Molecular Mechanics Force Fields

Size: px
Start display at page:

Download "Molecular Mechanics Force Fields"

Transcription

1 Molecular Mechanics Force Fields Basic Premise If we want to study a protein, piece of DNA, biological membranes, polysaccharide, crystal la;ce, nanomaterials, diffusion in liquids, the number of electrons (i.e. the number of energy calculaaons) make quantum mechanical calcula-ons impossible even with present day computers. Instead, we replace the nuclei and electrons, and their interacaons, by new potenaal funcaons: Classical atoms. Based on simple physical concepts Enables the systems under study to be VERY large (100,000 atoms).

2 Molecularmechanicsforcefields ThemolecularinteracAons,alsoknownasthepotenAals,togetherformaforcefield, Aforcefieldisamathema8caldescrip8onoftheclassicalforcesorenergies betweenpar8cles(atoms).energy=func%onofatomicposi%ons(x,y,z) Theforcefieldequa%onconsistsofseveralfunc%onsthatdescribemolecular proper%esbothwithinandbetweenmolecules Theforcefieldalsocontainsparameters(numbers)inthepotenAalfuncAonsthatare tunedtoeachtypeofmolecule(protein,nucleicacid,carbohydrates) TherearemanydifferentforcefieldequaAonsandparametersets Aforcefieldmustbesimpleenoughthatitcanbeevaluatedquickly,butsufficiently detailedthatitreproducesthekeyfeaturesofthephysicalsystembeingmodelled.

3 Forcefieldclassifica8on Ingeneral,forcefieldscanbeclassifiedaseither: Specific(manyparameters,limitedapplicability,highaccuracy) O>endevelopedinacademiclabsforstudyofspecificmolecularclasses or Generic(fewerparameters,moregeneraliza-ons,wideapplicability,pooraccuracy) Easiesttouseinpoint andclickso>ware ForceFieldParameterscancomefrom: Experimentalsources(mainlyfromx raydiffrac-on) or Theore-calcalcula-ons(mainlyfromQM) ManyforcefieldsemploysimilarmathemaAcalequaAonsbutdifferinthe parametersusedintheequaaons.itisthereforeextremelydangerousmixto parametersbetweenforcefields.

4 DifferentForceFields: AMBER(AssistedModelBuildingwithEnergyRefinement). CHARMM(ChemistryatHARvardusingMolecularMechanics). GROMOS(GROenigenMolecularSimulaAon) OPLS(OpAmizedParametersforLarge scalesimulaaons) MMFF(theMerckMolecularForceField) DREIDINGGenericforcefieldduetoMayoetal.(1990) UNIVERSAL(UFF)GenericforcefieldduetoRappeetal.(1992) CVFF/PCFFForcefieldsforfluorinatedhydrocarbons MM2,MM3,MM4DevelopedbyAllingeretal.forcalculaAonsonsmallmolecules COMPASSCommercialforcefieldmarketedbyAccelrysInc.

5 DifferentForceFields: AMBER(AssistedModelBuildingwithEnergyRefinement). CHARMM(ChemistryatHARvardusingMolecularMechanics). GROMOS(GROenigenMolecularSimulaAon) OPLS(OpAmizedParametersforLarge scalesimulaaons) MMFF(theMerckMolecularForceField) DREIDINGGenericforcefieldduetoMayoetal.(1990) UNIVERSAL(UFF)GenericforcefieldduetoRappeetal.(1992) CVFF/PCFFForcefieldsforfluorinatedhydrocarbons MM2,MM3,MM4DevelopedbyAllingeretal.forcalculaAonsonsmallmolecules COMPASSCommercialforcefieldmarketedbyAccelrysInc.

6 ForceFieldPoten8alFunc8ons ThepotenAalfuncAonsmaybedividedintobondedterms,whichgivetheenergy containedintheinternaldegreesoffreedom,andnon bondedterms,which describeinterac8onsbetweenmolecules. E pot = V r Vθ Vτ VvanderWaals + bonds angles torsions atoms atoms V electrostatics Poten8alsbetweenbondedatoms Poten8alsbetweennon bondedatoms Totalpoten8alEnergy,E pot orv tot

7 ForceFieldPoten8alEnergyFunc8ons i R ij j V V vanderwaals Electrostatic σ ij = 4ε Rij qiq j = 4πεR ij 12 σ ij Rij 6 (JohnLennard Jones 1931) (CharlesAugus-ndeCoulomb 1785) i r ij j V bonds = 1 2 k ij r 0 ( r r ) 2 ij ij (RobertHooke 1660) k j k j θ ijk i V angles = 1 2 k ijk θ 0 ( θ θ ) 2 ij ij V torsions τ ijkl l i 1 = 2 n k ijkl n ( 1 cos( nτ )) (JeanBap-steJosephFourier 1822)

8

9

10 AlternaAvely,apower seriesexpansionofthemorsepotenaalcanbeused GraphicalcomparisonofMorseandpowerlawpotenAals ProblemwithharmonicapproximaAon: Bondscannotbreak(essenceofMolecularMechanics;nobondsarebrokenorformed, cannotbeusedforchemicalreacaons).

11

12

13

14 TorsionAngleorDihedralAngleEnergy Thetorsionalenergyisdefinedbetweeneveryfourbondedatoms(1 4interacAons), anddependsonthetorsion(akadihedral)angleϕmadebythetwoplanes incorporaangthefirstandlastthreeatomsinvolvedinthetorsion TorsiontermsaccountforanyinteracAonsbetween1 4atompairsthatarenotalready accountedforbynon bondedinteracaonsbetweentheseatoms Forexample:theycouldbeusedtodescribebarrierstobondrotaAonfromelectron delocalizaaon(doublebondsorparaaldoublebonds),orstereo electroniceffects

15 TorsionExample TheSingleBond Usingthestandardcos3φpotenAal,therearethreeequilibriumposiAons:ϕ=180 (transstate)and±60 (gauchestates). InpracAce,theenergiesofthegauchestatesareslightlydifferentthanthatofthe transstate,dependingontheatomsinvolvedinthetorsion.

16

17

18 TointroduceadifferencebetweenthestabiliAesofthe gaucheandtransconformaaons,thetorsionfuncaoncanbe expandedwithaddiaonalterms,eachwithit sunique contribuaontotherotaaonalenergy:

19 Electrosta8cs DifferenceinelectronegaAvitybetweenatomsgeneratesunequalcharge distribuaoninamolecule OmenelectronegaAvitydifferencesarerepresentedasfracAonalpointcharges(q) withinthemolecule(normallycenteredatthenuclei(paraalatomiccharges) ElectrostaAcinteracAonenergyiscalculatedasasumofinteracAonsbetween paraalatomiccharges,usingcoulombslaw Naturally,thisequaAonisalsousedformodelinginteracAonsbetweenintegral charges,suchasbetweenions V Electrostatic = q q i j 4πεR TheproblemwiththisapproachisthatthereisnosuchthingasafracAonalelectron, thereforethereisnoperfectmethodtoderivetheparaalatomiccharges ij

20 VanderWaalsInterac8ons Non bondedinteracaonthatarenotelectrostaac(e.g.betweenatomsinnoble gas)arelabeledvanderwaalsinteracaons Containsdispersionandshort rangecomponents DispersioninteracAonsalwaysaoracAve.Arisefrominstantaneousdipolesthat occurduringfluctuaaonswithinthemolecularelectroncloud Short rangeinteracaonsarealwaysunfavorable.alsolabeledexchange,or overlap,forces.theyoccurbetweenelectronswiththesamespinsotheydonot occupysameregioninspace(pauliexclusionprinciple)

21

22

23 SUMMARY ForceFieldTerms ElectrostaAcenergyisrepresentedusingasetofparAalatomiccharges vanderwaalsenergyhasbothweaklyaoracaveandstronglyrepulsivecomponentsand arisesfromrepresentselectroncorrelaaon ThedispersiontermisalwaysnegaAvewhereasshort rangeenergyisalwaysrepulsive. TorsiontermsdescribebondrotaAonalproperAesthatarisefromnon classicaleffects, suchaselectrondelocalizaaon Theremainingbondandangletermsdescribecovalentbonding Oncewehaveourforcefield,whatcanwedowithit? EnergyminimisaAon MolecularDynamics ConformaAonalanalysis Theaccuracyoftheoutputfromallthesetechniqueswillobviouslybesensi8vetoa greaterorlesserextentontheparameteriza8onoftheforcefield

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Molecular Mechanics. Yohann Moreau. November 26, 2015

Molecular Mechanics. Yohann Moreau. November 26, 2015 Molecular Mechanics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Mechanics, Label RFCT 2015 November 26, 2015 1 / 29 Introduction A so-called Force-Field

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

LAMMPS Performance Benchmark on VSC-1 and VSC-2

LAMMPS Performance Benchmark on VSC-1 and VSC-2 LAMMPS Performance Benchmark on VSC-1 and VSC-2 Daniel Tunega and Roland Šolc Institute of Soil Research, University of Natural Resources and Life Sciences VSC meeting, Neusiedl am See, February 27-28,

More information

Advanced Quantum Chemistry III: Part 6

Advanced Quantum Chemistry III: Part 6 Advanced Quantum Chemistry III: Part 6 Norio Yoshida Kyushu University Last updated 16-1-6 2015 Winter Term 1 Quantum Chemistry for Condensed Phase Liquid phase Solid phase Biological systems 2 Divide

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Advanced Quantum Chemistry III: Part 6

Advanced Quantum Chemistry III: Part 6 Advanced Quantum Chemistry III: Part 6 Norio Yoshida Kyushu University Last updated 14-1-15 2013 Winter Term 1 Quantum Chemistry for Condensed Phase Liquid phase Solid phase Biological systems 2 Divide

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels

Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels Jonathan Walter 1, Jadran Vrabec 2, Hans Hasse 1 1 Laboratory of Engineering, University of Kaiserslautern, Germany 2 and

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Outline Energy functions for proteins (or biomolecular systems more generally)

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Force fields, thermo- and barostats. Berk Hess

Force fields, thermo- and barostats. Berk Hess Force fields, thermo- and barostats Berk Hess What is a force field? A force field usually consists of three parts: a set of functional forms parameters for the functional forms that, usually, depend on

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Subject of the Lecture:

Subject of the Lecture: Subject of the Lecture: Conceptual basis for the development of force fields. Implementation/validation Water - a worked example Extensions - combining molecular mechanics and quantum mechanics (QM/MM)

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016 classical description of molecules April 29, 2016 Chemical bond Conceptual and chemical basis quantum effect solution of the SR numerically expensive (only small molecules can be treated) approximations

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 207 Supporting Information Carbon Nanoscroll- Silk Crystallite Hybrid Structure with Controllable Hydration

More information

Why Is Molecular Interaction Important in Our Life

Why Is Molecular Interaction Important in Our Life Why Is Molecular Interaction Important in ur Life QuLiS and Graduate School of Science iroshima University http://www.nabit.hiroshima-u.ac.jp/iwatasue/indexe.htm Suehiro Iwata Sept. 29, 2007 Department

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

This semester. Books

This semester. Books Models mostly proteins from detailed to more abstract models Some simulation methods This semester Books None necessary for my group and Prof Rarey Molecular Modelling: Principles and Applications Leach,

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Fragmentation methods

Fragmentation methods Fragmentation methods Scaling of QM Methods HF, DFT scale as N 4 MP2 scales as N 5 CC methods scale as N 7 What if we could freeze the value of N regardless of the size of the system? Then each method

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Residual Dipolar Couplings (RDC s) Relatively new technique ~ 1996 Nico Tjandra, Ad Bax- NIH, Jim Prestegard, UGA Combination of

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Semi Empirical Force Fields and Their Limitations. Potential Energy Surface (PES)

Semi Empirical Force Fields and Their Limitations. Potential Energy Surface (PES) Semi Empirical Force Fields and Their Limitations Ioan Kosztin Beckman Institute University of Illinois at Urbana-Champaign Potential Energy Surface (PES) Schrödinger equation: H T Ψ( r, = E Ψ( r, H =

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information

Scuola di Chimica Computazionale

Scuola di Chimica Computazionale Societa Chimica Italiana Gruppo Interdivisionale di Chimica Computazionale Scuola di Chimica Computazionale Introduzione, per Esercizi, all Uso del Calcolatore in Chimica Organica e Biologica Modellistica

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Computational Modeling of Protein Dynamics. Yinghao Wu Department of Systems and Computational Biology Albert Einstein College of Medicine Fall 2014

Computational Modeling of Protein Dynamics. Yinghao Wu Department of Systems and Computational Biology Albert Einstein College of Medicine Fall 2014 Computational Modeling of Protein Dynamics Yinghao Wu Department of Systems and Computational Biology Albert Einstein College of Medicine Fall 2014 Outline Background of protein dynamics Basic computational

More information

Analysis of the simulation

Analysis of the simulation Analysis of the simulation Marcus Elstner and Tomáš Kubař January 7, 2014 Thermodynamic properties time averages of thermodynamic quantites correspond to ensemble averages (ergodic theorem) some quantities

More information

Statistical Thermodynamics Exercise 11 HS Exercise 11

Statistical Thermodynamics Exercise 11 HS Exercise 11 Exercise 11 Release: 412215 on-line Return: 1112215 your assistant Discussion: 1512215 your tutorial room Macromolecules (or polymers) are large molecules consisting of smaller subunits (referred to as

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Molecular Dynamics. Molecules in motion

Molecular Dynamics. Molecules in motion Molecular Dynamics Molecules in motion 1 Molecules in mo1on Molecules are not sta1c, but move all the 1me Source: h9p://en.wikipedia.org/wiki/kine1c_theory 2 Gasses, liquids and solids Gasses, liquids

More information

E12 UNDERSTANDING CRYSTAL STRUCTURES

E12 UNDERSTANDING CRYSTAL STRUCTURES E1 UNDERSTANDING CRYSTAL STRUCTURES 1 Introduction In this experiment, the structures of many elements and compounds are rationalized using simple packing models. The pre-work revises and extends the material

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

MOLECULAR DYNAMICS SIMULATIONS OF FRICTION FORCE VERSUS LOAD

MOLECULAR DYNAMICS SIMULATIONS OF FRICTION FORCE VERSUS LOAD MOLECULAR DYNAMICS SIMULATIONS OF FRICTION FORCE VERSUS LOAD Ana-Camelia Pirghie Stefan cel Mare University of Suceava, Department of Mechanics and Technology, camelia.pirghie@fim.usv.ro Abstract: The

More information

Molecular Simulation II. Classical Mechanical Treatment

Molecular Simulation II. Classical Mechanical Treatment Molecular Simulation II Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]:

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]: MSE 102, Fall 2014 Midterm #2 Write your name here [10 points]: Instructions: Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly. The point values

More information

MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES

MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES The st International Symposium on Micro & Nano Technology, 4-7 March, 4, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y. Igarashi, Y. Taniguchi

More information

3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D.

3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D. 3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D. Thierry Langer, Ph.D. Jana Vrbková, Ph.D. UP Olomouc, 23.1.-26.1. 2018

More information

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method American Journal of Mechanical Engineering, 15, Vol. 3, No. 6, 5-9 Available online at http://pubs.sciepub.com/ajme/3/6/14 Science and Education Publishing DOI:1.1691/ajme-3-6-14 Prediction of Young s

More information

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia Molecular Dynamics Simulations Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia 1 An Introduction to Molecular Dynamics Simulations Macroscopic properties

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Set the initial conditions r i. Update neighborlist. Get new forces F i

Set the initial conditions r i. Update neighborlist. Get new forces F i Set the initial conditions r i ( t 0 ), v i ( t 0 ) Update neighborlist Get new forces F i ( r i ) Solve the equations of motion numerically over time step Δt : r i ( t n ) r i ( t n + 1 ) v i ( t n )

More information

Molecular Modeling -- Lecture 15 Surfaces and electrostatics

Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular surfaces The Hydrophobic Effect Electrostatics Poisson-Boltzmann Equation Electrostatic maps Electrostatic surfaces in MOE 15.1 The

More information

Optimal configurations for classical interacting particles

Optimal configurations for classical interacting particles Optimal configurations for classical interacting particles Edoardo Mainini DIME, Università degli Studi di Genova, & Facoltà di Matematica, Università di Vienna Joint research with Ulisse Stefanelli, Paolo

More information

INTERMOLECULAR INTERACTIONS

INTERMOLECULAR INTERACTIONS 5.61 Physical Chemistry Lecture #3 1 INTERMOLECULAR INTERACTIONS Consider the interaction between two stable molecules (e.g. water and ethanol) or equivalently between two noble atoms (e.g. helium and

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Nanotube AFM Probe Resolution

Nanotube AFM Probe Resolution Influence of Elastic Deformation on Single-Wall Carbon Nanotube AFM Probe Resolution Ian R. Shapiro, Santiago D. Solares, Maria J. Esplandiu, Lawrence A. Wade, William A. Goddard,* and C. Patrick Collier*

More information

Biomolecular modeling I

Biomolecular modeling I 2015, December 15 Biomolecular simulation Elementary body atom Each atom x, y, z coordinates A protein is a set of coordinates. (Gromacs, A. P. Heiner) Usually one molecule/complex of interest (e.g. protein,

More information

3: Density Functional Theory

3: Density Functional Theory The Nuts and Bolts of First-Principles Simulation 3: Density Functional Theory CASTEP Developers Group with support from the ESF ψ k Network Density functional theory Mike Gillan, University College London

More information

An FPGA Implementation of Reciprocal Sums for SPME

An FPGA Implementation of Reciprocal Sums for SPME An FPGA Implementation of Reciprocal Sums for SPME Sam Lee and Paul Chow Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Objectives Accelerate part of Molecular

More information

Water. Hydrogen Bonding. Polar and Nonpolar Molecules. Water 8/25/2016 H 2 0 :

Water. Hydrogen Bonding. Polar and Nonpolar Molecules. Water 8/25/2016 H 2 0 : This image cannot currently be displayed. 8/25/2016 Water Water Life is inextricably tied to water. Single most outstanding chemical property of water is its ability to form hydrogen bonds. Hydrogen Bonding

More information

Isospin dependence of the EMC effect / Overview of JLab nuclear modification studies

Isospin dependence of the EMC effect / Overview of JLab nuclear modification studies Isospin dependence of the EMC effect / Overview of JLab nuclear modification studies John Arrington Argonne National Lab Next-generation nuclear physics with JLab12&EIC Florida International University

More information

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction Fondamenti di Chimica Farmaceutica Computer Chemistry in Drug Research: Introduction Introduction Introduction Introduction Computer Chemistry in Drug Design Drug Discovery: Target identification Lead

More information

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Nijil Lal C.K. Physical Research Laboratory, Ahmedabad YouQu-2017 27/02/2017 Outline Single Photon Sources (SPS) Heralded

More information

Interpreting and evaluating biological NMR in the literature. Worksheet 1

Interpreting and evaluating biological NMR in the literature. Worksheet 1 Interpreting and evaluating biological NMR in the literature Worksheet 1 1D NMR spectra Application of RF pulses of specified lengths and frequencies can make certain nuclei detectable We can selectively

More information

Definition of Matter. Subatomic particles 8/20/2012

Definition of Matter. Subatomic particles 8/20/2012 Interplay of Biology and Chemistry Here is a link to the video these beetles are fairly common locally an amazing adaptation, and a good example of chemistry and physics in biology. Also look for creationist-evolutionist

More information

Cell day 1.notebook September 01, Study the picture of a prokaryotic cell on page 162 in a textbook and the two eukaryotic cells on page 163.

Cell day 1.notebook September 01, Study the picture of a prokaryotic cell on page 162 in a textbook and the two eukaryotic cells on page 163. BellRinger: Log into a clicker! Study the picture of a prokaryotic cell on page 162 in a textbook and the two eukaryotic cells on page 163. Compare them and list similarities and differences. Sep 11 11:00

More information

Chapter 10 Liquids, Solids and Phase Changes

Chapter 10 Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes The three phases of matter: solids, liquids and gases Phase change properties of pure water at 1 atm pressure What is a boiling point? What does it measure?

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2.1 Water and Polarity Both geometry and properties of molecule determine polarity Electronegativity - The tendency of an atom to attract electrons to itself

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

Computational Biology & Computational Medicine

Computational Biology & Computational Medicine Computational Biology & Computational Medicine Homayoun Valafar Outline Why proteins? What are proteins? How do we compute them? How do we use computational approaches? Why Proteins? Molecular basis of

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Ch 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Isotopes are atoms of the same element with the same number of

More information

Classical and Quantum Mechanics Dr Mark R. Wormald. Bibliography

Classical and Quantum Mechanics Dr Mark R. Wormald. Bibliography Classical and Quantum Mechanics 1 Classical and Quantum Mechanics Dr Mark R. Wormald Lecture 1. Introduction. Building blocks of matter, fundamental particles. Forces between particles. Electrostatics,

More information

Protein structure forces, and folding

Protein structure forces, and folding Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Protein structure forces, and folding

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Some topics about Nematic and Smectic-A Liquid Crystals

Some topics about Nematic and Smectic-A Liquid Crystals Some topics about Nematic and Smectic-A Liquid Crystals Chillán, enero de 2010 Blanca Climent Ezquerra. Universidad de Sevilla. III WIMA 2010. Nematics and Smectic-A Liquid Crystals 1/25 Table of contents

More information

On a hyperbolic system arising in liquid crystals modeling

On a hyperbolic system arising in liquid crystals modeling On a hyperbolic system arising in liquid crystals modeling E. Rocca Università degli Studi di Pavia Workshop on Mathematical Fluid Dynamics Bad Boll, May 7 11, 2018 jointly with Eduard Feireisl (Prague)-Giulio

More information

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract In this work, a simplified Lennard-Jones (LJ) sphere model is used to simulate the aggregation,

More information

Formalism of the Tersoff potential

Formalism of the Tersoff potential Originally written in December 000 Translated to English in June 014 Formalism of the Tersoff potential 1 The original version (PRB 38 p.990, PRB 37 p.6991) Potential energy Φ = 1 u ij i (1) u ij = f ij

More information

Crystal Polymorphism in Hydrophobically Nanoconfined Water. O. Vilanova, G. Franzese Universitat de Barcelona

Crystal Polymorphism in Hydrophobically Nanoconfined Water. O. Vilanova, G. Franzese Universitat de Barcelona Crystal Polymorphism in Hydrophobically Nanoconfined Water O. Vilanova, G. Franzese Universitat de Barcelona Water s phase diagram Phase diagram of bulk water presents up to 15 different phases Typical

More information

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i Set the initial conditions r i t 0, v i t 0 Update neighborlist Get new forces F i r i Solve the equations of motion numerically over time step t : r i t n r i t n + 1 v i t n v i t n + 1 Perform T, P

More information

Molecular Dynamic Simulations in JavaScript

Molecular Dynamic Simulations in JavaScript Molecular Dynamic Simulations in JavaScript Daniel Kunin Abstract Using a Newtonian mechanical model for potential energy and a forcebased layout scheme for graph drawing I investigated the viability and

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

A Multilevel Method for the Global Optimization of Potential Energy Functions

A Multilevel Method for the Global Optimization of Potential Energy Functions A Multilevel Method for the Global Optimization of Potential Energy Functions Nadine Pastuszka Born 7th June 1989 in Brühl, Germany 29th April 2014 Master s Thesis Mathematics Advisor: Prof. Dr. Michael

More information

Nanotechnology? Source: National Science Foundation (NSF), USA

Nanotechnology? Source: National Science Foundation (NSF), USA 2 2 Nanotechnology? Ability to work at the atomic, molecular and even sub-molecular levels in order to create and use material structures, devices and systems with new properties and functions Source:

More information

Lecture 3: methods and terminology, part I

Lecture 3: methods and terminology, part I Eritis sicut Deus, scientes bonum et malum. Lecture 3: methods and terminology, part I Molecular dynamics, internal coordinates, Z-matrices, force fields, periodic boundary conditions, Hartree-Fock theory,

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Kyoungmin Min, Namjung Kim and Ravi Bhadauria May 10, 2010 Abstract In this project, we investigate the shear properties of finite sized

More information

Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation

Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation Simple Examples of Analysis for a Single Gene wo-olor Microarray Experimental Design Notation /3/0 opyright 0 Dan Nettleton Microarray Experimental Design Notation Microarray Experimental Design Notation

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

The living world has a hierarchy of organizational levels - from molecules to ecosystems

The living world has a hierarchy of organizational levels - from molecules to ecosystems The living world has a hierarchy of organizational levels - from molecules to ecosystems In order to understand the whole, biologists study the parts (reductionism) With each level, new properties EMERGE

More information

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model John Dood Hope College What are MD simulations? Model and predict the structure and dynamics of large macromolecules.

More information

SAM Teachers Guide Chemical Bonds

SAM Teachers Guide Chemical Bonds SAM Teachers Guide Chemical Bonds Overview Students discover that the type of bond formed ionic, non polar covalent, or polar covalent depends on the electronegativity of the two atoms that are bonded

More information

Review. CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror

Review. CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror Review CS/CME/BioE/Biophys/BMI 279 Nov. 30 and Dec. 5, 2017 Ron Dror 1 Information on the exam The exam will focus on high-level concepts You may use two (single-sided) pages of notes, but the emphasis

More information