Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Size: px
Start display at page:

Download "Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy"

Transcription

1 Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy

2 Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy

3 Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure

4 Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures

5 Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum

6 Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum Cheap lattice simulations Test case for functional equations

7 Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum Cheap lattice simulations Test case for functional equations Limited by (possible) triviality But triviality cutoff can be high enough

8 Scalar QCD Gauge theory

9 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν A a μ ν = μ A a a ν ν A μ WA Gluons A μ a

10 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν A a μ ν = μ A a ν ν A a μ +gf a bc A μ b A ν c WA WA A Gluons A μ a abc Coupling g and some numbers f

11 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc A μ b A ν c WA WA A Gluons A μ a D μ ij =δ ij μ h Scalar quarks h i abc Coupling g and some numbers f

12 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a a A μ Gluons A μ b A ν c h WA A WA h WA Scalar quarks h i Coupling g and some numbers f abc and t a ij Gauge group SU(2)

13 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a a A μ Gluons A μ b A ν c h WA A WA h WA Scalar quarks h i Coupling g and some numbers f abc and t a ij Gauge group SU(2) No 'baryon number'

14 Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 Gluons A μ a Scalar quarks A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a h i A μ b A ν c Couplings g, v, λ and some numbers f abc and t a ij h WA h h A WA h WA Gauge group SU(2) No 'baryon number'

15 Scalar QCD Gauge theory L= 1 4 A a μ ν Gluons A μ a Scalar quarks A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a h i A μ b A ν c Couplings g, v=0, λ=0 and some numbers f abc and t a ij h WA h h A WA h WA Scalar self-interaction set to zero Gauge group SU(2) No 'baryon number'

16 Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c

17 Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c Local SU(2) gauge symmetry Invariant under arbitrary gauge transformations ϕ a (x) A a μ A a μ +(δ a b μ g f a bc A c μ )ϕ b h i h i +g t ij a ϕ a h j

18 Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c Local SU(2) gauge symmetry Invariant under arbitrary gauge transformations ϕ a (x) A a μ A a μ +(δ a b μ g f a bc A c μ )ϕ b h i h i +g t ij a ϕ a h j Global SU(2) quark flavor symmetry Acts as right-transformation on the quark field only A μ a A μ a h i h i +a ij h j +b ij h j

19 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) g(classical gauge coupling)

20 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) Confinement phase g(classical gauge coupling)

21 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) Higgs phase Confinement phase g(classical gauge coupling)

22 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous f(classical Higgs mass) Crossover Higgs phase 1 st order Confinement phase g(classical gauge coupling)

23 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Landau gauge Higgs phase 1 st order Confinement phase g(classical gauge coupling)

24 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Coulomb gauge Landau gauge Higgs phase 1 st order Confinement phase g(classical gauge coupling)

25 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Higgs phase 1 st order Confinement phase Same physical state space in confinement g(classical gauge coupling) and Higgs pseudo-phases, irrespective of couplings

26 QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Higgs phase Confinement phase Same physical state space in confinement g(classical gauge coupling) and Higgs pseudo-phases, irrespective of couplings Asymptotic states depend on whether ground states for given J PC are stable F 1 st order

27 Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory

28 Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction

29 Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction Local part fixed to Landau gauge by Gribov-Singer ambiguity fixed by minimal prescription Introduces usual Faddeev-Popov ghosts μ A μ a =0

30 Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction Local part fixed to Landau gauge by Gribov-Singer ambiguity fixed by minimal prescription Introduces usual Faddeev-Popov ghosts Global part fixed by h =0 Aligned Landau gauges also possible μ A μ a =0

31 Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07]

32 Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases?

33 Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases? Relative orientation hdx hdx hdy is the magnetization

34 Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases? Relative orientation hdx hdy hdx is the magnetization But not so important anyway...

35 Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs

36 Typical spectra [Maas, Mufti PoS'12, unpublished, Maas MPLA'13] Higgs Higgs W

37 Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD

38 Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD Rather different low-lying spectra 0++ lighter in (Landau gauge) QCD-like region 1-- lighter in (Landau gauge) Higgs-like region

39 Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD Rather different low-lying spectra 0++ lighter in (Landau gauge) QCD-like region 1-- lighter in (Landau gauge) Higgs-like region Use as operational definition of phase

40 Phase diagram [Maas, Mufti, unpublished]

41 Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram

42 Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass

43 Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass Similar bare couplings for both physic types

44 Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass Similar bare couplings for both physic types

45 Propagators 3 propagators

46 Propagators 3 propagators Gluon D ab x y = A a x A b y

47 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p)

48 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p)

49 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) Negative semi-definite D G ( p)

50 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y Negative semi-definite Both renormalize multiplicatively D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) D G ( p)

51 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost Negative semi-definite Both renormalize multiplicatively Scalar D G ab x y = c a x c b y D H ij (x y)= <h i (x)h j+ D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) D G ( p) ( y)>

52 Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) Negative semi-definite D G ( p) Both renormalize multiplicatively Scalar D H ij (x y)= <h i (x)h j+ ( y)> Requires more complicated renormalization D H (μ)=d H tl (μ) D H (μ)'=d H tl (μ)' D H tl ( p)=1/( p 2 +m r 2 ) μ=m r

53 Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished]

54 Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type

55 Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type Positivity violating

56 Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type Positivity violating Little impact when changing scalar sector

57 Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished]

58 Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent

59 Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D

60 Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D

61 Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D Not strongest at lowest bound state masses

62 Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV

63 Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV Requires mass renormalization Tree-level mass zero: Mass generation

64 Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV Requires mass renormalization Tree-level mass zero: Mass generation No sign (yet) of positivity violation

65 Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =0.25 GeV Requires mass renormalization Tree-level mass zero: Mass generation No sign (yet) of positivity violation

66 Vertices

67 Vertices Three 3-point vertices 4-point vertices too expensive

68 Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μc b c c > =D ad μ ν D be G D cf d e f G Γ ν

69 Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μc b c c > =D ad μ ν D be G D cf d e f G Γ ν G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl )

70 Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ

71 Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ Scalar-gluon vertex < A a μ h i h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A hh + > /(Γ tl D D H D H Γ tl )

72 Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) t F makes vertex flavor-conserving Flavor-violating vertex vanishes Flavor conserved

73 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

74 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

75 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A p A p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

76 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A A p=0 p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

77 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A p=0 A p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] q k with q=-k

78 Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) Two momentum configurations A A p=0 p p 2 =q 2 =k 2 q k with q=-k q k

79 Ghost-gluon vertex [Maas, Mufti PoS'12, unpublished] Only small deviations from tree-level Like in Yang-Mills theory Strongest effect at bound state mass scale

80 3-gluon vertex [Maas, Mufti PoS'12, unpublished] Infrared suppressed Sets in at bound state mass scale Absence of (supposed) sign change of Yang-Mills theory at small momenta?

81 Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?)

82 Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?) Different than a (pseudo-)confining 1-gluon exchange As in the quenched case [Maas, PoS'11, unpublished]

83 Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?) Different than a (pseudo-)confining 1-gluon exchange As in the quenched case [Maas, PoS'11, unpublished]

84 Summary Scalar QCD a role model for QCD Scalar theory simpler...

85 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated

86 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods

87 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory

88 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating

89 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like

90 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like No infrared effects in the scalar-gluon vertex

91 Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like No infrared effects in the scalar-gluon vertex So far...no obvious confinement

The Physics Of Yang-Mills-Higgs Systems

The Physics Of Yang-Mills-Higgs Systems The Physics Of Yang-Mills-Higgs Systems Beyond Perturbation Theory Axel Maas 9 th of January 2014 University of Heidelberg Germany Overview Yang-Mills-Higgs theory Overview Yang-Mills-Higgs theory Physical

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Infrared properties of Landau propagators at finite temperature from very large lattices

Infrared properties of Landau propagators at finite temperature from very large lattices Infrared properties of Landau propagators at finite temperature from very large lattices Attilio Cucchieri (IFSC-São Paulo University) xqcd2007, Frascati Collaborators: Tereza Mendes (IFSC-USP), Axel Maas

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

arxiv:hep-ph/ v1 12 Oct 1994

arxiv:hep-ph/ v1 12 Oct 1994 A QCD ANALYSIS OF THE MASS STRUCTURE OF THE NUCLEON arxiv:hep-ph/9410274v1 12 Oct 1994 Xiangdong Ji Center for Theoretical Physics Laboratory for Nuclear Science and Department of Physics Massachusetts

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Quarks, Leptons and Gauge Fields Downloaded from  by on 03/13/18. For personal use only. QUARKS, LEPTONS & GAUGE FIELDS 2nd edition Kerson Huang Professor of Physics Mussuchusetts Institute qf Technology Y 8 World Scientific Singapore New Jersey London Hong Kong Publirhed by World Scientific

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Lecture 5 The Renormalization Group

Lecture 5 The Renormalization Group Lecture 5 The Renormalization Group Outline The canonical theory: SUSY QCD. Assignment of R-symmetry charges. Group theory factors: bird track diagrams. Review: the renormalization group. Explicit Feynman

More information

On the observable spectrum of theories with a Brout-Englert-Higgs effect

On the observable spectrum of theories with a Brout-Englert-Higgs effect On the observable spectrum of theories with a Brout-Englert-Higgs effect René Sondenheimer FSU Jena & L. Egger, A. Maas arxiv:1701.02881 & A. Maas, P.Törek arxiv:1709.07477, arxiv:1710.01941 Higgs Couplings

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

Cornell University, Department of Physics

Cornell University, Department of Physics Cornell University, Department of Physics May 2, 207 PHYS 4444, Particle physics, HW # 9, due: 4/3/207, :40 AM Question : Making invariant Consider a theory where the symmetry is SU(3) SU(2) U() and we

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

Espansione a grandi N per la gravità e 'softening' ultravioletto

Espansione a grandi N per la gravità e 'softening' ultravioletto Espansione a grandi N per la gravità e 'softening' ultravioletto Fabrizio Canfora CECS Valdivia, Cile Departimento di fisica E.R. Caianiello NFN, gruppo V, CG Salerno http://www.sa.infn.it/cqg , Outline

More information

Green s Functions and Topological Configurations

Green s Functions and Topological Configurations Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Rethinking Flavor Physics

Rethinking Flavor Physics Rethinking Flavor Physics René Sondenheimer FSU Jena & L. Egger, A. Maas arxiv:1701.02881 Cold Quantum Coffee, Heidelberg 30th of May 2017 LHC works remarkably well Higgs discovery completed SM 2 LHC works

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34 The Topology in QCD Ting-Wai Chiu Physics Department, National Taiwan University The vacuum of QCD has a non-trivial topological structure. T.W.

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna XIV International Conference on Hadron Spectroscopy 13-17

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

G 2 -QCD at Finite Density

G 2 -QCD at Finite Density G 2 -QCD at Finite Density A. Wipf Theoretisch-Physikalisches Institut, FSU Jena collaboration with Axel Maas (Jena) Lorenz von Smekal (Darmstadt/Gießen) Bjoern Wellegehausen (Gießen) Christian Wozar (Jena)

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

Some remarks on relational nature of gauge symmetry

Some remarks on relational nature of gauge symmetry Some remarks on relational nature of gauge symmetry M. M. Amaral UERJ Universidade do Estado do Rio de Janeiro Instituto de Física Departamento de Física Teórica Rua São Francisco Xavier 524, 20550-013

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

arxiv:hep-lat/ v1 15 Jun 2004

arxiv:hep-lat/ v1 15 Jun 2004 Propagators in Coulomb gauge from SU() lattice gauge theory Kurt Langfeld and Laurent Moyaerts Insitut für Theoretische Physik, Universität Tübingen D-7076 Tübingen, Germany. (Dated: June 5, 004) UNITUE-THEP/5-004

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

A short overview on strong interaction and quantum chromodynamics

A short overview on strong interaction and quantum chromodynamics A short overview on strong interaction and quantum chromodynamics Christoph Klein Universität Siegen Doktorandenseminar 08.10.2008 Christoph Klein (Universität Siegen) QCD and strong interaction Doktorandenseminar

More information

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature USM-TH-80 Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature arxiv:hep-ph/9906510v1 25 Jun 1999 Iván Schmidt 1 and Jian-Jun Yang 1,2 1 Departamento de Física, Universidad

More information

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge hep-lat/0008026 NYU-TH-PH-19.8.00 BI-TP 2000/19 arxiv:hep-lat/0008026v1 31 Aug 2000 Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge Attilio Cucchieri and Daniel Zwanziger

More information