Chiral symmetry breaking in continuum QCD

Size: px
Start display at page:

Download "Chiral symmetry breaking in continuum QCD"

Transcription

1 Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

2 fqcd collaboration - QCD (phase diagram) with FRG: J. Braun, A. K. Cyrol, L. Fister, W. J. Fu, T. K. Herbst, MM N. Müller, J. M. Pawlowski, S. Rechenberger, F. Rennecke, N. Strodthoff Temperature early universe LHC quark gluon plasma RHIC SPS <ψψ> 0 crossover FAIR/NICA <ψψ> = / 0 vacuum hadronic fluid n B= 0 n B> 0 AGS SIS nuclear matter µ quark matter crossover superfluid/superconducting 2SC phases? <ψψ> = / 0 CFL neutron star cores M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

3 Outline 1 Motivation 2 YM correlation functions 3 Matter part of Quenched Landau gauge QCD 4 A glimpse at unquenching 5 Phenomenological Application: η -meson mass at chiral crossover 6 Conclusion M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

4 QCD phase diagram with functional methods works well at µ = 0: agreement with lattice (ε - 3P)/T Wuppertal-Budapest, 2010 HotQCD N t =8, 2012 HotQCD N t =12, 2012 PQM FRG PQM emf PQM MF t [Herbst, MM, Pawlowski, Schaefer, Stiele, 13] Lattice set A set B l,s (T) / l,s (T=0) T [MeV] [Luecker, Fischer, Welzbacher, 2014] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

5 QCD phase diagram with functional methods works well at µ = 0: agreement with lattice different results at large µ (possibly already at small µ) T [MeV] µb T =2 χ crossover σ(t=0)/2 Φ crossover Φ crossover χ 1st order CEP µb T = µ [MeV] m π =138 MeV [Herbst, Pawlowski, Schaefer, 2013] [Braun, Haas, Pawlowski, unpublished] µ B /T=2 µ B /T=3 T [MeV] Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point DSE: deconfinement crossover µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

6 QCD phase diagram with functional methods works well at µ = 0: agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with FRG: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex T [MeV] µb T =2 χ crossover σ(t=0)/2 Φ crossover Φ crossover χ 1st order CEP µb T = µ [MeV] m π =138 MeV [Herbst, Pawlowski, Schaefer, 2013] [Braun, Haas, Pawlowski, unpublished] T [MeV] Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point µ B /T=2 DSE: deconfinement crossover µ B /T= µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

7 QCD phase diagram with functional methods works well at µ = 0: agreement with lattice different results at large µ (possibly already at small µ) calculations need model input: Polyakov-quark-meson model with FRG: inital values at Λ O(Λ QCD ) input for Polyakov loop potential quark propagator DSE: IR quark-gluon vertex possible explanation for disagreement: µ 0: relative importance of diagrams changes summed contributions vs. individual contributions T [MeV] µb T =2 χ crossover σ(t=0)/2 Φ crossover Φ crossover χ 1st order CEP µb T = µ [MeV] m π =138 MeV [Herbst, Pawlowski, Schaefer, 2013] [Braun, Haas, Pawlowski, unpublished] T [MeV] Lattice: curvature range κ= DSE: chiral crossover DSE: critical end point µ B /T=2 DSE: deconfinement crossover µ B /T= µ q [MeV] [Luecker, Fischer, Fister, Pawlowski, 13] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

8 Back to QCD in the vacuum (Wetterich equation) use only perturbative QCD input: α S (Λ = O(10) GeV) (and m q (Λ)) M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

9 Back to QCD in the vacuum (Wetterich equation) use only perturbative QCD input: α S (Λ = O(10) GeV) (and m q (Λ)) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k 0 Γ k [Φ] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

10 Back to QCD in the vacuum (Wetterich equation) use only perturbative QCD input: α S (Λ = O(10) GeV) (and m q (Λ)) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k 0 Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) k [Φ]) 1 on rhs M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

11 Back to QCD in the vacuum (Wetterich equation) use only perturbative QCD input: α S (Λ = O(10) GeV) (and m q (Λ)) Wetterich equation with initial condition S[Φ] = Γ Λ [Φ] k Γ k [A, c, c, q, q] = 1 2 effective action Γ[Φ] = lim k 0 Γ k [Φ] k : integration of momentum shells controlled by regulator full field-dependent equation with (Γ (2) k [Φ]) 1 on rhs gauge-fixed approach (Landau gauge): ghosts appear gauge invariance: Γ (k) fulfills (modified) Slavnov-Taylor identities M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

12 Vertex Expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

13 Vertex Expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

14 Vertex Expansion approximation necessary - vertex expansion Γ[Φ] = n p 1,...,p n 1 Γ (n) Φ 1 Φ n (p 1,..., p n 1 )Φ 1 (p 1 ) Φ n ( p 1 p n 1 ) functional derivatives with respect to Φ i = A, c, c, q, q: equations for 1PI n-point functions, e.g. gluon propagator: t 1 = want apparent convergence of Γ[Φ] = lim k 0 Γ k [Φ] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

15 Quenched Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015] quenched QCD: allows separate investigation: M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

16 Quenched Landau gauge QCD two crucial phenomena: SχSB and confinement similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015] quenched QCD: allows separate investigation: recent results in pure YM theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] matter part [MM, Strodthoff, Pawlowski, 2014] (with FRG-YM propagators from [Fischer, Maas, Pawlowski, 2009], [Fister, Pawlowski, unpublished]) M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

17 Vertex Expansion in YM theory [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published] full. mom. dep. full. mom. dep. sym. point and tadpole config. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

18 Derivation of equations VertEXpand Mathematica package for the derivation of vertices from a given action using FORM (Denz,Held,Rodigast; unpub.) Vertices/ Vertices/ Feynman Feynman Rules Rules DoFun VertEXpand Action ERGE DoFun DoFun Mathematica package for the derivation of functional equations (Braun,Huber; Comput.Phys. Commun. 183 (2012) ) Symbolic Symbolic Flow Flow Equations Equations FORMTracer Algebraic Algebraic Flow Flow Equations Equations high-performance, easy-to-use Mathematica tracing tool using FORM (Cyrol,Mitter,Pawlowski,Strodthoff; in prep.) Compilable Compilable Kernels Kernels CreateKernels Mathematica package for the automatic generation of compilable C++ kernels for use in connection with the frgsolver (Cyrol,Mitter,Pawlowski,Strodthoff; unpub.) Numerical Numerical solution solution frgsolver Flexible, high-performance, parallelized C++ OOP framework for the numerical solution of functional equations (Cyrol,Mitter,Pawlowski,Strodthoff; unpub.) [Cyrol, MM, Pawlowski, Strodthoff, ] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

19 (Truncated) equations in YM theory [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published] t 1 = + t 1= t = + perm. t = perm. t = perm. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

20 Results I [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] Γ (2) AA (p) Z A(p) p 2 ( δ µν p µ p ν /p 2) Γ (2) cc (p) Zc(p) p2 3 gluon propagator dressing 2 1 Sternbeck et al. ghost propagator dressing 10 1 Sternbeck et al p [GeV] p [GeV] band: family of decoupling solutions bounded by scaling solution M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

21 Results II [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] comparison to Maas, unpublished Huber, von Smekal 12 (black lines) running couplings α gh-gl α 3g α 4g ghost-gluon vertex dressing FRG, scaling FRG, decoupling DSE, scaling DSE, decoupling p [GeV] p [GeV] band: family of decoupling solutions bounded by scaling solution M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

22 Results III [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] comparison to Maas unpublished comparison to Maas unpublished Blum, Huber, MM, von Smekal 14 (black lines) Cyrol, Huber, von Smekal 14 (black lines) three-gluon vertex dressing FRG, scaling FRG, decoupling DSE, scaling DSE, decoupling four-gluon vertex dressing 10 1 FRG, scaling FRG, decoupling DSE, scaling DSE, decoupling p [GeV] p [GeV] band: family of decoupling solutions bounded by scaling solution M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

23 Apparent Convergence [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] gluon propagator dressing RG scale dep. 1D mom. dep. 3D mom. dep p [GeV] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

24 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap [Braun, Gies, Pawlowski, 2010] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

25 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap Γ (2) AA (p) Π T (p) Z A (p) p 2 + Π L (p) Z A,L (p) p 2 Π T (p) = ( δ µν p µ p ν /p 2), Π L (p) = p µ p ν /p 2 [Braun, Gies, Pawlowski, 2010] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

26 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap Γ (2) AA (p) Π T (p) Z A (p) p 2 + Π L (p) Z A,L (p) p 2 Π T (p) = ( δ µν p µ p ν /p 2), Π L (p) = p µ p ν /p 2 [Braun, Gies, Pawlowski, 2010] Slavnov-Taylor id. (lin. cov. gauge): no quantum corrections to Z A,L M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

27 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap Γ (2) AA (p) Π T (p) Z A (p) p 2 + Π L (p) Z A,L (p) p 2 Π T (p) = ( δ µν p µ p ν /p 2), Π L (p) = p µ p ν /p 2 [Braun, Gies, Pawlowski, 2010] Slavnov-Taylor id. (lin. cov. gauge): no quantum corrections to Z A,L infrared regular 1PI correlators: quantum corrections: lim qu Z A (p) p 2 = lim qu Z A,L (p) p 2 p 0 p 0 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

28 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap Γ (2) AA (p) Π T (p) Z A (p) p 2 + Π L (p) Z A,L (p) p 2 Π T (p) = ( δ µν p µ p ν /p 2), Π L (p) = p µ p ν /p 2 [Braun, Gies, Pawlowski, 2010] Slavnov-Taylor id. (lin. cov. gauge): no quantum corrections to Z A,L infrared regular 1PI correlators: quantum corrections: lim qu Z A (p) p 2 = lim qu Z A,L (p) p 2 p 0 p 0 no mass gap without infrared irregularities M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

29 Gluon mass gap [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] confinement in linearly covariant gauges gluon mass gap Γ (2) AA (p) Π T (p) Z A (p) p 2 + Π L (p) Z A,L (p) p 2 Π T (p) = ( δ µν p µ p ν /p 2), Π L (p) = p µ p ν /p 2 [Braun, Gies, Pawlowski, 2010] Slavnov-Taylor id. (lin. cov. gauge): no quantum corrections to Z A,L infrared regular 1PI correlators: quantum corrections: lim qu Z A (p) p 2 = lim qu Z A,L (p) p 2 p 0 p 0 no mass gap without infrared irregularities follows also from three-gluon vertex STI M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

30 Infrared irregularities [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] scaling solution: scaling singularity is sufficient! M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

31 Infrared irregularities [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] scaling solution: scaling singularity is sufficient! decoupling solution: irregularities cannot be diagrammatic (ghost is not enough) possibilities (longitudinal) massless modes: [Schwinger, 62], [Cornwall, 82], [Aguilar et. al, 11] Savvidy-Vacuum (gluon background): [Savvidy, 77], [Eichhorn, Gies, Pawlowski, 11] both at the same time... M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

32 Infrared irregularities [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] scaling solution: scaling singularity is sufficient! decoupling solution: irregularities cannot be diagrammatic (ghost is not enough) possibilities (longitudinal) massless modes: [Schwinger, 62], [Cornwall, 82], [Aguilar et. al, 11] Savvidy-Vacuum (gluon background): [Savvidy, 77], [Eichhorn, Gies, Pawlowski, 11] both at the same time... numerical finding: no transversal irregularities information from long. system necessary M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

33 Quadratic divergence and solution types [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] [ ] msti Γ (2) µν AA,k (p) = m 2 (k) δ µν m 2 (Λ UV ) α(λ UV ) Λ 2 UV quadratic divergence physical mass gap vs. quadratic divergence? M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

34 Quadratic divergence and solution types [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] [ ] msti Γ (2) µν AA,k (p) = m 2 (k) δ µν m 2 (Λ UV ) α(λ UV ) Λ 2 UV quadratic divergence physical mass gap vs. quadratic divergence? scaling solution determines m 2 (Λ UV ) uniquely M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

35 Quadratic divergence and solution types [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] [ ] msti Γ (2) µν AA,k (p) = m 2 (k) δ µν m 2 (Λ UV ) α(λ UV ) Λ 2 UV quadratic divergence physical mass gap vs. quadratic divergence? scaling solution determines m 2 (Λ UV ) uniquely variation of m 2 (Λ UV ) decoupling solutions STI-compatible? confining solutions? M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

36 Different solutions [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] 8 gluon propagator [GeV -2 ] confined phase Higgs phase ghost propagator dressing 10 1 confined phase Higgs phase p [GeV] p [GeV] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

37 confinement criteria [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published] gluon mass gap location of gluon propator maximum m 2 [GeV 2 ] 1 confined phase Higgs phase m 2 min m 2 Λ - m2 Λ,scaling [GeV2 ] position of gluon prop. max. [GeV] confined Higgs fit points fit m 2 c m 2 Λ - m2 Λ,scaling [GeV2 ] (m 2 Λ -m2 c )/m2 c M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

38 Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

39 Chiral symmetry breaking χsb resonance in 4-Fermi interaction λ (pion pole): resonance singularity without momentum dependency t λ = a λ 2 + b λ α + c α 2, b > 0, a, c 0 t = t λ g = 0 g = 0, T > 0 g = g cr λ g > g cr [Braun, 2011] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

40 Effective running couplings [MM, Pawlowski, Strodthoff, 2014] running couplings α s p [GeV] α crit α c - Ac α q - Aq α A 3 agreement in perturbative regime required by gauge symmetry non-degenerate in nonperturbative regime: reflects gluon mass gap α qaq > α cr : necessary for chiral symmetry breaking area above α cr very sensitive to errors M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

41 4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 2002] change of variables: particular 4-Fermi channels meson exchange efficient inclusion of momentum dependence no singularities identifies relevant effective low-energy dofs from QCD k Γ k = (bosonized) 4-fermi-interaction h 2 π /(2 m2 π ) λ π RG-scale k [GeV] Yukawa interaction h π RG-scale k [GeV] [MM, Strodthoff, Pawlowski, 2014] [Braun, Fister, Haas, Pawlowski, Rennecke, 2014] [MM, Strodthoff, Pawlowski, 2014] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

42 Vertex Expansion in the matter system -1 FRG Yang-Mills results -1 mom. dep. classical tensor structure mom. dep. classical tensor structure -1 full mom. dep. all tensor structures mom. dep. full mom. dep. STI-consistent dressing Fierz-complete basis at p = 0 and mom. dep. -1 mom. dep. full effective... potential mom. dep. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

43 Equations in the matter system [MM, Strodthoff, Pawlowski, 2014] 1 t = t = perm. t = 2 + perm. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

44 Equations in the matter system [MM, Strodthoff, Pawlowski, 2014] t = perm. 1 t = t = + perm. + + t = perm. t = 2 + perm. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

45 Equations in the matter system [MM, Strodthoff, Pawlowski, 2014] t = perm. 1 t = t = + perm. + + t = perm. t = 2 + perm. 1 t = t = perm. M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

46 Gluon FRG input Γ (2) AA (p) Z A(p) p 2 ( δ µν p µ p ν /p 2) [Fischer, Maas, Pawlowski, 2009], [Fister, Pawlowski, unpublished] gluon propagator dressing 1/Z A Bowman et al., 04 Sternbeck et al., p [GeV] FRG FRG result self-consistent calculation within FRG approach sets the scale in comparison to lattice QCD M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

47 Quark propagator [MM, Pawlowski, Strodthoff, 2014] Γ (2) qq (p) Z q(p) ( /p + M(p) ) quark propagator dressings Bowman et al., 05 1/Z q M q p [GeV] FRG vs. lattice: bare mass, quenched, scale M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

48 Quark propagator [MM, Pawlowski, Strodthoff, 2014] Γ (2) qq (p) Z q(p) ( /p + M(p) ) quark propagator dressings Bowman et al., 05 1/Z q M q p [GeV] FRG vs. lattice: bare mass, quenched, scale agreement not sufficient: need apparent convergence at µ 0 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

49 other 4-Fermi channels (mesons) [MM, Pawlowski, Strodthoff, 2014] (bosonized) 4-fermi-interactions RG-scale k [GeV] h 2 π /(2 m2 π ) λ η λ (S+P)- adj λ V-A λ V+A λ (V-A) adj λ (S-P)- λ(s-p)- adj λ (S+P)+ λ(s+p)+ adj bosonized only σ-π-channel sufficient diquark momentum configuration more important other channels: quantitatively not important in loops M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

50 Quark-gluon interactions I [MM, Pawlowski, Strodthoff, 2014] quark-gluon interaction most crucial for chiral symmetry breaking full tensor basis sufficient chiral symmetry breaking strength? M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

51 Quark-gluon interactions I [MM, Pawlowski, Strodthoff, 2014] quark-gluon interaction most crucial for chiral symmetry breaking full tensor basis sufficient chiral symmetry breaking strength? 2 (1) z q - Aq (4) z q - Aq quark-gluon couplings (7) z q - Aq (5) z q - Aq (6) z q - Aq (2) z q - Aq (3) z q - Aq (8) z q - Aq vertex strength: reflects gluon gap 8 tensors (transversally projected): classical tensor chirally symmetric break chiral symmetry p [GeV] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

52 Quark-gluon interactions I [MM, Pawlowski, Strodthoff, 2014] quark-gluon interaction most crucial for chiral symmetry breaking full tensor basis sufficient chiral symmetry breaking strength? 2 (1) z q - Aq (4) z q - Aq quark-gluon couplings (7) z q - Aq (5) z q - Aq (6) z q - Aq (2) z q - Aq (3) z q - Aq (8) z q - Aq vertex strength: reflects gluon gap 8 tensors (transversally projected): classical tensor chirally symmetric break chiral symmetry p [GeV] important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014] qγ 5 γ µɛ µνρσ{f νρ, D σ}q ( 1 2 T (5) qaq + T (7) qaq ): increases Zq/decreases Mq considerably anom. chromomagn. momentum (T (4) qaq ) increases Mq moderately M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

53 Quark-gluon interactions I [MM, Pawlowski, Strodthoff, 2014] quark-gluon interaction most crucial for chiral symmetry breaking full tensor basis sufficient chiral symmetry breaking strength? 2 (1) z q - Aq (4) z q - Aq quark-gluon couplings (7) z q - Aq (5) z q - Aq (6) z q - Aq (2) z q - Aq (3) z q - Aq (8) z q - Aq vertex strength: reflects gluon gap 8 tensors (transversally projected): classical tensor chirally symmetric break chiral symmetry p [GeV] important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014] qγ 5 γ µɛ µνρσ{f νρ, D σ}q ( 1 2 T (5) qaq + T (7) qaq ): increases Zq/decreases Mq considerably anom. chromomagn. momentum (T (4) qaq ) increases Mq moderately considerably less chiral symmetry breaking with full tensor basis M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

54 Quark-gluon interactions I [MM, Pawlowski, Strodthoff, 2014] quark-gluon interaction most crucial for chiral symmetry breaking full tensor basis sufficient chiral symmetry breaking strength? 2 (1) z q - Aq (4) z q - Aq quark-gluon couplings (7) z q - Aq (5) z q - Aq (6) z q - Aq (2) z q - Aq (3) z q - Aq (8) z q - Aq vertex strength: reflects gluon gap 8 tensors (transversally projected): classical tensor chirally symmetric break chiral symmetry p [GeV] important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014] qγ 5 γ µɛ µνρσ{f νρ, D σ}q ( 1 2 T (5) qaq + T (7) qaq ): increases Zq/decreases Mq considerably anom. chromomagn. momentum (T (4) qaq ) increases Mq moderately considerably less chiral symmetry breaking with full tensor basis also important ingredient for bound-state equations M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

55 Quark-gluon interactions II missing strength? M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

56 Quark-gluon interactions II missing strength? expansion in tensor structures expansion in operators ψ /D n ψ [MM, Pawlowski, Strodthoff, 2014] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

57 Quark-gluon interactions II missing strength? expansion in tensor structures expansion in operators ψ /D n ψ [MM, Pawlowski, Strodthoff, 2014] in particular qγ 5 γ µ ɛ µνρσ {F νρ, D σ }q: contributes to qaq, qa 2 q and qa 3 q contains important non-classical tensors ( qaq) considerable contribution to quark-gluon vertex ( qa 2 q) contribution to qa 3 q seems unimportant M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

58 Quark-gluon interactions II missing strength? expansion in tensor structures expansion in operators ψ /D n ψ [MM, Pawlowski, Strodthoff, 2014] in particular qγ 5 γ µ ɛ µνρσ {F νρ, D σ }q: contributes to qaq, qa 2 q and qa 3 q contains important non-classical tensors ( qaq) considerable contribution to quark-gluon vertex ( qa 2 q) contribution to qa 3 q seems unimportant M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

59 Quark-gluon interactions II missing strength? expansion in tensor structures expansion in operators ψ /D n ψ [MM, Pawlowski, Strodthoff, 2014] in particular qγ 5 γ µ ɛ µνρσ {F νρ, D σ }q: contributes to qaq, qa 2 q and qa 3 q contains important non-classical tensors ( qaq) considerable contribution to quark-gluon vertex ( qa 2 q) contribution to qa 3 q seems unimportant explicit calculations of AA qq-vertex: full basis: 63 chirally symmetric tensor elements 3 15 chirally symmetric tensor elements ( ψ /D ψ): all seem important order of effect similar to qγ 5γ µɛ µνρσ{f νρ, D σ}q why? underlying principle? [MM, Pawlowski, Strodthoff, in prep.] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

60 Stability of truncation (apparent convergence) Expansion of effective action in 1PI correlators full mom. dep. classical tensor structure mom. dep. (sym. channel) under investigation: full tensor structure mom. dep. (sym. channel) full tensor structure full mom. dep. partial tensor structure mom. dep. (sym. channel) full tensor structure mom. dep. (single channel) full mom. dep. via effective potential full tensor structure mom. dep. (sym. channel) M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

61 Outlook: unquenched gluon propagator gluon propagator dressing 1/Z A Sternbeck et al., 2012 FRG p [GeV] self-consistent solution of classical propagators and vertices (1D) massless quarks [Cyrol, MM, Pawlowski, Strodthoff, in preparation] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

62 η -meson (screening) mass at chiral crossover small η -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]?drop in η mass at chiral crossover? [Csörgo et al., 2010] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

63 η -meson (screening) mass at chiral crossover small η -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]?drop in η mass at chiral crossover? [Csörgo et al., 2010] chiral crossover: Polyakov-Quark-Meson model (extended mean-field) [1] <σ>/f πφ N f = 2 quark and meson degrees of freedom describes chiral crossover (de-)confinement via Polyakov loop potential T/[MeV] U(1) A -anomaly: mesonic t Hooft determinant M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

64 η -meson (screening) mass at chiral crossover small η -meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]?drop in η mass at chiral crossover? [Csörgo et al., 2010] chiral crossover: Polyakov-Quark-Meson model (extended mean-field) [1] <σ>/f πφ N f = 2 quark and meson degrees of freedom describes chiral crossover (de-)confinement via Polyakov loop potential U(1) A -anomaly: mesonic t Hooft determinant T/[MeV] t Hooft determinant [Heller, MM, 2015] λ (S-P)+ [MeV] RG-scale dependence from fqcd temperature dependence k(t ): λ (S P)+,fQCD(k) λ (S P)+,PQM(T ) k/[mev] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

65 η -meson (screening) mass at chiral crossover: result 1200 Masses as function of temperature with Polyakov-Loop m π m η screening masses! m σ m/[mev] T/[MeV] [Heller, MM, 2015] M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

66 η -meson (screening) mass at chiral crossover: result 1200 Masses as function of temperature with Polyakov-Loop m π m η m σ screening masses! QM-Model N f = 2 + 1: π σ a 0 η η m/[mev] masses [MeV] T [MeV] [MM, Schaefer, 2013] T/[MeV] [Heller, MM, 2015] chiral symmetry restoration: drop in m η M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

67 Summary and Outlook (quenched) QCD with functional RG QCD phase diagram: need for quantitative precision vacuum: sole input αs (Λ = O(10) GeV) and m q (Λ = O(10) GeV) good agreement with lattice simulations (sufficient?) (non-perturbative) results: YM-system quark-propagator quark-gluon vertex 4-Fermi interaction channels phenomenology: η -meson and pion mass splitting M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

68 Summary and Outlook (quenched) QCD with functional RG QCD phase diagram: need for quantitative precision vacuum: sole input αs (Λ = O(10) GeV) and m q (Λ = O(10) GeV) good agreement with lattice simulations (sufficient?) (non-perturbative) results: YM-system quark-propagator quark-gluon vertex 4-Fermi interaction channels phenomenology: η -meson and pion mass splitting unquenching (first results) finite temperature/chemical potential more checks on convergence of vertex expansion bound-state properties (form factor,pda... ) M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, / 34

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

Functional renormalization group approach of QCD and its application in RHIC physics

Functional renormalization group approach of QCD and its application in RHIC physics Functional renormalization group approach of QCD and its application in RHIC physics Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Theoretical Physics at Peking U.

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Baryon number fluctuations within the functional renormalization group approach

Baryon number fluctuations within the functional renormalization group approach Baryon number fluctuations within the functional renormalization group approach Wei-jie Fu Dalian University of Technology wjfu@dlut.edu.cn The Third Symposium on Chiral Effective Field Theory, Oct. 28-Nov.

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Spectral Functions from the Functional RG

Spectral Functions from the Functional RG Spectral Functions from the Functional RG 7 th International Conference on the Exact Renormalization Group ERG 2014 22/09/14 Lefkada, Greece Nils Strodthoff, ITP Heidelberg 2-Point Functions and their

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

arxiv: v2 [hep-ph] 18 Dec 2017

arxiv: v2 [hep-ph] 18 Dec 2017 Center phase transition from matter propagators in (scalar) QCD M. Mitter a,b, M. Hopfer a, B.-J. Schaefer c, R. Alkofer a arxiv:179.99v [hep-ph] 18 Dec 17 Abstract a Institut für Physik, NAWI Graz, Karl-Franzens-Universität

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

UV completion of the Standard Model

UV completion of the Standard Model UV completion of the Standard Model Manuel Reichert In collaboration with: Jan M. Pawlowski, Tilman Plehn, Holger Gies, Michael Scherer,... Heidelberg University December 15, 2015 Outline 1 Introduction

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

G 2 -QCD at Finite Density

G 2 -QCD at Finite Density G 2 -QCD at Finite Density A. Wipf Theoretisch-Physikalisches Institut, FSU Jena collaboration with Axel Maas (Jena) Lorenz von Smekal (Darmstadt/Gießen) Bjoern Wellegehausen (Gießen) Christian Wozar (Jena)

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information