QCD Green Functions:

Size: px
Start display at page:

Download "QCD Green Functions:"

Transcription

1 QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics University Graz Oct. 17, 2006 R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

2 Outline 1 Theories of Confinement 2 Basic Concepts Ghosts & BRST Gribov horizon & Zwanziger condition Kugo Ojima confinement criterion QCD Green functions & Positivity 3 Infrared Exponents for Gluons and Ghosts An exact inequality Infrared Expansion Scheme 4 Running Coupling 5 Positivity violation for the gluon propagator 6 Dynamically induced scalar quark confinement 7 Partial gluon confinement at any T 8 Quark confinement in the Coulomb gauge 9 Summary R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

3 Confinement Alive Theories of Confinement: see e.g. R.A. and J. Greensite, Quark Confinement: The Hard Problem of Hadron Physics, Hadron Physics Focus Issue of J. Phys. G chromomagnetic monopoles t Hooft, digiacomo,... center vortices Greensite, Olejnik,... Coulomb confinement Gribov, Zwanziger,... Landau gauge Green Functions Smekal, Fischer,... AdS 5 / QCD correspondence Maldacena, Brodsky,... R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

4 Confinement monop. vort. Coulomb Green Funct. AdS 5 Casimir scaling x x x?? N-ality? x?? x Gribov Zwanziger? x x x? Kugo Ojima (BRST quartet)?? x x? Positivity violation?? x x? Conformal YM sector?? x x x DχSB? x x x? U A (1) x x x x? R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

5 Covariant Gauge Theory Covariant Gauge theory: Unphysical degrees of freedom! QED: Physical states obey Lorentz condition. µ A µ Ψ = 0 Two physical massless photons. (Gupta Bleuler). Time-like photon (i.e. negative norm state!) cancels longitudinal photon in S matrix elements! Time like photon confines longitudinal photon! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

6 Covariant Gauge Theory Covariant Gauge theory: Unphysical degrees of freedom! QED: Physical states obey Lorentz condition. µ A µ Ψ = 0 Two physical massless photons. (Gupta Bleuler). Time-like photon (i.e. negative norm state!) cancels longitudinal photon in S matrix elements! Time like photon confines longitudinal photon! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

7 Covariant Gauge Theory Covariant Gauge theory: Unphysical degrees of freedom! QED: Physical states obey Lorentz condition. µ A µ Ψ = 0 Two physical massless photons. (Gupta Bleuler). Time-like photon (i.e. negative norm state!) cancels longitudinal photon in S matrix elements! Time like photon confines longitudinal photon! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

8 Covariant Gauge Theory Covariant Gauge theory: Unphysical degrees of freedom! QED: Physical states obey Lorentz condition. µ A µ Ψ = 0 Two physical massless photons. (Gupta Bleuler). Time-like photon (i.e. negative norm state!) cancels longitudinal photon in S matrix elements! Time like photon confines longitudinal photon! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

9 Covariant Gauge Theory In S-Matrix A A T 0 T L A A + = 0 A T A 0 A L A T = / 0 R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

10 Ghosts & BRST Quantization of QCD: Selfinteraction of gluons, cancelation process much more complicated! Faddeev Popov ghosts = anticomm. scalar fields. Ghosts are unphysical (anti-commuting scalar) Yang Mills degrees of freedom! Important in quantum fluct., but no associated particles! Global ghost field as gauge parameter : BRST symmetry of the gauge-fixed action! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

11 Ghosts & BRST Quantization of QCD: Selfinteraction of gluons, cancelation process much more complicated! Faddeev Popov ghosts = anticomm. scalar fields. Ghosts are unphysical (anti-commuting scalar) Yang Mills degrees of freedom! Important in quantum fluct., but no associated particles! Global ghost field as gauge parameter : BRST symmetry of the gauge-fixed action! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

12 Ghosts & BRST Quantization of QCD: Selfinteraction of gluons, cancelation process much more complicated! Faddeev Popov ghosts = anticomm. scalar fields. Ghosts are unphysical (anti-commuting scalar) Yang Mills degrees of freedom! Important in quantum fluct., but no associated particles! Global ghost field as gauge parameter : BRST symmetry of the gauge-fixed action! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

13 Ghosts & BRST Quantization of QCD: Selfinteraction of gluons, cancelation process much more complicated! Faddeev Popov ghosts = anticomm. scalar fields. Ghosts are unphysical (anti-commuting scalar) Yang Mills degrees of freedom! Important in quantum fluct., but no associated particles! Global ghost field as gauge parameter : BRST symmetry of the gauge-fixed action! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

14 Ghosts & BRST Symmetry of the gauge-fixed generating functional: δ B A a µ = Dµ ab c b λ, δ B q = igt a c a q λ, δ B c a = g 2 f abc c b c c λ, δ B c a = 1 ξ µa a µ λ, Becchi Rouet Stora & Tyutin (BRST), 1975 Parameter λ Grassmann algebra of the ghost fields λ carries ghost number N FP = 1 Via Noether theorem: BRST charge operator Q B generates ghost # graded algebra δ B Φ = {iq B,Φ} R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

15 Ghosts & BRST BRST algebra: Q 2 B = 0, [iq c, Q B ] = Q B, complete in indefinite metric state space V. generates ghost # graded δ B Φ = {iq B,Φ}. L GF = δ B ( c ( µ A µ + α 2 B)) BRST exact. Positive definite subspace V pos = Ker(Q B ) (i.e. all states ψ V with Q B ψ = 0) contains ImQ B (i.e. all states Q B φ ), c.f. exterior derivative in differential geometry. Hilbert space: cohomology H = KerQ B ImQ B V s BRST singlet longitudinal & timelike gluons, ghosts : BRST quartet (c.f. Gupta Bleuler mechanism in QED) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

16 Ghosts & BRST BRST algebra: Q 2 B = 0, [iq c, Q B ] = Q B, complete in indefinite metric state space V. generates ghost # graded δ B Φ = {iq B,Φ}. L GF = δ B ( c ( µ A µ + α 2 B)) BRST exact. Positive definite subspace V pos = Ker(Q B ) (i.e. all states ψ V with Q B ψ = 0) contains ImQ B (i.e. all states Q B φ ), c.f. exterior derivative in differential geometry. Hilbert space: cohomology H = KerQ B ImQ B V s BRST singlet longitudinal & timelike gluons, ghosts : BRST quartet (c.f. Gupta Bleuler mechanism in QED) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

17 Ghosts & BRST BRST algebra: Q 2 B = 0, [iq c, Q B ] = Q B, complete in indefinite metric state space V. generates ghost # graded δ B Φ = {iq B,Φ}. L GF = δ B ( c ( µ A µ + α 2 B)) BRST exact. Positive definite subspace V pos = Ker(Q B ) (i.e. all states ψ V with Q B ψ = 0) contains ImQ B (i.e. all states Q B φ ), c.f. exterior derivative in differential geometry. Hilbert space: cohomology H = KerQ B ImQ B V s BRST singlet longitudinal & timelike gluons, ghosts : BRST quartet (c.f. Gupta Bleuler mechanism in QED) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

18 Gribov horizon & Zwanziger condition Gauge fixing in YM theories never completely unique: A l A tr A tr [A] Ω Λ A=0 [A] Λ topologically non-trivial as complete config. space also is! Landau gauge: Γ = {A : A = 0} Minimal Landau gauge: Ω = {A : A 2 minimal} First Gribov region: Ω = {A : A = 0, D(A) 0} Fundam. Modular Region: Λ = {A : global extrema} R. Alkofer (Graz) NO GRIBOV QCD GreenCOPIES Functions Oct. 17, / 32

19 Gribov horizon & Zwanziger condition Landau gauge: Γ = {A : A = 0} Minimal Landau gauge: Ω = {A : A 2 minimal} First Gribov region: Ω = {A : A = 0, D(A) 0} Fundam. Modular Region: Λ = {A : global extrema} NO GRIBOV COPIES Relevant configuration space: Λ/SU(N c ) Gribov: Cut off integral at boundary Ω Zwanziger: Ambiguities resolved due to additional IR boundary condition on ghost prop. lim k 2 0 ( k 2 D Ghost (k 2 ) ) 1 = 0. R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

20 Gribov horizon & Zwanziger condition Landau gauge: Γ = {A : A = 0} Minimal Landau gauge: Ω = {A : A 2 minimal} First Gribov region: Ω = {A : A = 0, D(A) 0} Fundam. Modular Region: Λ = {A : global extrema} NO GRIBOV COPIES Relevant configuration space: Λ/SU(N c ) Gribov: Cut off integral at boundary Ω Zwanziger: Ambiguities resolved due to additional IR boundary condition on ghost prop. lim k 2 0 ( k 2 D Ghost (k 2 ) ) 1 = 0. R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

21 Kugo Ojima confinement criterion Physical states are BRST singlets! (BRST cohomology: Hilbert space H = Ker Q BRST Im Q BRST.) Time like and longitudinal gluons (BRST quartet) removed from asymptotic states as in QED, but: Transverse gluons and quarks also BRST quartets, i.e. confined, if ghost propagator is highly infrared singular! ( Kugo Ojima confinement criterion) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

22 Kugo Ojima confinement criterion Physical states are BRST singlets! (BRST cohomology: Hilbert space H = Ker Q BRST Im Q BRST.) Time like and longitudinal gluons (BRST quartet) removed from asymptotic states as in QED, but: Transverse gluons and quarks also BRST quartets, i.e. confined, if ghost propagator is highly infrared singular! ( Kugo Ojima confinement criterion) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

23 QCD Green functions & Positivity Assume: States with transverse gluons violate positivity! These states do not belong to KerQ B! BRST quartet: transverse gluon, gluon-ghost; gluon-antighost, 2-gluon = cancelation in all amplitudes (Feynman diagrams) if asymptotic states (external lines)! = Gluon Confinement as Unobservability of Gluons! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

24 QCD Green functions & Positivity Assume: States with transverse gluons violate positivity! These states do not belong to KerQ B! BRST quartet: transverse gluon, gluon-ghost; gluon-antighost, 2-gluon = cancelation in all amplitudes (Feynman diagrams) if asymptotic states (external lines)! = Gluon Confinement as Unobservability of Gluons! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

25 QCD Green functions & Positivity Assume: States with transverse gluons violate positivity! These states do not belong to KerQ B! BRST quartet: transverse gluon, gluon-ghost; gluon-antighost, 2-gluon = cancelation in all amplitudes (Feynman diagrams) if asymptotic states (external lines)! = Gluon Confinement as Unobservability of Gluons! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

26 QCD Green functions & Positivity Assume: States with transverse gluons violate positivity! These states do not belong to KerQ B! BRST quartet: transverse gluon, gluon-ghost; gluon-antighost, 2-gluon = cancelation in all amplitudes (Feynman diagrams) if asymptotic states (external lines)! = Gluon Confinement as Unobservability of Gluons! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

27 Infrared Exponents for Gluons and Ghosts -1 = -1-1/2-1/2-1/6-1/ = -1 Dyson-Schwinger equations for propagators -1 = -1 R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

28 Infrared Exponents for Gluons and Ghosts: Inequality P. Watson and R. A., Phys. Rev. Lett. 86 (2001) 5239 µ k=p-q Landau gauge Ghost-Gluon vertex : q p Not renormalized! ( Z 1 = 1) Bare for p µ 0! (Γ µ (q, p = 0, k) = 1) It cannot be singular for vanishing ghost momenta! (finite positive constant) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

29 Infrared Exponents for Gluons and Ghosts: Inequality Assume that Green s functions can be expanded in asymptotic series (e.g. G(p 2 ;µ 2 ) = ( ) n d p 2 δn) n µ 2 and analyse ghost equation -1 = -1 IR integral too complicated to treat analytically :-( UV integral does not contribute directly to IR ;-( Renorm. constant Z 3 is related to constant! ;-) R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

30 Infrared Exponents for Gluons and Ghosts: Inequality Results: IR behaviour of gluons and ghosts uniquely related! δ ghost 0 = 1 2 ǫgluon 0 Infrared fixed point for running coupling! IR suppressed gluon propagator! IR enhanced ghost propagator: 2 > ǫ gluon 0 > 0 1 < δ ghost 0 < 0 Kugo Ojima confinement criterion and Gribov Zwanziger horizon condition fulfilled! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

31 Infrared Exponents for Gluons and Ghosts: Inequality Note: No truncation! No specialized ansatz! One basic assumption: asymptotic expansions for Green s functions! Used: General structure of ghost DS equation, multiplicative renormalizibility, only finite renormalization of ghost-gluon vertex. Remark: non-renormalization = no UV infinity! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

32 Infrared Exponents for Gluons and Ghosts: Expansion Scheme R. A., C. S. Fischer, F. Llanes-Estrada, Phys. Lett. B611 (2005) 279. Apply asymptotic expansion to all primitively divergent Green functions: Example: DSE for 3-gluon-vertex Ghost propagator IR divergent Gluon propagator IR suppressed R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

33 Infrared Exponents for Gluons and Ghosts: Expansion Scheme R. A., C. S. Fischer, F. Llanes-Estrada, Phys. Lett. B611 (2005) 279. Apply asymptotic expansion to all primitively divergent Green functions: Skeleton expansion & generalized formulas (neg. dim.) for Feynman integrals: R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

34 Infrared Exponents for Gluons and Ghosts: Expansion Scheme R. A., C. S. Fischer, F. Llanes-Estrada, Phys. Lett. B611 (2005) 279. Apply asymptotic expansion to all primitively divergent Green functions: Ghost propagator IR divergent Gluon propagator IR suppressed Ghost-Gluon vertex IR finite 3- & 4- Gluon vertex IR divergent if and only if all external momenta vanish IR fixed point for the coupling from each vertex Conformal nature of Infrared Yang-Mills theory! Solution unique! [C. S. Fischer and J. M. Pawlowski, hep-th/ ] R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

35 Running Coupling Ghost-Gluon-Vertex UV finite: α S (µ 2 ) = g2 (µ 2 ) 4π = 1 4πβ 0 g 2 0 Z(µ2 )G 2 (µ 2 ) With known IR behavior of gluon (Z ) and ghost (G) renormalization function: IR fix point α c = α S (k 2 0) α S (0) = 4π 6N c Γ(3 2κ)Γ(3+κ)Γ(1+κ) Γ 2 (2 κ)γ(2κ) Infrared fix point also in Coulomb gauge! [C.S. Fischer and D. Zwanziger, PR D72 (2005) ] R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

36 Running Coupling Ghost-Gluon-Vertex UV finite: α S (µ 2 ) = g2 (µ 2 ) 4π = 1 4πβ 0 g 2 0 Z(µ2 )G 2 (µ 2 ) With known IR behavior of gluon (Z ) and ghost (G) renormalization function: IR fix point α c = α S (k 2 0) α S (0) = 4π 6N c Γ(3 2κ)Γ(3+κ)Γ(1+κ) Γ 2 (2 κ)γ(2κ) Infrared fix point also in Coulomb gauge! [C.S. Fischer and D. Zwanziger, PR D72 (2005) ] R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

37 Running Coupling α(p 2 ) 4 3 quenched N f = p 2 [GeV 2 ] α s (MZ 2) =! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

38 Positivity violation for the gluon propagator Simple argument [Zwanziger]: IR vanishing gluon propagator implies 0 = D gluon (k 2 = 0) = d 4 xd gluon (x) = D gluon (x) has to be negative for some values of x. R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

39 Positivity violation for the gluon propagator Fourier transform of DSE result: D Gluon (x) x Gluons unobservable = Gluon Confinement! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

40 Positivity violation for the gluon propagator Analytic structure of running coupling: R.A., W. Detmold, C.S. Fischer and P. Maris, PRD70 (2004) α fit (p 2 ) = α S (0) 1 + p 2 /Λ 2 QCD + 4π β 0 p 2 Λ 2 QCD + p 2 with β 0 = (11N c 2N f )/3 Landau pole subtracted ( ) 1 ln(p 2 /Λ 2 QCD) 1 p 2 /Λ 2 QCD 1 analytic in complex p 2 plane except real timelike axis logarithm produces cut for real p 2 < 0 Cutkosky s rule obeyed R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

41 Positivity violation for the gluon propagator Analytic structure of running coupling: R.A., W. Detmold, C.S. Fischer and P. Maris, PRD70 (2004) α fit (p 2 ) = α S (0) 1 + p 2 /Λ 2 QCD + 4π β 0 p 2 Λ 2 QCD + p 2 with β 0 = (11N c 2N f )/3 Landau pole subtracted ( ) 1 ln(p 2 /Λ 2 QCD) 1 p 2 /Λ 2 QCD 1 analytic in complex p 2 plane except real timelike axis logarithm produces cut for real p 2 < 0 Cutkosky s rule obeyed R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

42 Positivity violation for the gluon propagator D fit gluon (p2 ) = w 1 p 2 ( p 2 Λ 2 QCD + p2 ) 2κ ( ) γ α fit (p 2 ) IR part: cut for Λ 2 QCD < p 2 < 0 Dgluon fit : cut along negative, i.e. timelike, half-axis! Wick rotation possible! w arbitrary normalization parameter κ = fixed from IR analysis γ = 13Nc+4N f 22N c 4N f from perturbation theory Effectively one parameter : Λ QCD =520 MeV! from fits to lattice data: Λ QCD 380 MeV R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

43 Positivity violation for the gluon propagator R. Alkofer (Graz) 2 QCD 2 Green Functions Oct. 17, / 32 D fit gluon (p2 ) = w 1 p 2 ( p 2 Λ 2 QCD + p2 ) 2κ ( ) γ α fit (p 2 ) 10 0 Z(p 2 ) 10-1 lattice, N f =0 DSE, N f =0 DSE, N f =3 Fit to DSE, N f = p 2 [GeV 2 ]

44 Positivity violation for the gluon propagator D fit gluon (p2 ) = w 1 p 2 ( p 2 Λ 2 QCD + p2 ) 2κ ( ) γ α fit (p 2 ) 10 0 g (t) DSE, N f =3 Fit to DSE IR-part of Fit t [GeV -1 ] R. Alkofer (Graz) 2 QCD 2 Green Functions Oct. 17, / 32

45 Positivity violation for the gluon propagator D fit gluon (p2 ) = w 1 p 2 ( p 2 Λ 2 QCD + p2 ) 2κ ( ) γ α fit (p 2 ) IR part: cut for Λ 2 QCD < p 2 < 0 Dgluon fit : cut along negative, i.e. timelike, half-axis! Wick rotation possible! w arbitrary normalization parameter κ = fixed from IR analysis γ = 13Nc+4N f 22N c 4N f from perturbation theory Effectively one parameter : Λ QCD =520 MeV! from fits to lattice data: Λ QCD 380 MeV R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

46 Positivity violation for the gluon propagator D fit gluon (p2 ) = w 1 p 2 ( p 2 Λ 2 QCD + p2 ) 2κ ( ) γ α fit (p 2 ) IR part: cut for Λ 2 QCD < p 2 < 0 Dgluon fit : cut along negative, i.e. timelike, half-axis! Wick rotation possible! w arbitrary normalization parameter κ = fixed from IR analysis γ = 13Nc+4N f 22N c 4N f from perturbation theory Effectively one parameter : Λ QCD =520 MeV! from fits to lattice data: Λ QCD 380 MeV R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

47 Dynamically induced scalar quark confinement R.A., C. S. Fischer, F. Lllanes-Estrada, hep-ph/ see talk by Christian S. Fischer... chiral symmetry dynamically or explicitely broken: Quark-Gluon vertex IR divergent! = + + (..) V(r) = d 3 p (2π) 3 H(p0 = 0, p)e ipr r R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

48 Partial gluon confinement at any T 2 Gluon propagator at high T : A. Maas, J. Wambach, RA, EPJ C37 (2004) 335; C42 (2005) 93. A. Cucchieri, T. Mendes and A.R. Taurines, PR D67 (2003) Chromomagnetic gluon propagator Z(0,q 3 )/q 4 g Lattice data Continuum extrapolated 3 120, β= , β= , β= q/g 3 Gribov-Zwanziger / Kugo-Ojima scenario / positivity violation applies in confined and deconfined phase! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

49 Partial gluon confinement at any T Gribov-Zwanziger / Kugo-Ojima scenario / positivity violation at any T : No infrared singularities, c.f. Linde (1980), because no chromomagnetic mass! D. Zwanziger, hep-ph/ No surprise: three-dimensional YM theory confining area law for spatial Wilson loop Coulomb string tension 0 at any T Nature of deconfinement? Gluon plasma? R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

50 Quark confinement in the Coulomb gauge D. Zwanziger, Phys. Rev. Lett. 90 (2003) One-gluon-exchange in Coulomb gauge QCD is confining. D 00 ( x, t) V C ( x )δ(t) + non inst. terms lim R V Wilson (R) lim R V C (R) As V Wilson (R) = σr +... one obtains: V C (R) = σ c R with σ c σ. OVERCONFINING lattice calculations: σ c 3 σ, i.e. σ c MeV. J. Greensite, S. Olejnik and D. Zwanziger, Phys. Rev. D 69 (2004) [arxiv:hep-lat/ ] A. Nakamura and T. Saito, Prog. Theor. Phys. 115 (2006) 189 [arxiv:hep-lat/ ]. R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

51 Quark confinement in the Coulomb gauge R.A. and P.A. Amundsen, Nucl. Phys. B306 (1988) 305 Infrared singular instantaneous interaction: Quark propagator vanishes, i.e. quarks confined, nevertheless: quark mass function and condensate well-defined! Quark DS-equation i S 1 (p) = /p m Σ(p) -1 = -1 Σ(p), S 1 (p) but dp 0 S(p) qq σ 3/2 c R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

52 Quark confinement in the Coulomb gauge R.A. and P.A. Amundsen, Nucl. Phys. B306 (1988) 305 Infrared singular instantaneous interaction: Quark propagator vanishes, i.e. quarks confined, nevertheless: quark mass function and condensate well-defined! Quark DS-equation i S 1 (p) = /p m Σ(p) -1 = -1 Σ(p), S 1 (p) but dp 0 S(p) qq σ 3/2 c R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

53 Quark confinement in the Coulomb gauge R. A., M. Kloker, A. Krassnigg, and R. Wagenbrunn, Phys. Rev. Lett. 96 (2006) (color singlet) meson properties well-defined! colored diquarks confined! nevertheless well-defined size! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

54 Quark confinement in the Coulomb gauge R. A., M. Kloker, A. Krassnigg, and R. Wagenbrunn, Phys. Rev. Lett. 96 (2006) (color singlet) meson properties well-defined! colored diquarks confined! nevertheless well-defined size! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

55 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

56 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! (Kugo Ojima Confinement, Oehme Zimmermann superconvergence, Gribov Zwanziger horizon condition,... ) Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

57 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

58 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

59 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

60 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

61 Summary Summary on QCD Green functions in covariant gauge Gluons confined by ghosts: Positivity violated! Gluons removed from S matrix! Infrared-finite strong running coupling in Yang-Mills theory! Conformal Nature of Infrared Yang-Mills theory! Analytic structure of gluon propagator: effectively one parameter! Chiral symmetry dynamically broken! In 2- and 3-point function! Quark confinement: In IR dominantly scalar! Positivity violation at any temperature! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

62 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

63 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

64 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

65 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

66 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

67 Summary Summary on QCD Green functions in Coulomb gauge Ghosts and Coulomb gluons IR enhanced! One-gluon-exchange (D 00 ) overconfines! Transverse gluons: IR vanishing = Positivity violated! c.f. talk by Hugo Reinhardt Infrared-finite strong running coupling in Yang-Mills theory! Quark confinement: 4D quark propagator vanishes! Dynamical chiral symmetry breaking; color singlet quark condensate well-defined! R. Alkofer (Graz) QCD Green Functions Oct. 17, / 32

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-th] 7 Nov 2018 arxiv:1811.337v1 [hep-th] 7 Nov 18 SLAC National Accelerator Laboratory, Stanford University, USA E-mail: lowdon@slac.stanford.edu Local formulations of quantum field theory provide a powerful framework

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

A Remark on BRST Singlets

A Remark on BRST Singlets A Remark on BRST Singlets E. Kazes arxiv:hep-th/00050v May 000 Department of Physics 04 Davey Laboratory University Park, PA 680 October, 07 Abstract Negative norm Hilbert space state vectors can be BRST

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

arxiv:hep-lat/ v1 15 Jun 2004

arxiv:hep-lat/ v1 15 Jun 2004 Propagators in Coulomb gauge from SU() lattice gauge theory Kurt Langfeld and Laurent Moyaerts Insitut für Theoretische Physik, Universität Tübingen D-7076 Tübingen, Germany. (Dated: June 5, 004) UNITUE-THEP/5-004

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Local Quantum Field Theory and Confinement in QCD

Local Quantum Field Theory and Confinement in QCD Local Quantum Field Theory and Confinement in QCD Peter Lowdon (24th May 2017) Outline 1. LQFT: an axiomatic approach to QFT 2. Consequences of LQFT 3. Confinement and the cluster decomposition property

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

arxiv: v1 [hep-th] 23 Mar 2015

arxiv: v1 [hep-th] 23 Mar 2015 Equivalence between two different field-dependent BRST formulations Sudhaker Upadhyay Department of Physics, Indian Institute of Technology Kanpur, Kanpur 08016, India Bhabani Prasad Mandal Department

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

Green s Functions and Topological Configurations

Green s Functions and Topological Configurations Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Dynamical Construction of Glueballs in Pure Gluodynamics

Dynamical Construction of Glueballs in Pure Gluodynamics Dynamical Construction of Glueballs in Pure Gluodynamics Rajan Dogra Department of Technical Education, U.T., Chandigarh, # 3291, Sector 27 D, Chandigarh 160 019, India, E-mail: rajandogra_2000@yahoo.com

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge hep-lat/0008026 NYU-TH-PH-19.8.00 BI-TP 2000/19 arxiv:hep-lat/0008026v1 31 Aug 2000 Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge Attilio Cucchieri and Daniel Zwanziger

More information

Infrared properties of Landau propagators at finite temperature from very large lattices

Infrared properties of Landau propagators at finite temperature from very large lattices Infrared properties of Landau propagators at finite temperature from very large lattices Attilio Cucchieri (IFSC-São Paulo University) xqcd2007, Frascati Collaborators: Tereza Mendes (IFSC-USP), Axel Maas

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY LTH 601 November 16, 2016 21:26 WSPC/Trim Size: 9in x 6in for Proceedings arxiv:hep-th/0309241v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY D. DUDAL AND H. VERSCHELDE Ghent

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes HU-EP-07/47 ADP-07-11/T651 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes a, E.-M. Ilgenfritz b, M. Müller-Preussker b, and A. Sternbeck c a Joint Institute

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Transient Nature of Generalized Coulomb Gauge A Mathematical Key to Color Confinement and Mass-Gap Problems of Pure Yang Mills Field Theory

Transient Nature of Generalized Coulomb Gauge A Mathematical Key to Color Confinement and Mass-Gap Problems of Pure Yang Mills Field Theory Transient Nature of Generalized Coulomb Gauge A Mathematical Key to Color Confinement and Mass-Gap Problems of Pure Yang Mills Field Theory Rajan Dogra Department of Technical Education, U.T., Chandigarh,

More information

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Quarks, Leptons and Gauge Fields Downloaded from  by on 03/13/18. For personal use only. QUARKS, LEPTONS & GAUGE FIELDS 2nd edition Kerson Huang Professor of Physics Mussuchusetts Institute qf Technology Y 8 World Scientific Singapore New Jersey London Hong Kong Publirhed by World Scientific

More information

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009 ITEP-LAT-29-5 at finite temperature arxiv:9.4828v [hep-lat] 26 Oct 29 Integrated Information Center, Kochi University, Akebono-cho, Kochi, 78-852, Japan E-mail: tsaito@rcnp.osaka-u.ac.jp M. N. Chernodub

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Spontaneous Lorentz symmetry breaking by an antisymmetric tensor field. Citation Physical Review D. 64(2) P

Spontaneous Lorentz symmetry breaking by an antisymmetric tensor field. Citation Physical Review D. 64(2) P Title Author(s) Spontaneous Lorentz symmetry breaking by an antisymmetric tensor field Yokoi, Naoto; Higashijima, Kiyoshi Citation Physical Review D. 64(2) P.025004 Issue Date 200-06 Text Version publisher

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Espansione a grandi N per la gravità e 'softening' ultravioletto

Espansione a grandi N per la gravità e 'softening' ultravioletto Espansione a grandi N per la gravità e 'softening' ultravioletto Fabrizio Canfora CECS Valdivia, Cile Departimento di fisica E.R. Caianiello NFN, gruppo V, CG Salerno http://www.sa.infn.it/cqg , Outline

More information

Charmed-Meson Scattering on Nucleons in a QCD Coulomb Gauge Quark Model

Charmed-Meson Scattering on Nucleons in a QCD Coulomb Gauge Quark Model Brazilian Journal of Physics, vol. 37, no. 1B, March, 2007 265 Charmed-Meson Scattering on Nucleons in a QCD Coulomb Gauge Quark Model S. M. Antunes, G. Krein, and V.E. Vizcarra Instituto de Física Teórica,

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Quantization of Non-abelian Gauge Theories: BRST symmetry

Quantization of Non-abelian Gauge Theories: BRST symmetry Quantization of Non-abelian Gauge Theories: BRST symmetry Zhiguang Xiao May 9, 2018 :Becchi-Rouet-Stora-Tyutin The gauge fixed Faddeev-Popov Lagrangian is not invariant under a general gauge transformation,

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Lecture 2: 3d gravity as group theory Quantum Coulomb Solution

Lecture 2: 3d gravity as group theory Quantum Coulomb Solution The Second Mandelstam Theoretical Physics School University of the Witwatersrand 17/01/2018 Lecture 2: 3d gravity as group theory Quantum Coulomb Solution Glenn Barnich Physique théorique et mathématique

More information

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon

Gernot Eichmann. The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Gernot Eichmann The Analytic Structure of the Quark Propagator in the Covariant Faddeev Equation of the Nucleon Diplomarbeit zur Erlangung des Magistergrades der Naturwissenschaften verfasst am Institut

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II) Stefan Sint Trinity College Dublin INT Summer School Lattice QCD and its applications Seattle, August 16, 2007 Stefan Sint Bare

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Structure of the fermion propagator in QED3 3

Structure of the fermion propagator in QED3 3 Structure of the fermion propagator in QED3 3 Kushiro National College of Technology, Otanoshike Nishi 2-32-1,Kushiro City,Hokkaido 84,Japan E-mail: hoshinor@ippan.kushiro-ct.ac.jp The Minkowski structure

More information