QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal

Size: px
Start display at page:

Download "QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal"

Transcription

1 QCD Phase Transitions and Green s Functions Heidelberg, 7 May 2010 Lorenz von Smekal 1

2 Special Credit and Thanks to: Reinhard Alkofer Jens Braun Christian Fischer Holger Gies Lisa Haas Axel Maas Kim Maltman Florian Marhauser Jens Müller Jan Pawlowski Bernd-Jochen Schaefer Daniel Spielmann Nucu Stamatescu Andre Sternbeck Jochen Wambach Helmholtz Young Investigator Group 'Nonperturbative Phenomena in QCD' ExtreMe Matter Institute Helmholtz Alliance 'Cosmic Matter in the Laboratory' European Commission 2

3 Contents Introduction: why Green s functions? Functional methods What do we know? (zero temperature and density) Applications to QCD phase transitions (deconfinement and chiral symmetry restoration) Summary and Outlook: what may we expect? 2

4 Introduction Why QCD Green s Functions? quantum field theoretic building blocks for hadron phenomenology hadron masses, decay constants, form factors, magnetic moments, charge radii etc. from covariant bound state equations (Bethe-Salpeter and Faddeev) need QCD quark and gluon Green s functions as input covariant Faddeev equation for baryons G. Eichmann, PhD Thesis, Graz (2009) [arxiv: [hep-ph]] G E Proton Electric Form Factor m q =0.43 GeV, m sc =0.60 GeV, m ax =0.83 GeV Hoehler et al., NPB 114(1976), 505 Bosted et al., PRL 68(1992), 3841 All contributions 2 loop contributions Q 2 [GeV 2 ] µ p G E /G M The Ratio µ p G E /G M JLab Hall A Coll, PRL 84 (2000), 1398 m q =0.36, m sc =0.63, m ax =0.68 m q =0.43, m sc =0.60, m ax = Q 2 [GeV 2 ] Oettel, Pichowsky, LvS, EPJA 8 (2000) 251 Oettel, Alkofer, LvS, EPJA 8 (2000) 553 3

5 Why QCD Green s Functions? Introduction confinement, dynamical mass generation, chiral symmetry breaking and Goldstone s theorem Alkofer & LvS, Phys. Rept. 353/5-6 (2001) 281 Fischer, J. Phys. G 32 (2006) 253 TOPCITE 500+ Quark Mass Function: M(p 2 ) Bottom quark Charm quark Strange quark Up/Down quark Chiral limit p 2 [GeV 2 ] M " [MeV] N f =3, DSE N f =2, JLQCD(2003) N f =2, CP-Pacs (2002/4) M! [MeV] Fischer, Alkofer, PRD 67 (2003) Fischer, Watson, Cassing, PRD 72 (2005)

6 Why QCD Green s Functions? Introduction confinement, dynamical mass generation, chiral symmetry breaking and Goldstone s theorem Alkofer & LvS, Phys. Rept. 353/5-6 (2001) 281 Fischer, J. Phys. G 32 (2006) 253 TOPCITE 500+ Quark Mass Function: M(p 2 ) Bottom quark Charm quark Strange quark Up/Down quark Chiral limit p 2 [GeV 2 ] M " [MeV] N f =3, DSE N f =2, JLQCD(2003) N f =2, CP-Pacs (2002/4) M! [MeV] Fischer, Alkofer, PRD 67 (2003) Fischer, Watson, Cassing, PRD 72 (2005) Here: chiral symmetry restoration and deconfinement transition... 4

7 Generalities Partition Function Z(T,V,µ) = D[A, c, ψ] δ( A) exp 1/T 0 dt V d 3 x 1 4 F 2 + c Dc + ψ( D/ + m µγ 0 )ψ Landau gauge: Lorenz condition, µ A µ =0 Faddeev-Popov ghosts and determinant: c, c Det( µ D µ (A)) Field strengths: F µν = µ A ν ν A µ + ig[a µ,a ν ] Quark fields with a.p. b.c. s: ψ(1/t, x) = ψ(0, x) 5

8 Note on Gribov Copies A l Gribov, Singer (1978): gauge copies unavoidable. A tr Fujikawa, Hirschfeld (1979): average over copies (sign-weighted). A tr Sharpe (1984), Neuberger (1987), Schaden (1998): perfect cancellation, produces 0! A = 0 for A = A tr, many copies! LvS (2008): can be avoided non-perturbative Becchi-Rouet-Stora-Tyutin (BRST) symmetry (on the lattice, but with sign problem). 6

9 Non-Perturbative Tools Functional Methods: (a) Dyson-Schwinger Equations (DSEs) Partition Function Generating Functional Equations of Motion for Green s Functions (b) Functional Renormalisation Group (FRG) Effective Action Energy-Momentum Cutoff RG Flow Wetterich Equation + chiral fermions + no sign problem + dynamical hadronisation Lattice Gauge Theory + no truncations + manifest gauge invariance 7

10 Non-Perturbative Tools Functional Methods: (a) Dyson-Schwinger Equations (DSEs) Partition Function Generating Functional Equations of Motion for Green s Functions (b) Functional Renormalisation Group (FRG) Effective Action Energy-Momentum Cutoff RG Flow Wetterich Equation + chiral fermions + no sign problem + dynamical hadronisation Lattice Gauge Theory + no truncations + manifest gauge invariance combine & compare 7

11 Historical Note Historically: infrared enhanced gluon exchange, V (r) D gluon σ p 4, V (r) σr but no it s ghosts that dominate the long-range/infrared correlations! LvS, Hauck, Alkofer (1997) r 2 conditions for confinement: Kugo, Ojima (1979) (a) avoid Higgs mechanism (b) mass gap 5 Gluon Ghost all physical states are color singlets p 2 [(GeV) 2 ] 8

12 Historical Note Historically: infrared enhanced gluon exchange, V (r) D gluon σ p 4, V (r) σr but no it s ghosts that dominate the long-range/infrared correlations! LvS, Hauck, Alkofer (1997) r 2 conditions for confinement: Kugo, Ojima (1979) (a) avoid Higgs mechanism (b) mass gap 5 Gluon Ghost all physical states are color singlets. F. Coester: p 2 [(GeV) 2 ] Farbloser Quark zusammengeleimt von Gespenstern mit farbigem Leim 8

13 Gluon Propagator Pure Yang-Mills, T =0 4 3 Sternbeck et al., PoS LAT2006, 76 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( p [GeV] A µ (x)a ν (y) : D µν (p) = Z(p2 ) p 2 δ µν p µp ν p 2 9

14 Gluon Propagator 4 3 Sternbeck et al., PoS LAT2006, 76 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( LvS, Hauck, Alkofer, Phys. Rev. Lett. 79 (1997) 3591 p [GeV] 9

15 Gluon Propagator 4 3 Sternbeck et al., PoS LAT2006, 76 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( LvS, Hauck, Alkofer, Phys. Rev. Lett. 79 (1997) 3591 Lerche, LvS, Phys. Rev. D 65 (2002) Fischer, Alkofer, Phys. Rev. D 65 (2002) p [GeV] 9

16 Gluon Propagator 4 3 Sternbeck et al., PoS LAT2006, 76 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( p [GeV] LvS, Hauck, Alkofer, Phys. Rev. Lett. 79 (1997) 3591 Lerche, LvS, Phys. Rev. D 65 (2002) Fischer, Alkofer, Phys. Rev. D 65 (2002) Pawlowski, Litim, Nedelko, LvS, Phys. Rev. Lett. 93 (2004) ; Pawlowski (2006), unp. 9

17 Gluon Propagator 4 3 Sternbeck et al., PoS LAT2006, 76 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( p [GeV] LvS, Hauck, Alkofer, Phys. Rev. Lett. 79 (1997) 3591 Lerche, LvS, Phys. Rev. D 65 (2002) Fischer, Alkofer, Phys. Rev. D 65 (2002) Pawlowski, Litim, Nedelko, LvS, Phys. Rev. Lett. 93 (2004) ; Pawlowski (2006), unp. Fischer, Maas, Pawlowski, Annals Phys. 324 (2009) 2408; Pawlowski, in prep. 9

18 Landau gauge QCD Propagators Since 1997, DSEs, FRGEs, Stochastic Quantisation, Lattice Simulations: Alkofer, Aguilar, Binosi, Bicudo, Bloch, Boucaud, Bogolubsky, Bornyakov, Bowman, Braun, Cucchieri, De Soto, Dudal, Fischer, Gies, Gracey, Huber, Ilgenfritz, Langfeld, Leinweber, Leroy, Litim, Llanes-Estrada, Nakamura, Natale, Nedelko, Maas, Mendes, Micheli, Mitrjushkin, Müller-Preußker, Oliveira, Papavassiliou, Pawlowski, Pene, Petreczky, Quandt, Reinhardt, Rodriguez-Quintero, Schwenzer, Silva, Skullerud, Sorella, Stamatescu, Sternbeck, Vandersickel, Verschelde, LvS, Wambach, Williams, Zwanziger,... Numerical solutions & analytic infrared asymptotics (infrared-scaling, confinement criteria, Gribov ambiguity...). 10

19 Gluon Propagator Gribov ambiguity, of fundamental interest (mass gap, Kugo-Ojima), but phenomenologically not relevant! Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( 1 non-perturbative and relevant perturbative p [GeV] 11

20 Gluon Propagator Gribov ambiguity, of fundamental interest (mass gap, Kugo-Ojima), but phenomenologically not relevant! Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( 1 non-perturbative and relevant perturbative Combine functional methods (FRGEs + DSEs). Compare with lattice simulations where possible. p [GeV] 11

21 Running Coupling From Landau gauge gluon and ghost propagators: αs MM (p 2 )= g2 4π Z(p2 )G 2 (p 2 ) LvS, Hauck, Alkofer, Annals Phys. 267 (1998) 1 p (infrared-scaling) Lerche, LvS, Phys. Rev. D 65 (2002)

22 Running Coupling From Landau gauge gluon and ghost propagators: αs MM (p 2 )= g2 4π Z(p2 )G 2 (p 2 ) LvS, Hauck, Alkofer, Annals Phys. 267 (1998) 1 p (infrared-scaling) Lerche, LvS, Phys. Rev. D 65 (2002) MiniMOM scheme precise definition, known to 4 loops LvS, Maltman, Sternbeck, Phys. Lett. B 681 (2009)

23 Running Coupling From Landau gauge gluon and ghost propagators: αs MM (p 2 )= g2 4π Z(p2 )G 2 (p 2 ) LvS, Hauck, Alkofer, Annals Phys. 267 (1998) 1 p (infrared-scaling) Lerche, LvS, Phys. Rev. D 65 (2002) MiniMOM scheme precise definition, known to 4 loops LvS, Maltman, Sternbeck, Phys. Lett. B 681 (2009) 336 Lattice determination of α s Sternbeck et al. (LvS), PoS LAT2009, 210 r 0 Λ (0) MS =0.62(1), r 0Λ (2) MS =0.60(3)(2) α MM L (p2 ) N f =0 (β, N 4 )=(6.0, 32 4 ) (6.2, 32 4 ) (6.4, 32 4 ) (6.6, 32 4 ) (6.9, 48 4 ) (7.2, 64 4 ) (7.5, 64 4 ) (8.5, 48 4 ) not a fit! p 2 [GeV 2 ] α MM s (p2 ) 12

24 Applications I Deconfinement Transition Pure gauge theory with static quarks: and (global) Z3 center symmetry: P (x) =P exp ig P (x) ZP(x), 1/T 0 dta 0 (t, x) Order parameter: Φ = 1 3 tr P (x) e F q /T Z {1, exp 2πi/3, exp 4πi/3} Φ =0, confined, (center) symmetric, disordered Φ = 0, deconfined, spontan. broken Z 3, ordered 13

25 Effective Potential Braun, Gies, Pawlowski, Phys. Lett. B 684 (2010) 262 Constant background: V [a] = t Γ k [φ] = 1 2 k a = 1 T ga3 0, Φ[a] = cos a 2, Z(p 2 ) G(p 2 ) p [GeV] p [GeV] with: p 0 =2πT (n ν a/4π), ν = {0, ±1, ±2} 14

26 Effective Potential Braun, Gies, Pawlowski, Phys. Lett. B 684 (2010) 262 Constant background: V [a] = t Γ k [φ] = 1 2 k a = 1 T ga3 0, Φ[a] = cos a 2, Z(p 2 ) G(p 2 ) p [GeV] p [GeV] with: p 0 =2πT (n ν a/4π), ν = {0, ±1, ±2} Up to terms (suppressed at T c ) O(V [a]) 14

27 T c = ± 10 MeV, Effective Potential T c / σ =0.658 ± (consistent with lattice average) Braun, Gies, Pawlowski, Phys. Lett. B 684 (2010) MeV SU(3) V [a]/t MeV 300 MeV 295 MeV 289.5MeV 285 MeV Φ[a] =0 a 2π 15

28 T c = ± 10 MeV, Effective Potential T c / σ =0.658 ± (consistent with lattice average) Braun, Gies, Pawlowski, Phys. Lett. B 684 (2010) MeV SU(3) V [a]/t MeV Φ[a min ] 300 MeV 295 MeV 289.5MeV T/T 0.0 c MeV Φ[a] =0 a 2π 15

29 Order Parameter Polyakov gauge: T c = MeV Marhauser, Pawlowski, arxiv: Φ[a min ] V [a] = k flow V [a], αs MM (k) = t +1 critical exponent from screening mass: V [a min ] t 2ν, ν =0.65(2) [ν Ising =0.63] 16

30 Finite Temperature Propagators Pure (Landau) gauge: Lattice & DSEs: D µν (p) = Z T(p 2 ) p 2 P T µν + Z L(p 2 ) p 2 P L µν Cucchieri, Karsch, Petreczky, Phys. Lett. B 497 (2001) 80 Cucchieri, Karsch, Petreczky, Phys. Rev. D 64 (2001) Maas, Wambach, Grüter, Alkofer, EPJC 37 (2004) 335 Maas, Wambach, Alkofer, EPJC 42 (2005) 93 Cucchieri, Maas, Mendes, Phys. Rev. D 75 (2007) Maas, arxiv: T =0: T>0: Z T = Z L = Z Z T Z Running coupling, FRG: Braun, Gies, JHEP 06 (2006) 024 Braun, Gies, Phys. Lett. B 645 (2007) 53 Marhauser, Pawlowski, arxiv: dim. fixed-point behavior for p<t, only weakly T -dependent otherwise, N f dependence 17

31 Electric Screening Mass 1.4 D L (0) 1/2 (T/T c 1) ν, 1.2 ν =0.60(1) [ν Ising =0.63] T T c (1 + δ), finite volume Gribov copies 0.6 critical behavior? (well established) 0.4 ν =0.62(2) Maas, LvS, in progress 0.2 SU(2) SU(3) Data: Maas, private communication Fischer, Maas, Müller, arxiv: T/T c 18

32 Applications II Deconfinement & Chiral Symmetry Restoration quenched 19

33 Applications II Deconfinement & Chiral Symmetry Restoration quenched Allow quarks with b.c. s: ψ(1/t, x) = e 2πiθ ψ(0, x) in observables: O(θ) = O[ψ θ ] e.g., θ-dependent quark condensate, mass function, density... 19

34 Applications II Deconfinement & Chiral Symmetry Restoration quenched Allow quarks with b.c. s: ψ(1/t, x) = e 2πiθ ψ(0, x) in observables: O(θ) = O[ψ θ ] e.g., θ-dependent quark condensate, mass function, density... observe: O(θ + 1) = O(θ) O(θ + 1/3) = O(θ), always Fourier series,inz 3 -symmetric confined phase 19

35 Dual Order Parameters Order parameter for confinement: O = 1 0 dθ O(θ) e 2πiθ Z3 -symmetry, confinement O =0, dual quark condensate, dual mass, density... Originally from lattice Gattringer, Phys. Rev. Lett. 97 (2006) Synatschke, Wipf, Wozar, Phys. Rev. D 75 (2007) Synatschke, Wipf, Langfeld, Phys. Rev. D 77 (2008) Bilgici, Bruckmann, Gattringer, Hagen, Phys. Rev. D 77 (2008)

36 T-dependent Gluon Propagator Input for quark DSE: Fischer, Phys. Rev. Lett. 103 (2009) Fischer, Müller, Phys. Rev. D 80 (2009) T=0 T=0.6 T c T=0.99 T c T=2.2 T c T=0 T=0.6 T c T=0.99 T c T=2.2 T c Z T (p 2 ) 1.5 Z L (p 2 ) p 2 [Gev 2 ] p 2 [Gev 2 ] Fischer, Maas, Müller, arxiv:

37 Chiral & Deconfinement Transition(s) 0.10 SU(3), quenched dual Polyakov condensate loop (dressed Polyakov Condensate loop) chiral condensate (chiral limit) T/T c T chiral T conf 277 MeV Christian Fischer s talk Fischer, Maas, Müller, arxiv:

38 Applications III Full Dynamical QCD at zero & imaginary chemical potential 23

39 Applications III Full Dynamical QCD at zero & imaginary chemical potential Quarks with b.c. s: ψ(1/t, x) = e 2πiθ ψ(0, x) but observables: O θ (θ) = O[ψ θ ] θ observables in different theories, built on θ-dependent ground states 23

40 Applications III Full Dynamical QCD at zero & imaginary chemical potential Quarks with b.c. s: ψ(1/t, x) = e 2πiθ ψ(0, x) but observables: O θ (θ) = O[ψ θ ] θ observables in different theories, built on θ-dependent ground states observe: O(θ + 1/3) = O(θ) now always! Roberge, Weiss, Nucl. Phys. B 257 (1986) 734 imaginary chemical potential: µ =2πiTθ 23

41 Full Dynamical QCD Landau gauge Yang-Mills with background, compare: (a) a 0 = 1 T ga3 0 θ=0, breaks Roberge-Weiss symmetry, dual observables, deconfinement transition (dual condensate, dual density... ) (b) a θ = 1 T ga3 0 θ, include Nf = 2 dynamical quarks massless, chiral limit quark condensate, mass, density, f π,..., order parameters for chiral phase transition in QCD θ (but no dual order parameters) coupled to mesons dynamical hadronisation c.f., quark meson model: Berges, Tetradis, Wetterich, Phys. Rept. 363 (2002) 223 Schaefer, Wambach, Phys. Part. Nucl. 39 (2008)

42 Full Dynamical QCD, Nf = 2, chiral limit (a) a 0 = 1 T ga3 0 θ=0, µ =0 Braun, Haas, Marhauser, Pawlowski, arxiv: f π (T)/f π (0) Dual density 0.8 Polyakov Loop ±20 MeV T [MeV] T chiral T conf 180 MeV Lisa Haas talk χ L,dual 25

43 Full Dynamical QCD, Nf = 2, chiral limit free energy difference: Braun, Haas, Marhauser, Pawlowski, arxiv: f(t,θ) f(t,0) θ change boundary conditions of confined quarks at no cost 26

44 QCDθ imaginary chemical potential Originally from lattice de Forcrand, Philipsen, Nucl. Phys. B 642 (2002) 290 no sign poblem Here (b) QCD θ, µ =2πiTθ D Elia, Lombardo, Phys. Rev. D 67 (2003) Kratochvila, de Forcrand, Phys. Rev. D 73 (2006) Wu, Luo, Chen, Phys. Rev. D 76 (2007) Braun, Haas, Marhauser, Pawlowski, arxiv: T [MeV] T conf T χ 0 0 π/3 2π/3 π 4π/3 2πθ Lisa Haas talk 27

45 Dual Observables vs. Chiral Transition in QCDθ Quark mass parameter (a) dual mass, confinement 1 = dθ M (θ) e 2πiθ M (b) mass in QCDθ, chiral symmetry breaking Mθ (θ + 1/3) = Mθ (θ) 0 Mθ (θ) M (θ) θ θ = 1/3 28

46 Summary & Outlook Propagators and Running Coupling of Landau Gauge QCD very well understood at T=0, 0.40 increasingly well at finite T α MM L (p2 ) (β, N 4 )=(6.0, 32 4 ) (6.2, 32 4 ) (6.4, 32 4 ) (6.6, 32 4 ) (6.9, 48 4 ) (7.2, 64 4 ) (7.5, 64 4 ) (8.5, 48 4 ) α MM s (p2 ) 4 3 Z(p 2 )!"!! #"$ %&!! #"$ %&!! '""!"!! '"( '#!! '"( N f = p 2 [GeV 2 ] p [GeV] 29

47 Summary & Outlook Propagators and Running Coupling of Landau Gauge QCD very well understood at T=0, increasingly well at finite T 1 st Applications of range from: deconfinement phase transition of the pure gauge theory The hard part done! deconfinement & chiral symmetry restoration in full QCD at zero and imaginary chemical potential 289.5MeV 310 MeV SU(3) f π (T)/f π (0) Dual density Polyakov Loop MeV 295 MeV 289.5MeV 285 MeV χ L,dual T [MeV]

48 Summary & Outlook Propagators and Running Coupling of Landau Gauge QCD very well understood at T=0, increasingly well at finite T 1 st Applications of range from: deconfinement phase transition of the pure gauge theory Tested against Lattice Results The hard part done! deconfinement & chiral symmetry restoration in full QCD at zero and imaginary chemical potential 29

49 Summary & Outlook Propagators and Running Coupling of Landau Gauge QCD very well understood at T=0, increasingly well at finite T 1 st Applications of range from: deconfinement phase transition of the pure gauge theory deconfinement & chiral symmetry restoration in full QCD at zero and imaginary chemical potential Tested against Lattice Results Continue to Combine Methods towards: dynamical quark flavors - real chemical potential: critical end point, triple point...? - obtain model independent information on QCD phase diagram - refine and constrain effective hadronic theories 29

50 Summary & Outlook Propagators and Running Coupling of Landau Gauge QCD very well understood at T=0, increasingly well at finite T 1 st Applications of range from: deconfinement phase transition of the pure gauge theory deconfinement & chiral symmetry restoration in full QCD at zero and imaginary chemical potential Tested against Lattice Results Continue to Combine Methods towards: dynamical quark flavors - real chemical potential: critical end point, triple point...? - obtain model independent information on QCD phase diagram - refine and constrain effective hadronic theories Thank You! 29

51 Extra Sides Some Additional Material 38

52 Dyson-Schwinger Equations Generating functional: Z[j] = exp(j, φ) glue: -1 = -1-1/2-1/2 Green s functions (T =0here) - 1/6-1/2 A µ (x)a ν (y) : D µν (p) = Z(p2 ) p 2 δ µν p µp ν p c(x) c(y) : ψ(x) ψ(y) : D G (p) = G(p2 ) p 2 S(p) = Z ψ(p 2 ) ip/ + M(p 2 ) ghost: quark: -1 = -1-1 = -1 39

53 Functional RG (Flow) Equations Effective action: Legendre transform Γ[φ j ]=(j, φ j ) ln Z[j] k 0 k S IR k- k k UV k= 1PI vertex functions Γ (n) (x 1,...x n ) free energy with φ j = φ j k t = 1 k Γ k [φ] 2 Wetterich, Phys. Lett. B 301 (1993) 90 40

54 Functional RG (Flow) Equations Landau gauge QCD propagators, glue: k k 1 = ghost: k k 1 =

55 Generating Functional and Effective Action D II (Definition) 2 Fields: φ = {A, c, c, ψ, ψ} Introduce sources: Z[j] = exp(j, φ) π G2 (p 2 ) Z (p 2 ) Effective action: Legendre transform [Γ 3g (p 2 )] 2 Z 3 (p 2 ) Γ[φ j ]=(j, φ j ) ln Z[j] Green s functions φ(x)φ(y), φ(x)φ(y)φ(z),... Laufende 1PI vertex functions Kopplun Γ (n) (x 1,...x n ) free energy with φ j = φ j Γ qg (p 2 ) (p 2 ) 1/ Γ ca c Γ 3A Γ 4A ψa ψ Γ [Γ 4g (p 2 )] Z 2 (p 2 ) α qg (p 2 )=α µ [Γ r, C.F., F. Llanes-Estrada, Phys.Lett.B611: , !

56 Ghost Propagator Bogolubsky et al., Phys. Lett. B 676 (2009) scaling decoupling 4 3 β = (14 conf.) 80 4 (11 conf.) 80 4 (5 conf.) L = 13.6 fm G(p 2 ) p 2 [GeV 2 ] p 2 [GeV 2 ] Fischer, Maas, Pawlowski, Annals Phys. 324 (2009) 2408 Maas, arxiv:

57 Imaginary Chemical Potential Polyakov-NJL model: Sakai, Kashiwa, Kouno, Matsuzaki, Yahiro, Phys. Rev. D 79 (2009) Lattice data: Wu, Luo, Chen, Phys. Rev. D 76 (2007)

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices and Tereza Mendes Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970

More information

Locating QCD s critical end point

Locating QCD s critical end point Locating QCD s critical end point Christian S. Fischer Justus Liebig Universität Gießen 31st of Oct 2016 Eichmann, CF, Welzbacher, PRD93 (2016) [1509.02082] Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

On bound states in gauge theories with different matter content

On bound states in gauge theories with different matter content On bound states in gauge theories with different matter content Reinhard Alkofer Institute of Physics, Department of Theoretical Physics, University of Graz Bound states in QCD and beyond St. Goar, March

More information

Functional RG methods in QCD

Functional RG methods in QCD methods in QCD Institute for Theoretical Physics University of Heidelberg LC2006 May 18th, 2006 methods in QCD motivation Strong QCD QCD dynamical symmetry breaking instantons χsb top. dofs link?! deconfinement

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Trieste, September 206 M. Mitter (U Heidelberg) χsb in continuum QCD Trieste, September 206 / 20 fqcd collaboration

More information

On the Landau gauge three-gluon vertex

On the Landau gauge three-gluon vertex On the Landau gauge three-gluon vertex M. Vujinovic, G. Eichmann, R. Williams, R. Alkofer Karl Franzens University, Graz PhD Seminar talk Graz, Austria, 13.11.2013. M. Vujinovic et al. (KFU, Graz) On the

More information

arxiv: v1 [hep-lat] 28 Nov 2018

arxiv: v1 [hep-lat] 28 Nov 2018 High Precision Statistical Landau Gauge Lattice Gluon Propagator Computation arxiv:1811.11678v1 [hep-lat] 28 Nov 2018 David Dudal KU Leuven Kulak, Department of Physics, Etienne Sabbelaan 53 bus 7657,

More information

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

The Role of the Quark-Gluon Vertex in the QCD Phase Transition The Role of the Quark-Gluon Vertex in the QCD Phase Transition PhD Seminar, 05.12.2012 Markus Hopfer University of Graz (A. Windisch, R. Alkofer) Outline 1 Motivation A Physical Motivation Calculations

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature Massive gluon propagator at zero and finite temperature Attilio Cucchieri a,b, David Dudal b, a and Nele Vandersickel b a Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369,

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

QCD Green Functions:

QCD Green Functions: QCD Green Functions: What their Infrared Behaviour tells us about Confinement! Reinhard Alkofer FWF-funded Doctoral Program Hadrons in Vacuum, Nuclei and Stars Institute of Physics Theoretical Physics

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

QCD from quark, gluon, and meson correlators

QCD from quark, gluon, and meson correlators QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Frankfurt, October 7 M. Mitter (BNL) Correlators of QCD Frankfurt, October 7 / fqcd collaboration - QCD (phase diagram)

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg GSI, February 9, 216 M. Mitter (U Heidelberg) χsb in continuum QCD GSI, February 216 1 / 29 fqcd collaboration

More information

arxiv: v1 [hep-lat] 31 Jan 2011

arxiv: v1 [hep-lat] 31 Jan 2011 What Lattice QCD tell us about the Landau Gauge Infrared Propagators arxiv:.5983v [hep-lat] 3 Jan Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, 34-56 Coimbra, Portugal

More information

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions Markus Huber 1 R. Alkofer 1 C. S. Fischer 2 K. Schwenzer 1 1 Institut für Physik, Karl-Franzens Universität Graz 2 Institut

More information

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC

Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC The dynamics of the gluon mass Joannis Papavassiliou Department of Theoretical Physics and IFIC University of Valencia-CSIC Worshop on Functional Methods in Hadron and Nuclear Physics 2-25 August, 27 ECT*

More information

arxiv: v1 [hep-ph] 17 Apr 2014

arxiv: v1 [hep-ph] 17 Apr 2014 Non-perturbative features of the three-gluon vertex in Landau gauge Milan Vujinovic, Reinhard Alkofer arxiv:404.4474v [hep-ph] 7 Apr 204 Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz

More information

QCD phase structure from the functional RG

QCD phase structure from the functional RG QCD phase structure from the functional RG Mario Mitter Ruprecht-Karls-Universität Heidelberg Dubna, November 216 M. Mitter (U Heidelberg) QCD phase structure from the frg Dubna, November 216 1 / 23 fqcd

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

The static potential in the Gribov-Zwanziger Lagrangian

The static potential in the Gribov-Zwanziger Lagrangian The static potential in the Gribov-Zwanziger Lagrangian Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom E-mail:

More information

PoS(Baldin ISHEPP XXII)015

PoS(Baldin ISHEPP XXII)015 and Gribov noise in the Landau gauge gluodynamics JINR, Dubna E-mail: bogolubs@jinr.ru I propose a way of a Gribov noise suppression when computing propagators in lattice approach and show the results

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Recent results for propagators and vertices of Yang-Mills theory

Recent results for propagators and vertices of Yang-Mills theory Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions Recent results for propagators and vertices of Yang-Mills theory Markus Q. Huber arxiv:1808.05227 Institute of Theoretical

More information

Confinement from Correlation Functions

Confinement from Correlation Functions Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland, and Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,

More information

Chiral symmetry breaking in continuum QCD

Chiral symmetry breaking in continuum QCD Chiral symmetry breaking in continuum QCD Mario Mitter Ruprecht-Karls-Universität Heidelberg Graz, April 19, 2016 M. Mitter (U Heidelberg) χsb in continuum QCD Graz, April 19, 2016 1 / 34 fqcd collaboration

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Introduction to Strong Interactions and the Hadronic Spectrum

Introduction to Strong Interactions and the Hadronic Spectrum Introduction to Strong Interactions and the Hadronic Spectrum Milan Vujinovic University of Graz, Graz, Austria Support by FWF Doctoral Program W1203 Hadrons in Vacuum, Nuclei and Stars Institute of Physics,

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September

More information

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge André Sternbeck Friedrich-Schiller-Universität Jena, Germany Lattice 2016, Southampton (UK) Overview in collaboration with 1) Motivation

More information

arxiv: v1 [hep-lat] 14 Jan 2010

arxiv: v1 [hep-lat] 14 Jan 2010 arxiv:00.2584v [hep-lat] 4 Jan 200 Numerical test of the Gribov-Zwanziger scenario in Landau gauge Attilio Cucchieri Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 3560-970

More information

Properties of canonical fermion determinants with a fixed quark number

Properties of canonical fermion determinants with a fixed quark number Properties of canonical fermion determinants with a fixed uark number Julia Danzer Institute of Physics, University of Graz, Austria E-mail: julia.danzer@uni-graz.at Institute of Physics, University of

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes

The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes HU-EP-07/47 ADP-07-11/T651 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes a, E.-M. Ilgenfritz b, M. Müller-Preussker b, and A. Sternbeck c a Joint Institute

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory Universität Tübingen Institut für Theoretische Physi Auf der Morgenstelle 4 D-7076 Tübingen Germany E-mail: hugo.reinhardt@uni-tuebingen.de Marus Leder

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Describing Gluons Axel Maas 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil Overview Gauge freedom in Yang-Mills theory Supported by the FWF Slides left: 56 (in this section: 0) Overview

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Hadron spectra and QCD phase diagram from DSEs

Hadron spectra and QCD phase diagram from DSEs Hadron spectra and QCD phase diagram from DSEs Christian S. Fischer Justus Liebig Universität Gießen ECT* 017 with Gernot Eichmann, Helios Sanchis-Alepuz, Richard Williams, Christian Welzbacher Review:

More information

arxiv: v2 [hep-ph] 18 Dec 2017

arxiv: v2 [hep-ph] 18 Dec 2017 Center phase transition from matter propagators in (scalar) QCD M. Mitter a,b, M. Hopfer a, B.-J. Schaefer c, R. Alkofer a arxiv:179.99v [hep-ph] 18 Dec 17 Abstract a Institut für Physik, NAWI Graz, Karl-Franzens-Universität

More information

Infra-Red. Infra-red dog

Infra-Red. Infra-red dog A Ghost Story Gluons and ghosts in the IR and the UV Berlin, June 15, 2009 Ph.,Boucaud, F De soto, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez- Quintero, A.Lokhov and C. Roiesnel I. Gluons

More information

arxiv: v1 [hep-lat] 19 Dec 2016

arxiv: v1 [hep-lat] 19 Dec 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2018 arxiv:1612.06106v1 [hep-lat] 19 Dec 2016 QCD propagators and

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Properties of gauge orbits

Properties of gauge orbits Properties of gauge orbits Axel Maas 18 th of June 2010 XXVIII International Symposium on Lattice Field Theory Villasimius Sardinia/Italy Why gauge-fixing? Slides left: 16 (in this section: 2) Why gauge-fixing?

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

arxiv: v1 [hep-th] 7 Nov 2018

arxiv: v1 [hep-th] 7 Nov 2018 arxiv:1811.337v1 [hep-th] 7 Nov 18 SLAC National Accelerator Laboratory, Stanford University, USA E-mail: lowdon@slac.stanford.edu Local formulations of quantum field theory provide a powerful framework

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Green s Functions and Topological Configurations

Green s Functions and Topological Configurations Green s Functions and Toological Configurations Deartment of Theoretical Physics, Institute of Physics, Karl-Franzens University Graz, Universitätslatz, A-8 Graz, Austria and Deartment of Comlex Physical

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Quark-gluon interactions in QCD

Quark-gluon interactions in QCD Quark-gluon interactions in QCD AYSE KIZILERSU (CSSM, University of Adelaide) Australia Collaborators : Jonivar Skullerud (Maynooth, Ireland ) Andre Sternbeck (Jena, Germany) QCD DOWNUNDER! -4 July 7!

More information

Non-perturbative momentum dependence of the coupling constant and hadronic models

Non-perturbative momentum dependence of the coupling constant and hadronic models Non-perturbative momentum dependence of the coupling constant and hadronic models Pre-DIS Wokshop QCD Evolution Workshop: from collinear to non collinear case April 8-9, 2011 JLab Aurore Courtoy INFN-Pavia

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

arxiv: v3 [hep-lat] 30 Jan 2018

arxiv: v3 [hep-lat] 30 Jan 2018 The lattice Landau gauge gluon propagator: lattice spacing and volume dependence Orlando Oliveira and Paulo J. Silva Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, - Coimbra,

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

arxiv: v2 [hep-ph] 10 Jul 2017

arxiv: v2 [hep-ph] 10 Jul 2017 Locating the Gribov horizon arxiv:76.468v [hep-ph Jul 7 Fei Gao, Si-Xue Qin, Craig D. Roberts, and Jose Rodríguez-Quintero 4 Department of Physics and State Key Laboratory of Nuclear Physics and Technology,

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Quarks and gluons in a magnetic field

Quarks and gluons in a magnetic field Quarks and gluons in a magnetic field Peter Watson, Hugo Reinhardt Graz, November 2013 P.W. & H.Reinhardt, arxiv:1310.6050 Outline of talk Brief introduction (magnetic catalysis) Landau levels (Dirac equation

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Scalar particles - Properties in Landau gauge(s) Axel Maas 7 th of May 2010 Delta 2010 Heidelberg Germany Aim Describe gauge theories

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Light and strange baryon spectrum from functional methods

Light and strange baryon spectrum from functional methods Light and strange baryon spectrum from functional methods Christian S. Fischer Justus Liebig Universität Gießen Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602] Christian

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Analytical study of Yang-Mills theory from first principles by a massive expansion

Analytical study of Yang-Mills theory from first principles by a massive expansion Analytical study of Yang-Mills theory from first principles by a massive expansion Department of Physics and Astronomy University of Catania, Italy Infrared QCD APC, Paris Diderot University, 8-10 November

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

On the role of fluctuations in (2+1)-flavor QCD

On the role of fluctuations in (2+1)-flavor QCD On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Germany Germany November 29 th, 217 Conjectured QC3D phase diagram Temperature early universe LHC crossover vacuum RHIC SPS =

More information

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U. Heidelberg U. From Micro to Macro DoF From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models Bag models Skyrmions... IR From Micro to Macro DoF UV PLM PNJL NJL Quark Meson model Quark models

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY

arxiv:hep-th/ v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY LTH 601 November 16, 2016 21:26 WSPC/Trim Size: 9in x 6in for Proceedings arxiv:hep-th/0309241v1 26 Sep 2003 THE 2PPI EXPANSION: DYNAMICAL MASS GENERATION AND VACUUM ENERGY D. DUDAL AND H. VERSCHELDE Ghent

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge Institut für Physik, Karl-Franzens-Universität, Universitätsplatz 5, A-8010 Graz, Austria E-mail: reinhard.alkofer@uni-graz.at

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

From confinement to new states of dense QCD matter

From confinement to new states of dense QCD matter From confinement to new states of dense QCD matter From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011 Kurt Langfeld School of Comp. and Mathematics and The HPCC, Univ. of Plymouth,

More information

Unquenched Lattice Landau Gauge QCD Simulation

Unquenched Lattice Landau Gauge QCD Simulation Unquenched Lattice Landau Gauge QCD Simulation Sadataka Furui School of Science and Engineering, Teikyo University Hideo Nakajima Department of Information science, Utsunomiya University 16 Dec. 2004,

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information