Quark-gluon interactions in QCD

Size: px
Start display at page:

Download "Quark-gluon interactions in QCD"

Transcription

1 Quark-gluon interactions in QCD AYSE KIZILERSU (CSSM, University of Adelaide) Australia Collaborators : Jonivar Skullerud (Maynooth, Ireland ) Andre Sternbeck (Jena, Germany) QCD DOWNUNDER! -4 July 7! Cairns-Australia! Orlando Oliveira (Coimbra, Portugal) Paulo J. Silva (Coimbra, Portugal) Anthony G. Williams (Adelaide)

2 Pictorial Non-Perturbative QCD Gluon-Propagator Quark-Propagator Ghost-Propagator S = Z d 4 x ( g i µ A a µt a ij j + i(i 6@ m) QCD ) 4 F µ F a a µ F a µ µ A A a µ + gf abc A b µa c Quark-Gluon Vertex -Gluon Vertex Ghost-Gluon Vertex 4-Gluon Vertex

3 Perturbative vs Non-Perturbative : Related to the dynamical chiral symmetry breaking, confinement, hadron spectroscopy

4 Non-Perturbative Methods: Lattice QCD calculations vs Schwinger-Dyson Calculations BOTH starts from first principles(partition Function): Z Z = DA µ D D e S QCD Z D + Gauge fixing Gauge independent physical quantities Truncation of the infinite system

5 Fermion-Anti-fermion Scattering kernel Schwinger-Dyson Equations = / / /6 / + + =

6 Danger of reintroducing the gauge dependence Non-Perturbative Methods: Lattice QCD calculations vs Schwinger-Dyson Calculations BOTH starts from first principles(partition Function): Z Z = DA µ D D Extrapolation to continuum is needed Control: Finite volume effects Lattice discretization effects e S QCD Z D + Gauge fixing Gauge independent physical quantities BOTH ARE COMPLEMENTARY Truncation of the infinite system

7 Quark Propagator in Landau Gauge = In Continuum In Discrete S F (p) = = Z(p ) i 6p + M(p ) A(p )i 6p + B(p ) S L (pa) = Z L (pa) ia 6K(p)+aM L (pa) K µ (p) a sin(p µa) Z /A M B/A Quark (Fermion) Wave-Function Renormalisation Running Mass Function Z L M L

8 Improved Wilson, non-prturbative improved (Sheikholeslami-Wohlert) clover fermions : S SW = W i a 4 g X X S c SW (x) µ F µ (x) (x) SW = S W i a 4 g X X c SW (x) µ F µ (x) (x) x µ x µ Tree-level improvement In Continuum (x)(i 6D + m) (x)+ (x)d (x)(i 6D + m) (x)+ (x)d (x)+ (x) µ F µ (x) (x) (x)+ (x) µ F µ (x) (x) Other fermion actions such as Staggered, overlap fermions are used in different studies However continuum limit must stay the same

9 SW action, an O(a) improved quark propagator: The O(a) improved quark propagator suffers from large tree-level lattice artifacts (due to broken, rotational symmetry and finite lattice spacing) which complicate the determination of the physical momentum dependence of the form factors. Lattice quark propagator: S L (pa) = Z L (pa) ia 6K(p)+aM L (pa) Need to remove lattice artifacts: momentum cuts (cylinder cut with a radius of lattice momentum unit) select momenta close to the diagonal in 4-dim momentum space, which have the smallest hypercubic artifacts. tree level correction Z(ap) = ZL (ap) Z () (ap) am(p) = M L (pa) a M ( ) (pa) Z (+) m tree-level quark wave function

10 Improved Wilson, Clover Fermion Action Rotated (Sheikholeslami-Wohlert) in Discrete Simulation Parameters: The quark propagator using state-of-the art gauge configurations with N f = flavors of O(a) improved Wilson fermion The configurations from Regensburg Collaboration(RQCD) is used for this project G. S. Bali et all, Phys Rev D9, 545 (4) [arxiv:4.76] The calculations ( gauge fixing, propagators) where performed using the HLRN (Germany) supercomputing

11 Quark wave function renormalisation in Landau Gauge All 4 ensembles on the x 64 volume, using the tree-level corrected Z(p) S F (p) = Z(p ) 6p M(p )

12 Finite Volume Effects Quark Wave-function for two lattice volumes at b = 5.9, k =.6

13 Mass function All 4 ensembles on the x 64 volume, using the tree-level corrected scheme for M(p). M = 49.7 ± 5. p= 6 MeV for m π =9 MeV

14 Finite Volume Effects Mass function for two lattice volumes at β = 5.9, κ =.6

15 Summary on the Quark Propagator: M = 9 ± 6 p= 6 MeV for m p =5 MeV M = 49.7 ± 5. p= 6 MeV for m p =9 MeV lattice artifacts under control for Z(p ) but not for for M(p ) quark wave function seems to be lattice space independent at UV but not in the IR and it has very weak volume dependence. Z(p ) suppressed in IR and further suppressed as the quark mass and lattice spacing reduced but the suppresion is weakened as the volume is increased.

16 Quark Gluon Vertex

17 Determining Quark-Gluon Vertex -Determining qqg vertex perturbatively - Non-perturbatively in continuum by using SDE -Non-perturbatively in discreet space by using lattice QCD

18 -Determining qqg vertex perturbatively: J.S. Ball and T.W. Chiu, Phys.Rev. D (98) 54 (Feynman gauge, -loop) J.S. Ball and T.W. Chiu, Phys.Rev. D (98) 55 (Feynman gauge,-loop) A. Kızılersu, M. Reenders, and M.R. Pennington, Phys. Rev. D5(995) 4 (General covariant gauge, -loop) A. I. Davydychev, P. Osland and L. Saks, Phys.Rev.D6() 4 (General covariant gauge, -loop) A. Bashir, Y. Concha-Sanchez, Y. and R. Delbourgo, Phys. Rev.D76 (7), 659 (Scalar theory, -loop)

19 - Non-perturbatively in continuum by using SDE a-either by solving DSE for the vertex itself = + b-by solving coupled SDE for the propagators self consistently by imposing constraints on Green s functions c- By using Ward-Green-Takahashi identities D.Curtis and M.R. Pennington,Phys.Rev.D48 (99) 49 Bashir, A. Kızılersu, and M.R. Pennington A. Bashir and M. R. Pennington, Phys. Rev. D5, 7679 (994) D.Atkinson, J.C.R.Bloch, V.P.Gusynin, M.R.Pennington, M. Reenders,Phys. Lett.B9 (994) 7. Bashir, A. Kizilersu, and M. R. Pennington, Phys. Rev. D57, 4 (998) P. Maris and P.C. Tandy, Phys.Rev. C6 (999) 554 A.Kızılersu and M.R. Pennington, Phys. Rev. D79 (9) 5 A.Bashir R. Bermudez L. Chang and C. D. Roberts, Phys.Rev.C85 () 455 A.C. Aguilar, J.Phys.Conf.Ser. 6 (5) no., 58 E. Rojas, B. El-Bennich, J.P.B.C. De Melo and M.Ali Paracha, Few Body Syst. 56 (5)69 A.C. Aguilar, D. Binosi, D. Ibañez, J. Papavassiliou, Phys.Rev. D9 (4) 657 R. Williams, Eur.Phys.J. A5 (5) 57 M. Hopfer,. Windisch, R. Alkofer PoS ConfinementX () 7 R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, K. Schwenzer, Annals Phys. 4 (9) 6. R.Williams, C.S.Fischer, W.Heupel, Phys.Rev.D9 (6) 46 S-X Qin,C. D. Roberts, S. M. Schmidt,Phys.Lett. B7 (4) -8 Bashir, R. Bermudez, L. Chang and C.D., Phys. Rev.C85 (), 455 L.Fernandez-Rangel, A.Bashir, L-X Gutierrez-Guerrero and Y. Concha-Sanchez, Phys. Rev.D9(6)", 65 M. Vujinovic, R. Alkofer, G. Eichmann and R. Williams, Acta Phys. Polon. Supp.(4), 67 D. Binosi, Daniele, L. Chang, J. Papavassiliou S.-X. Qin, C.D. Roberts, 6, nucl-th

20 -Non-perturbatively in discreet space by using lattice gauge field theory J.I. Skullerud and A. Kızılersu, JHEP9, (). J.I. Skullerud, P.O. Bowman, A. Kızılersu, D.B. Leinweber and A.G. Williams, JHEP4()47. A. Kızılersu, J.I. Skullerud, D.B. Leinweber and A.G.Williams, Eur.Phys.J.C5(7) 87 M. Peláez, M. Tissier, N. Wschebor, Phys.Rev. D9 (5) 45 O. Oliveira, A. Kızılersü, P. Silva, J. Skullerud, A. Sternbeck, Andre and A.G. Williams, Acta Phys. Polon. Supp.(6), 6.

21 Quark Gluon Vertex in General Kinematics: P = k + p q = k p Transverse Basis 4X µ F (p, P, q) = + i= 8X i= i L µ i (p, P ) i T µ i (p, P ) T µ = i [(pq)k µ (kq)p µ ] T µ = 6P [(pq)k µ (kq)p µ ] T µ = 6qq µ q µ T 4µ = i q µ P +q µ p k T 5µ = i µ q T 6µ = (qp) µ 6qP µ i T 7µ = (qp) µ P ip µ p k T 8µ = µ p k 6pk µ + 6kp µ Slavnov-Taylor Identity Satisfying Basis L µ = µ L µ = 6PP µ L µ = ip µ L 4µ = i µ P

22 QED: Ward-Green-Takahashi Identity: q µ µ = S (k) S (p) QCD: Slavnov_Taylor Identity: q µ µ(p, q) =G P (q ) H(k, p, q)s (k) S (p)h( p, k, q) Ghost-Quark Scattering Kernel

23 Transverse Projection D µν - does not exist, so we will be looking at transverse projection T µ (p, k, q) =P T µ (q) µ = µ q µ q q µ(p, k, q) We study transverse projected vertex: a,p µ (p, q) P µ a,lat. (p, q) =S(p) V a (p, q)s(p + q) D(q ) T µ = q [ T µ + T µ + T µ + 4 T µ 4 ] + 5 T µ T µ T µ T µ 8 = q q = q = 4 = 4 + q 4

24 Quark-Gluon Vertex in Special Kinematics Ø Soft Gluon Kinematics : q µ = k µ = p µ = P µ ( a µ) ij = ig t a ij( T µ ) ( a µ) ij = ig t a ij( E µ 4 E 6pp µ i E p µ i E 4 µ p ) Tr 4 [I T µ ] = i E p µ Tr 4 [ T µ ] = E µ 4 E p p µ Tr 4 [ T µ ] = i E 4 (p µ p µ ) E E,, E 4 = E

25 Quark-Gluon Vertex in Special Kinematics Ø Soft Gluon Kinematics : q µ = k µ = p µ = P µ Tr 4 [I T µ ] (P, q = ) = = i Q (P ) iq µ(p ) E p µ Tr 4 T µ R! q= Tree-level correction : 8! (P, q = ) = < : c q 4 Q (P ) c qq (P ) 4c q K µ (p) = a sin p µa Q µ (p) = a sin pµ a C µ (p) = cos(p µ a) Q(P ) K(P ) 4 c qq (P ) Q (P ) 9 = ;

26 Quark-Gluon Vertex in Special Kinematics Ø Soft Gluon Kinematics : Tr 4 [ T µ ] q µ = k µ = p µ = P µ = E µ 4 E p p µ (P, q = ) = ( Tr 4 µ T µ R! q= Q µ (P )Q (P ) Q (P ) Tr 4 T µ R! q= ) Tree Level Expression: " (P, q = ) = 4 Q (P ) 8 # K(P ) Q(P ) 4 Q (P )! c q 4 Q (P ) + c qq (P ) 5! = Tr 4 T µ R q=,p µ =, =µ no sum over µ q=,, =µ no sum over µ Tree Level Expression: q=,p µ =, =µ no sum over µ = 4 c qq (P ) + c qq (P )

27 Quark-Gluon Vertex in Special Kinematics Ø Soft Gluon Kinematics : q µ = k µ = p µ = P µ Tr 4 [ T µ ] = E µ 4 E p p µ (P, q = ) = ( Q (P ) 8 Tree Level Expression: (P, q = ) = < 4 : Q (P ) Tr 4 µ T µ R +4c q +! q= c q 4 Q (P ) 4 Q µ(p )Q (P ) Q (P )! K(P ) Q(P ) Q (P ) Tr 4 T µ R K(P ) Q(P ) Q (P ) Q! (P ) c q! q= ) Q (P )! c q 4 Q (P )!)! q=, 6= q=, 6= = Tr 4 T µ R = c q q=, 6= 4 c qq (P ) c q Q! µ(p ) 8

28 Form Factors of ghost-quark scattering kernel What do we know about the Form Factors? In Continuum: Soft Gluon Kinematics : QCD i = C F C A a i + C A b i pert (-loop) - BC. i In QED: (p,,p ) A(p ) In QCD: (p,,p )=G() p [GeV] h A(p ) (p,,p )+B(p ) (p,,p )+ (p,,p ) p A(p ) (p,,p ) i

29 Soft gluon Kinematics (Asymmetric) λ with and without tree-level correction Quenched, N f = x64 Unquenched, N f = x Uncorrected Tree-leel corrected, quenched, V= 64, a=.7 fm, =6.6 Uncorrected Tree-leel corrected, =95 MeV, a=.7 fm, =5.9 without TL without TL a*p [GeV].5 Uncorrected Tree-leel corrected, V=64 64, M =9 MeV, a=.7 fm, =5.9 without TL.5 with TL a*p [GeV] Unquenched, N f = 64 x with TL a*p [GeV]

30 TL corrected, binned data 4 4 =8 MeV, a=.8 fm, =5. V=64 64, M =9 MeV, a=.7 fm, =5.9.5 =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4.5 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, = (a*p) [GeV ] - - (a*p) [GeV ] 4 4 V=64 64, M =9 MeV, a=.7 fm, =5.9 V=64 64, M =9 MeV, a=.7 fm, =5.9.5 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9.5 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4.5 quenched, V= 64, a=.7 fm, =6.6.5 quenched, V= 64, a=.7 fm, =6.6 -loop pertubative calc (a*p) [GeV ] - - (a*p) [GeV ]

31 Soft gluon Kinematics (Asymmetric) λ Without tree-level correction 4 =95 MeV, a=.7 fm, =5.9.5 quenched, V= 64, a=.7 fm, = (a*p) [GeV ]

32 Soft gluon Kinematics (Asymmetric) Volume dependence λ With tree-level correction 4 V=64 64, M =9 MeV, a=.7 fm, =5.9.5 =95 MeV, a=.7 fm, = (a*p) [GeV ]

33 without tree-level correction λ 8 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4 8 V=64 64, M =9 MeV, a=.7 fm, =5.9 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, = (a*p) [GeV ] - - (a*p) [GeV ] 8 6 V=64 64, M =9 MeV, a=.7 fm, =5.9 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4 quenched, V= 64, a=.7 fm, = V=64 64, M =9 MeV, a=.7 fm, =5.9 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4 quenched, V= 64, a=.7 fm, =6.6 -loop pertubative calc (a*p) [GeV ] - - (a*p) [GeV ]

34 =95 MeV, a=.7 fm, =5.9 quenched, V= 64, a=.7 fm, = (a*p) [GeV ]

35 Volume dependence λ Without tree-level correction Soft gluon Kinematics (Asymmetric) 8 V=64 64, M =9 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, = (a*p) [GeV ]

36 λ Without tree-level correction =8 MeV, a=.8 fm, =5. -8 =4 MeV, a=.7 fm, =5.9 V= 64, M -9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, = (a*p) [GeV ] V=64 64, M =9 MeV, a=.7 fm, =5.9 =8 MeV, a=.8 fm, =5. -8 =4 MeV, a=.7 fm, =5.9 V= 64, M -9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, = (a*p) [GeV ] V=64 64, M =9 MeV, a=.7 fm, =5.9-7 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9-8 =95 MeV, a=.7 fm, =5.9-9 =46 MeV, a=.6 fm, =5.4 quenched, V= 64, a=.7 fm, = (a*p) [GeV ] (a*p) [GeV ] V=64 64, M =9 MeV, a=.7 fm, =5.9 =8 MeV, a=.8 fm, =5. =4 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, =5.9 =46 MeV, a=.6 fm, =5.4 quenched, V= 64, a=.7 fm, =6.6 -loop pertubative calc.

37 Soft gluon Kinematics (Asymmetric) Volume dependence λ Without tree-level correction V=64 64, M =9 MeV, a=.7 fm, =5.9 =95 MeV, a=.7 fm, = (a*p) [GeV ]

38 λ With tree-level correction Unquenched versus Quenched =95 MeV, a=.7 fm, =5.9 quenched, V= 64, a=.7 fm, = (a*p) [GeV ]

39 Hirarchy of Form Factors Soft gluon Kinematics (Asymmetric) V= 6 Unquenched, Nf = 4 V= 64, M =4 MeV, a=.7 fm, =5.9 64, M =4 MeV, a=.7 fm, =5.9-4p -p i Unquenched, Nf = ( aµ )ij = p [GeV] -4.5 V= ig taij (.5 p [GeV] E.5 µ 4 E 6 ppµ i E pµ V= 64, M =8 MeV, a=.7 fm, =6.6 i E 4 µ p ) 64, M =8 MeV, a=.7 fm, = Quenched, Nf = 7-4p -p 6 5 i 4 - Quenched, Nf = p [GeV] p [GeV].5

40 Conclusion: Quark-Gluon Vertex in Special Kinematics Ø Soft Gluon Kinematics :,,, 4 = Ø Hard Reflection Kinematics :, 5 q µ = k µ = p µ = P µ P µ = k µ = p µ = q µ Ø Orthogonal Kinematics : q P = k = p,,, 4, 5, 7 Ø General Kinematics :,,, 4, 5, 6, 7, 8

41 Summary and Outlook u high statistics quark propagator and quark-gluon vertex computation closer to the physical point u l IR enhanced u l IR strongly enhanced u l IR suppressed u Finite volume effects for Z(p) are under control but for mass M(p) needs to be better understood u qualitative agreement with quark-gluon models u explore further kinematics + form factors of the vertex u need to have a better understanding of the lattice artefacts

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

XV Mexican Workshop on Particles and Fields

XV Mexican Workshop on Particles and Fields XV Mexican Workshop on Particles and Fields Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED Dra. Yajaira Concha Sánchez, Michoacana University, México 2-6 November 2015 Mazatlán,

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Light and strange baryon spectrum from functional methods

Light and strange baryon spectrum from functional methods Light and strange baryon spectrum from functional methods Christian S. Fischer Justus Liebig Universität Gießen Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602] Christian

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

arxiv: v3 [hep-lat] 30 Jan 2018

arxiv: v3 [hep-lat] 30 Jan 2018 The lattice Landau gauge gluon propagator: lattice spacing and volume dependence Orlando Oliveira and Paulo J. Silva Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, - Coimbra,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Effects Of Anisotropy in (2+1)-dimensional QED

Effects Of Anisotropy in (2+1)-dimensional QED Effects Of Anisotropy in (2+1)-dimensional QED JAB, C. S. Fischer, R. Williams Effects of Anisotropy in QED 3 from Dyson Schwinger equations in a box, PRB 84, 024520 (2011) J. A. Bonnet 1 / 21 Outline

More information

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes HU-EP-07/47 ADP-07-11/T651 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes a, E.-M. Ilgenfritz b, M. Müller-Preussker b, and A. Sternbeck c a Joint Institute

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Nucleon Spectroscopy with Multi-Particle Operators

Nucleon Spectroscopy with Multi-Particle Operators Nucleon Spectroscopy with Multi-Particle Operators Adrian L. Kiratidis Waseem Kamleh, Derek B. Leinweber CSSM, The University of Adelaide 21st of July - LHP V 2015 - Cairns, Australia 1/41 Table of content

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

arxiv: v1 [hep-lat] 28 Nov 2018

arxiv: v1 [hep-lat] 28 Nov 2018 High Precision Statistical Landau Gauge Lattice Gluon Propagator Computation arxiv:1811.11678v1 [hep-lat] 28 Nov 2018 David Dudal KU Leuven Kulak, Department of Physics, Etienne Sabbelaan 53 bus 7657,

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

Non-perturbative momentum dependence of the coupling constant and hadronic models

Non-perturbative momentum dependence of the coupling constant and hadronic models Non-perturbative momentum dependence of the coupling constant and hadronic models Pre-DIS Wokshop QCD Evolution Workshop: from collinear to non collinear case April 8-9, 2011 JLab Aurore Courtoy INFN-Pavia

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:4.88v [hep-lat] 3 Oct 24 Zoltán Fodor University of Wuppertal, Department of Physics, Wuppertal D-4297, Germany Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich D-52425, Germany Eötvös

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

The lattice gluon propagator in numerical stochastic perturbation theory

The lattice gluon propagator in numerical stochastic perturbation theory The lattice gluon propagator in numerical stochastic perturbation theory E.-M. Ilgenfritz 1, H. Perlt 2 and A. Schiller 2 1 Humboldt-Universität zu Berlin, 2 Universität Leipzig 8th Leipzig Workshop on

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Schwinger Dyson Equations In QED and QCD The calculation of fermion antifermion condensates

Schwinger Dyson Equations In QED and QCD The calculation of fermion antifermion condensates Schwinger Dyson Equations In QED and QCD The calculation of fermion antifermion condensates A thesis presented for the degree of Doctor of Philosophy by Richard Williams Institute for Particle Physics

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential

Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Two-loop evaluation of large Wilson loops with overlap fermions: the b-quark mass shift, and the quark-antiquark potential Department of Physics, University of Cyprus, Nicosia CY-678, Cyprus E-mail: ph00aa@ucy.ac.cy

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

The Wave Function of the Roper Resonance

The Wave Function of the Roper Resonance The Wave Function of the Roper Resonance Special Research Centre for the Subatomic Structure of Matter, School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia Waseem Kamleh Special

More information

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a

Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons a p. 1/30 Partial overview of Dyson-Schwinger approach to QCD and some applications to structure of hadrons

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Ward-Takahashi Relations: Longitudinal and Transverse

Ward-Takahashi Relations: Longitudinal and Transverse Ward-Takahashi Relations: Longitudinal and Transverse Theoretical Physics Institute University of Alberta, Edmonton, Alberta, T6G 2G7 Canada E:mail khanna@phys.ualberta.ca Ward-Takahashi relations in Abelian

More information

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Gernot Eichmann The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Diplomarbeit zur Erlangung des Magistergrades der Naturwissenschaften verfasst am Institut

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico.

SKETCHING, TRANSITION FORM FACTORS. Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. SKETCHING, TRANSITION FORM FACTORS Khépani Raya-Montaño University of Michoacan Morelia, Michoacan, Mexico. XXXI RA DPyC. May 24-26, 2017 CINVESTAV-Zacatenco, Ciudad de México Motivation Understanding

More information

arxiv: v2 [hep-ph] 10 Jul 2017

arxiv: v2 [hep-ph] 10 Jul 2017 Locating the Gribov horizon arxiv:76.468v [hep-ph Jul 7 Fei Gao, Si-Xue Qin, Craig D. Roberts, and Jose Rodríguez-Quintero 4 Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

arxiv:hep-ph/ v1 2 Mar 2002

arxiv:hep-ph/ v1 2 Mar 2002 GAUGE DEPENDENCE OF MASS AND CONDENSATE IN CHIRALLY ASYMMETRIC PHASE OF QUENCHED QED3 A. Bashir, A. Huet and A. Raya Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo

More information

Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations

Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations William I. Jay, University of Colorado Boulder! With Tom DeGrand, Ethan Neil, Daniel Hackett (Boulder);!

More information

A Solution to Coupled Dyson Schwinger Equations for Gluons and Ghosts in Landau Gauge

A Solution to Coupled Dyson Schwinger Equations for Gluons and Ghosts in Landau Gauge ANL-PHY-8758-TH-97 hep-ph/9707327 UNITU-THEP-2/997 TU-GK-6/97 A Solution to Coupled Dyson Schwinger Equations for Gluons and Ghosts in Landau Gauge Lorenz von Smekal a Physics Division, Argonne National

More information

arxiv: v1 [hep-th] 1 Dec 2018

arxiv: v1 [hep-th] 1 Dec 2018 CHIBAEP31 in the covariant gauge and its gaugeinvariant extension through the gaugeindependent BEH mechanism arxiv:181.13v1 [hepth] 1 Dec 18 Department of Physics, Graduate School of Science, Chiba University,

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

The dissection of γ v N N and γ v N R electromagnetic form factors

The dissection of γ v N N and γ v N R electromagnetic form factors The dissection of γ v N N and γ v N R electromagnetic form factors Jorge Segovia Technische Universität München Physik-Department-T30f T30f Theoretische Teilchenund Kernphysik Jorge Segovia (jorge.segovia@tum.de)

More information

arxiv: v1 [hep-lat] 7 Dec 2009

arxiv: v1 [hep-lat] 7 Dec 2009 Schwinger-Dyson equations and the quark-antiquark static potential arxiv:091.174v1 [hep-lat] 7 Dec 009 CFTP, Instituto Superior Técnico, Lisboa E-mail: bicudo@ist.utl.pt Gonçalo Marques, Marco Cardoso,

More information

arxiv: v1 [hep-ph] 13 May 2016

arxiv: v1 [hep-ph] 13 May 2016 The pion electromagnetic structure with self-energy arxiv:605.04342v [hep-ph] 3 May 206 Clayton Santos Mello a, J. P. B. C. de Melo b and T. Frederico a a Instituto Tecnológico de Aeronáutica, DCTA, 2.228-900

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD

Pseudo-Critical Temperature and Thermal Equation of State from N f = 2 Twisted Mass Lattice QCD tmft Collaboration: Pseudo-Critical Temperature and Thermal Equation of State from N f = Twisted Mass Lattice QCD F. Burger, M. Kirchner, M. Müller-Preussker Humboldt-Universität zu Berlin, Institut für

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD André Sternbeck a,b On behalf of the RQCD collaboration (Regensburg) a Friedrich-Schiller-Universität Jena, Germany b SFB/TRR 55 Hadron Physics from Lattice QCD September

More information

arxiv: v2 [hep-ph] 18 Dec 2017

arxiv: v2 [hep-ph] 18 Dec 2017 Center phase transition from matter propagators in (scalar) QCD M. Mitter a,b, M. Hopfer a, B.-J. Schaefer c, R. Alkofer a arxiv:179.99v [hep-ph] 18 Dec 17 Abstract a Institut für Physik, NAWI Graz, Karl-Franzens-Universität

More information

Form factors on the lattice

Form factors on the lattice Form factors on the lattice Bipasha Chakraborty Jefferson Lab Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8 th Sept, 2017. 1 Pion electromagnetic form factor Simplest hadron p

More information