagator = + S (p) = S 0 (p) + g 2 C N c žk γ µ S(k) Γ ν (p, k) D µν γ (p k) Some Comments Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions,... DχSB eective interaction strength put eective interaction e.g. into gluon propagator and/or use sophisticated vertex models Goal: full self-consistent solution at vanishing temperature 12 tensors extend to nite temperature 32 tensors improve nite T -models Consider T = µ = 0

26 Dyson-Schwinger Equations Dyson-Schwinger Equation for the Quark Propagator = + S (p) = S 0 (p) + g 2 C N c žk γ µ S(k) γ ν D µν γ (p k) Some Comments Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions,... DχSB eective interaction strength put eective interaction e.g. into gluon propagator and/or use sophisticated vertex models Goal: full self-consistent solution at vanishing temperature 12 tensors extend to nite temperature 32 tensors improve nite T -models Consider T = µ = 0

27 Dyson-Schwinger Equations Dyson-Schwinger Equation for the Quark Propagator = + S (p) = S 0 (p) + g 2 C N c žk γ µ S(k) Γ ν (p, k) D µν γ (p k) Some Comments Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions,... DχSB eective interaction strength put eective interaction e.g. into gluon propagator and/or use sophisticated vertex models Goal: full self-consistent solution at vanishing temperature 12 tensors extend to nite temperature 32 tensors improve nite T -models Basis (if T = µ = 0) 1 Γ ν /k /p /k/p γ ν k ν p ν i.e. Γ ν 12 i=1 λ i Γ i

28 Dyson-Schwinger Equations Dyson-Schwinger Equation for the Quark Propagator = + S (p) = S 0 (p) + g 2 C N c žk γ µ S(k) Γ ν (p, k) D µν γ (p k) Some Comments Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions,... DχSB eective interaction strength put eective interaction e.g. into gluon propagator and/or use sophisticated vertex models Goal: full self-consistent solution at vanishing temperature 12 tensors extend to nite temperature 32 tensors improve nite T -models Basis (if T = µ = 0) 1 γ ν Γ ν /k k ν /p p ν /k/p i.e. Γ ν 12 i=1 λ i Γ i

29 The Coupled System Dyson-Schwinger Equation for the Quark Propagator = + Dyson-Schwinger Equation for the Quark-Gluon Vertex = 1 N c +N c Remarks/Ingredients gluon propagator taken from lattice/dse calculations 3-gluon vertex only models available

30 The Coupled System Dyson-Schwinger Equation for the Quark Propagator = + Dyson-Schwinger Equation for the Quark-Gluon Vertex = 1 N c +N c Remarks/Ingredients dress all vertices include higher order corrections correspondence to DSE-like equations in 3PI formalism [J. Berges, 2004]

31 The Coupled System Some Technical Details: Dierent Descriptions of the System

32 Dyson-Schwinger Equation for the Quark-Gluon Vertex I Version 1 = Version 2 = + +

33 Dyson-Schwinger Equation for the Quark-Gluon Vertex I Version 1 Version 2 = EQUIVALENT DESCRIPTIONS = + +

34 Dyson-Schwinger Equation for the Quark-Gluon Vertex II Analogy to 3PI Formalism [J. Berges, 2004] = The Resulting Simplied System =

35 Dyson-Schwinger Equation for the Quark-Gluon Vertex II Analogy to 3PI Formalism [J. Berges, 2004] = The Resulting Simplied System =

36 The Coupled System Dyson-Schwinger Equation for the Quark Propagator = + Dyson-Schwinger Equation for the Quark-Gluon Vertex = 1 N c +N c Simplications/Tools investigate scalar theory fundamentally charged scalars no Dirac structure simplied playground [MH, diploma thesis, 2011] calculations performed on GPUs

37 The Coupled System Dyson-Schwinger Equation for the Quark Propagator = + Abelian Diagram non-abelian Diagram Dyson-Schwinger Equation for the Quark-Gluon Vertex = 1 N c +N c Simplications/Tools investigate scalar theory fundamentally charged scalars no Dirac structure simplied playground [MH, diploma thesis, 2011] calculations performed on GPUs

38 The Coupled System in a Leading Order Skeleton Expansion Contribution of the Abelian/non-Abelian Diagram = λ 1 NA 1 - λ 1 A 10-2 = 1 Nc +N c p 2 = x [GeV 2 ] Leading Order Skeleton Expansion Γ µ (p 1, p 2; p 2 p 1) = 12 i=1 λ i (p 2 1, p 2 2, p 1 p 2) L µ i pick out an arbitrary vertex dressing function here: λ 1 ( γ µ ) at p 2 1 = p2 2 = p2 p1.p2 = 0 Abelian diagram is sub-leading - non-abelian diagram is important Leading Order Skeleton Expansion generates no dynamical mass!!

39 The Coupled System in a Leading Order Skeleton Expansion Contribution of the Abelian/non-Abelian Diagram = λ 1 NA 1 - λ 1 A 10-2 = 1 Nc +N c p 2 = x [GeV 2 ] Leading Order Skeleton Expansion Γ µ (p 1, p 2; p 2 p 1) = 12 i=1 λ i (p 2 1, p 2 2, p 1 p 2) L µ i pick out an arbitrary vertex dressing function here: λ 1 ( γ µ ) at p 2 1 = p2 2 = p2 p1.p2 = 0 Abelian diagram is sub-leading - non-abelian diagram is important Leading Order Skeleton Expansion generates no dynamical mass!!

40 Solution Strategies non-abelian Diagram The Quark-Gluon Vertex - Step-by-Step = 1 N c +N c Solution Strategy - Step 1 include only parts of the non-abelian diagram dress all vertices in the non-abelian diagram system is now much more complicated try dierent models for the 3-gluon vertex (sign ip!?) include the Abelian diagram (suppressed!?)

41 Solution Strategies non-abelian Diagram The Quark-Gluon Vertex - Step-by-Step = 1 N c +N c Solution Strategy - Step 2 include only parts of the non-abelian diagram dress all vertices in the non-abelian diagram system is now much more complicated try dierent models for the 3-gluon vertex (sign ip!?) include the Abelian diagram (suppressed!?)

42 Solution Strategies non-abelian Diagram The Quark-Gluon Vertex - Step-by-Step = 1 N c +N c Solution Strategy - Step 3 include only parts of the non-abelian diagram dress all vertices in the non-abelian diagram system is now much more complicated try dierent models for the 3-gluon vertex (sign ip!?) include the Abelian diagram (suppressed!?)

43 Numerics

44 Numerics GPU Programing calculations on GPUs Mephisto GPU Cluster Research Core Area 'Modeling and Simulation' Code Development CUDA-C++/FORTRAN OpenACC GPU- and CPU Cluster

45 Numerics GPU Programing calculations on GPUs Mephisto GPU Cluster Research Core Area 'Modeling and Simulation' Code Development CUDA-C++/FORTRAN OpenACC GPU- and CPU Cluster

46 Parallelization of the Code Step 1 - Discretization Γ µ (p 2 1, p 2 2, p 1 p 2) Γ µ (x, y, z) Γ µ [x i ][y n][z j ] Step 2 - Load Distribution Γ µ [x 1][y n][z j ] GPU 1 (processid = 0) Γ µ [x 2][y n][z j ] GPU 2 (processid = 1).. Γ µ [x N ][y n][z j ] GPU N (processid = N-1) Step 3 - Global Synchronization collect GPU data and repeat until convergence Some Technical Details coarse graining with openmpi / ne graining with CUDA in principle arbitrary number of GPUs possible minimal communication costs / optimal load balancing very good scaling behaviour of the code

47 Parallelization of the Code Scaling of the CUDA Code Speedup optimal Tesla C Number of GPUs Some Technical Details coarse graining with openmpi / ne graining with CUDA in principle arbitrary number of GPUs possible minimal communication costs / optimal load balancing very good scaling behaviour of the code

48 Preliminary Results

49 The Coupled System Dyson-Schwinger Equation for the Quark Propagator = + Dyson-Schwinger Equation for the Quark-Gluon Vertex = +N c Setup include only the (partially dressed) non-abelian diagram solve the system self-consistently using all tensor structures scaling-type gluon propagator used as input (from another DSE calculation)

50 Preliminary Results Quark Propagator CHIRAL LIMIT MASSIVE CASE 1,2 1,0 1 / A(x) B(x) M(x) = B(x) / A(x) ,8 0,6 0,4 0,2 M(x) [GeV] CHIRAL LIMIT m(µ 2 ) = 0 m(µ 2 ) = 1 GeV 0, x = p 2 [GeV 2 ] x = p 2 [GeV 2 ] Dressing Functions quark propagator: S (p) = i /p A(p 2 ) + 1B(p 2 ) dynamical chiral symmetry breaking (DχSB)

51 Preliminary Results Relevance of Dierent Tensor Structures - The Idea isolate important tensor structures: Γ µ 12 i=1 λ i Γ µ i λ i... dressing function Γ i... corresponding basis element (tensor component) Contribution of Tensor Structures (sketched)

52 Preliminary Results 3-Gluon Vertex Dependence 0,5 0,4 IR Exponent: -0 κ M(x) 0,3 0,2 0, x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) 3κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

53 Preliminary Results 3-Gluon Vertex Dependence 0,5 0,4 IR Exponent: -0 κ M(x) 0,3 0,2 0, IR Analysis x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) 3κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

54 Preliminary Results 3-Gluon Vertex Dependence 0,5 0,4 IR Exponent: -0 κ M(x) 0,3 0,2 0, x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) 0κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

55 Preliminary Results 3-Gluon Vertex Dependence 0,5 0,4 IR Exponent: -0 κ IR Exponent: -1 κ M(x) 0,3 0,2 0, x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

56 Preliminary Results 3-Gluon Vertex Dependence 0,5 M(x) 0,4 0,3 0,2 IR Exponent: -0 κ IR Exponent: -1 κ IR Exponent: -2 κ 0, x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) 2κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

57 Preliminary Results 3-Gluon Vertex Dependence 0,5 M(x) 0,4 0,3 0,2 IR Exponent: -0 κ IR Exponent: -1 κ IR Exponent: -2 κ 0, NO STABLE SOLUTION x = p 2 [GeV 2 ] 3-Gluon-Vertex bare structure + model ( x Γ µνσ = 3g x + d 1 x = p p p 2 3 ) 3κ ( d 1 d 3 + d2 log d 1 + x d 1, d 2, d 3... free parameters [ ]) 17/44 x + 1 Γ µνσ 3g,0 d 1

58 Taking a Closer Look at the 3-Gluon Vertex

59 Taking a Closer Look at the 3-Gluon Vertex 3-Gluon Vertex - Sign Flip in 2D Lattice Data for 2 Dimensions, [Huber, Maas and Smekal, 2012] lattice data indicates sign ip in 2D

60 Taking a Closer Look at the 3-Gluon Vertex 3-Gluon Vertex - Sign Flip in 3D Lattice Data for 3 Dimensions, [Cucchieri, Maas, Mendes, 2008] lattice data indicates sign ip in 3D

61 Taking a Closer Look at the 3-Gluon Vertex 3-Gluon Vertex - Sign Flip in 4D Lattice Data for 4 Dimensions, [Cucchieri, Maas, Mendes, 2008] lattice data indicates sign ip in 4D

62 Taking a Closer Look at the 3-Gluon Vertex 3-Gluon Vertex - Sign Flip in 4D Lattice Data for 4 Dimensions, [Huber and Smekal, 2012] lattice data indicates sign ip in 4D try to implement sign ip also in the quark-gluon vertex calculations stabilizes the system considerably

63 The Improved 3-Gluon-Vertex Model in DSE Calculations The Gluon Propagator (Dressing Function) 4 3 DSE DSE improved Sternbeck, 2006 Z(x) x = p 2 [GeV 2 ] new model corrects the long-standing under-estimation of the mid-momentum regime in DSE calculations 2-loop diagrams may play a minor role (cf. talk by V. Mader), i.e. truncations are already very good

64 Preliminary Results Full Calculation with non-abelian Diagram M(x) 0,4 0,3 0,2 IR Exponent: -0 κ IR Exponent: -1 κ IR Exponent: -2 κ improved Γ 3g 0, x = p 2 [GeV 2 ] full calculation taking non-abelian diagram into account = 1 N c +N c

65 What Can We Do Now isolate important tensor structure relevant for DχSB crucial for T 0 and µ 0 calculations The Next Steps - To Do List look for scaling behaviour dierent initialization strategy phenomenological eects not aected by deep IR behaviour include Abelian diagram additionally stabilize the system compare with lattice data [A. Kizilersu, D. Leinweber, J. Skullerud, A. Williams, 2006] [J. Skullerud, P. Bowman, A. Kizilersu, D. Leinweber, A. Williams, 2005]

66 Summary and Outlook Summary quark connement D χsb quark-gluon vertex quark/gluon coupling solve the non-abelian part of the vertex DSE isolate important tensor structures Quark Propagator DSE = + Quark-Gluon Vertex DSE = 1 N c +N c

67 Summary and Outlook Outlook calculate Abelian diagram, i.e. the full system include Yang-Mills system unquenching eects extend towards µ T study critical endpoint investigate scalar theory Quark Propagator DSE = + Quark-Gluon Vertex DSE = 1 N c +N c

68

69 Preliminary Results Running Coupling α qg (x) 1,2 1 0,8 0,6 0,4 0,2 IR Exponent: -0 κ IR Exponent: -1 κ IR Exponent: -2 κ x = p 2 [GeV 2 ] Right Scaling!? running coupling: α qg (p 2 ) = g 2 4π λ2 1(p 2 )Z(p 2 )/A 2 (p 2 ) no scaling behaviour: λ 1 = const in IR region needs further investigation dierent initialization strategy

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Quark-gluon interactions in QCD

Quark-gluon interactions in QCD Quark-gluon interactions in QCD AYSE KIZILERSU (CSSM, University of Adelaide) Australia Collaborators : Jonivar Skullerud (Maynooth, Ireland ) Andre Sternbeck (Jena, Germany) QCD DOWNUNDER! -4 July 7!

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Infrared properties of Landau propagators at finite temperature from very large lattices

Infrared properties of Landau propagators at finite temperature from very large lattices Infrared properties of Landau propagators at finite temperature from very large lattices Attilio Cucchieri (IFSC-São Paulo University) xqcd2007, Frascati Collaborators: Tereza Mendes (IFSC-USP), Axel Maas

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

Effects Of Anisotropy in (2+1)-dimensional QED

Effects Of Anisotropy in (2+1)-dimensional QED Effects Of Anisotropy in (2+1)-dimensional QED JAB, C. S. Fischer, R. Williams Effects of Anisotropy in QED 3 from Dyson Schwinger equations in a box, PRB 84, 024520 (2011) J. A. Bonnet 1 / 21 Outline

More information

Quark spectral functions at finite temperature in a Dyson-Schwinger approach

Quark spectral functions at finite temperature in a Dyson-Schwinger approach Master Thesis Quark spectral functions at finite temperature in a Dyson-Schwinger approach B.Sc. Christian Andreas Welzbacher September 2012 Institute for Theoretical Physics Justus-Liebig-Universität

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-th] 7 Nov 2018 arxiv:1811.337v1 [hep-th] 7 Nov 18 SLAC National Accelerator Laboratory, Stanford University, USA E-mail: lowdon@slac.stanford.edu Local formulations of quantum field theory provide a powerful framework

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Green s Functions and Topological Configurations

Green s Functions and Topological Configurations Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical

More information

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes HU-EP-07/47 ADP-07-11/T651 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes a, E.-M. Ilgenfritz b, M. Müller-Preussker b, and A. Sternbeck c a Joint Institute

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

arxiv: v2 [hep-ph] 18 Dec 2017

arxiv: v2 [hep-ph] 18 Dec 2017 Center phase transition from matter propagators in (scalar) QCD M. Mitter a,b, M. Hopfer a, B.-J. Schaefer c, R. Alkofer a arxiv:179.99v [hep-ph] 18 Dec 17 Abstract a Institut für Physik, NAWI Graz, Karl-Franzens-Universität

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Gernot Eichmann The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Diplomarbeit zur Erlangung des Magistergrades der Naturwissenschaften verfasst am Institut

More information

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature USM-TH-80 Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature arxiv:hep-ph/9906510v1 25 Jun 1999 Iván Schmidt 1 and Jian-Jun Yang 1,2 1 Departamento de Física, Universidad

More information

QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal

QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal 1 Special Credit and Thanks to: Reinhard Alkofer Jens Braun Christian Fischer Holger Gies Lisa Haas Axel Maas Kim Maltman

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

The thermo-magnetic quark-gluon vertex

The thermo-magnetic quark-gluon vertex The thermo-magnetic quark-gluon vertex María Elena Tejeda-Yeomans Departamento de Física, Universidad de Sonora, México in collaboration with A. Ayala (UNAM), J. Cobos-Martínez (UMICH), M. Loewe and R.

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information