Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation

Size: px
Start display at page:

Download "Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation"

Transcription

1 Simple Examples of Analysis for a Single Gene wo-olor Microarray Experimental Design Notation /3/0 opyright 0 Dan Nettleton Microarray Experimental Design Notation Microarray Experimental Design Notation 3 4 Biological Replicates vs. echnical Replicates Example : wo-reatment RD Biological Replication echnical Replication Both Biological and echnical Replication 5 6

2 Assign 8 Plants to Each reatment ompletely at Random Randomly Pair Plants Receiving Different reatments 7 8 Randomly Assign Pairs to Slides Balancing the wo Dye onfigurations Observed Normalized Log Signal Intensities for One Gene Y Y Y 5 Y 5 Y Y Y 6 Y 6 Y 3 Y 3 Y 7 Y 7 Y 4 Y 4 Y 8 Y 8 treatment dye slide 9 0 Unknown Means Underlying the Observed Normalized Log Signal Intensities (NLSI) Differential Expression μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ+τ +δ μ is a real-valued parameter common to all observations. τ and τ represent the effects of treatments and on mean NLSI. δ and δ represents the effects of y3 and y5 dyes on mean NLSI. A gene is said to be differentially expressed if τ τ.

3 Unknown Random Effects Underlying Observed NLSI o make our model complete, we need to say more about the random effects. s +e s +e s 5 +e 5 s 5 +e 5 We will almost always assume that random effects are independent and normally distributed with mean zero and a factor-specific variance. s +e s 3 +e 3 s 4 +e 4 s +e s 3 +e 3 s 4 +e 4 s 6 +e 6 s 7 +e 7 s 8 +e 8 s, s, s 3, s 4, s 5, s 6, s 7, and s 8 represent slide effects. s 6 +e 6 s 7 +e 7 s 8 +e 8 s, s,..., s 8 ~ N(0,σ s ) and independent of e, e, e 3, e 4, e, e, e 3, e 4, e 5, e 6, e 7, e 8, e 5, e 6, e 7, e 8 ~ N(0,σ e ). e,...,e 8 represent error random effects that include any sources of variation unaccounted for by other terms. 3 4 iid iid (or just e ijk ~ N(0,σ e ) to save time and space.) iid iid What does s, s,..., s 8 ~ N(0,σ s ) mean? Observed NLSI are Modeled as Means Plus Random Effects Y =μ+τ +δ +s +e Y =μ+τ +δ +s +e Y 5 =μ+τ +δ +s 5 +e 5 Y 5 =μ+τ +δ +s 5 +e 5 Y =μ+τ +δ +s +e Y =μ+τ +δ +s +e Y 6 =μ+τ +δ +s 6 +e 6 Y 6 =μ+τ +δ +s 6 +e 6 Y 3 =μ+τ +δ +s 3 +e 3 Y 3 =μ+τ +δ +s 3 +e 3 Y 7 =μ+τ +δ +s 7 +e 7 Y 7 =μ+τ +δ +s 7 +e 7 Y 4 =μ+τ +δ +s 4 +e 4 Y 4 =μ+τ +δ +s 4 +e 4 Y 8 =μ+τ +δ +s 8 +e 8 Y 8 =μ+τ +δ +s 8 +e 8 Y ijk =μ+τ i +δ j +s k +e ijk 5 6 Observed Normalized Signal Intensities (NLSI) for One Gene Analysis of Log Red to Green Ratios Rather than working with the normalized log signal intensities, it is often customary to consider the log of the red to green normalized signals from each slide as the basic data for analysis. his is equivalent to working with the red green difference in NLSI from each slide. Given data, our task it to determine whether the gene is differentially expressed and, if so, estimate the log(r/g)=log(r)-log(g) magnitude and direction of differential expression

4 Differences for Slides with reatment Green and reatment Red Slide Difference Differences for Slides with reatment Red and reatment Green Difference Slide Y =μ+τ +δ +s +e Y =μ+τ +δ +s +e Y -Y = τ -τ +δ -δ +e -e Y 5 -Y 5 = τ -τ +δ -δ +e 5 -e 5 Y 5 =μ+τ +δ +s 5 +e 5 Y 5 =μ+τ +δ +s 5 +e 5 Y =μ+τ +δ +s +e Y =μ+τ +δ +s +e Y -Y = τ -τ +δ -δ +e -e Y 6 -Y 6 = τ -τ +δ -δ +e 6 -e 6 Y 6 =μ+τ +δ +s 6 +e 6 Y 6 =μ+τ +δ +s 6 +e 6 Y 3 =μ+τ +δ +s 3 +e 3 Y 3 =μ+τ +δ +s 3 +e 3 Y 3 -Y 3 = τ -τ +δ -δ +e 3 -e 3 Y 7 -Y 7 = τ -τ +δ -δ +e 7 -e 7 Y 7 =μ+τ +δ +s 7 +e 7 Y 7 =μ+τ +δ +s 7 +e 7 Y 4 =μ+τ +δ +s 4 +e 4 Y 4 =μ+τ +δ +s 4 +e 4 Y 4 -Y 4 = τ -τ +δ -δ +e 4 -e 4 Y 8 -Y 8 = τ -τ +δ -δ +e 8 -e 8 Y 8 =μ+τ +δ +s 8 +e 8 Y 8 =μ+τ +δ +s 8 +e 8 Note that according to our original model, these differences are iid N(τ -τ +δ -δ, σ e ). 9 Note that according to our original model, these differences are iid N(τ -τ +δ -δ, σ e ). 0 If we let d k denote the difference from slide k, we have Estimation of the Direction and Magnitude of Differential Expression d, d, d 3, d 4 iid N(τ -τ +δ -δ, σ e ) independent of d 5, d 6, d 7, d 8 iid N(τ -τ +δ -δ, σ e ). A standard two-sample t-test can be used to test H 0 : τ -τ +δ -δ = τ -τ +δ -δ which is equivalent to H 0 : τ = τ (null hypothesis of no differential expression). An unbiased estimator of τ -τ is given by { mean(d 5, d 6, d 7, d 8 ) - mean(d, d, d 3, d 4 ) } /. Because τ -τ is a difference in treatment effects for a measure of log expression level, exp(τ -τ ) can be interpreted as a ratio of expression levels on the original scale. exp[ { mean(d 5, d 6, d 7, d 8 ) - mean(d, d, d 3, d 4 ) } / ] can be reported as an estimate of the fold change in the expression level for treatment relative to treatment. Observed Normalized Log Signal Intensities (NLSI) for One Gene P-Value for esting τ = τ is < Estimated Fold hange= % onfidence Interval for Fold hange 3.3 to

5 P-Value for esting τ = τ is Estimated Fold hange= % onfidence Interval for Fold hange 0.83 to 7.49 Example : RD with Affymetrix echnology What genes are involved in muscle hypertrophy? Design a treatment that will induce hypertrophy in muscle tissue and an appropriate control treatment. Randomly assign experimental units to the two treatments. Use microarray technology to measure mrna transcript abundance in muscle tissue. Identify genes whose mrna levels differs between treatments. 5 6 Assign 6 mice to each treatment completely at random Assign 6 mice to each group completely at random 7 8 Measure Expression in Relevant Muscle issue with Affymetrix Genehips Normalized Log Scale Data Experimental Units Genes

6 Model for One Gene Gene 4: Data Analysis Y ij =μ+τ i +e ij (i=,; j=,, 3, 4, 5, 6) Y ij =normalized log signal intensity for the j th experimental unit exposed to the i th treatment μ=real-valued parameter common to all obs. τ i =effect due to i th treatment e ij =error effect for the j th experimental unit exposed to i th treatment Y =8.6 Y =6. Y.-Y.=τ -τ +e.-e.=.0 Y =8.8 Y =6.8 Y 3 =9. Y 3 =6.6 Y 4 =9.8 Y 4 =6.8 Y 5 =7.9 Y 5 =5.5 Y 6 =7.4 Y 6 =7.7 Y.=8.6 Y.=6.6 se(y.- Y.) = s p + n n = = Gene 4: 95% onfidence Interval for τ -τ Gene 4: 95% onfidence Interval for Fold hange Y.- Y. = 0 se(y.- Y.) = ( ) Y.- Y. ± tn n -se(y.- Y.) +..0 ±.8 * (0.98, 3.0) Y 0 Estimated Fold hange= e.-y. e. = 7. 4 (e ( ) ( ) Y.-Y.-tn n - se(y.-y.) Y.-Y. tn n -se(y.-y.) (.7,0.5),e ) Gene 4: t-test Y =8.6 Y =6. Y.-Y.=τ -τ +e.-e.=.0 Y =8.8 Y =6.8 Y 3 =9. Y 3 =6.6 Y.- Y.. 0 t = = = Y 4 =9.8 Y 4 =6.8 se(y.- Y.) Y 5 =7.9 Y 5 =5.5 ompare to a t-distribution Y 6 =7.4 Y 6 =7.7 with n +n -=0 d.f. to obtain p-value Y.=8.6 Y.=

Example 1: Two-Treatment CRD

Example 1: Two-Treatment CRD Introduction to Mixed Linear Models in Microarray Experiments //0 Copyright 0 Dan Nettleton Statistical Models A statistical model describes a formal mathematical data generation mechanism from which an

More information

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49 11. Linear Mixed-Effects Models Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics 510 1 / 49 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p matrix of known constants β R

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Design of microarray experiments

Design of microarray experiments Design of microarray experiments Ulrich ansmann mansmann@imbi.uni-heidelberg.de Practical microarray analysis September Heidelberg Heidelberg, September otivation The lab biologist and theoretician need

More information

Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model. *Modified notes from Dr. Dan Nettleton from ISU

Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model. *Modified notes from Dr. Dan Nettleton from ISU Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model *Modified notes from Dr. Dan Nettleton from ISU Suppose intelligence quotients (IQs) for a population of

More information

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001).

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference:

More information

Design of microarray experiments

Design of microarray experiments Design of microarray experiments Ulrich Mansmann mansmann@imbi.uni-heidelberg.de Practical microarray analysis March 23 Heidelberg Heidelberg, March 23 Experiments Scientists deal mostly with experiments

More information

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares 13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics 510 1 / 18 Suppose M 1,..., M k are independent

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002 Name: Last Name 1, First Name 1 Stdnt # StudentNumber1 STAT 450: Final Examination Version 1 Richard Lockhart 16 December 2002 Instructions: This is an open book exam. You may use notes, books and a calculator.

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

Expression arrays, normalization, and error models

Expression arrays, normalization, and error models 1 Epression arrays, normalization, and error models There are a number of different array technologies available for measuring mrna transcript levels in cell populations, from spotted cdna arrays to in

More information

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop Inferential Statistical Analysis of Microarray Experiments 007 Arizona Microarray Workshop μ!! Robert J Tempelman Department of Animal Science tempelma@msuedu HYPOTHESIS TESTING (as if there was only one

More information

Exam: high-dimensional data analysis February 28, 2014

Exam: high-dimensional data analysis February 28, 2014 Exam: high-dimensional data analysis February 28, 2014 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question (not the subquestions) on a separate piece of paper.

More information

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is Stat 501 Solutions and Comments on Exam 1 Spring 005-4 0-4 1. (a) (5 points) Y ~ N, -1-4 34 (b) (5 points) X (X,X ) = (5,8) ~ N ( 11.5, 0.9375 ) 3 1 (c) (10 points, for each part) (i), (ii), and (v) are

More information

Sample Size and Power Calculation in Microarray Studies Using the sizepower package.

Sample Size and Power Calculation in Microarray Studies Using the sizepower package. Sample Size and Power Calculation in Microarray Studies Using the sizepower package. Weiliang Qiu email: weiliang.qiu@gmail.com Mei-Ling Ting Lee email: meilinglee@sph.osu.edu George Alex Whitmore email:

More information

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40 When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 40 When is the Ordinary Least Squares Estimator (OLSE) the Best Linear Unbiased Estimator (BLUE)? Copyright

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Design of Microarray Experiments. Xiangqin Cui

Design of Microarray Experiments. Xiangqin Cui Design of Microarray Experiments Xiangqin Cui Experimental design Experimental design: is a term used about efficient methods for planning the collection of data, in order to obtain the maximum amount

More information

Comparative analysis of RNA- Seq data with DESeq2

Comparative analysis of RNA- Seq data with DESeq2 Comparative analysis of RNA- Seq data with DESeq2 Simon Anders EMBL Heidelberg Two applications of RNA- Seq Discovery Eind new transcripts Eind transcript boundaries Eind splice junctions Comparison Given

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Statistical Designs for 3D-tissue Microarrays

Statistical Designs for 3D-tissue Microarrays Statistical Designs for 3D-tissue Microarrays Michael J Phelan Biostatistics Shared Resource Chao Family Comprehensive Cancer Center UC, Irvine School of Medicine October 9, 2012 MJ Phelan (UCIrvine) Designs

More information

Design and Analysis of Gene Expression Experiments

Design and Analysis of Gene Expression Experiments Design and Analysis of Gene Expression Experiments Guilherme J. M. Rosa Department of Animal Sciences Department of Biostatistics & Medical Informatics University of Wisconsin - Madison OUTLINE Æ Linear

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu Feb, 2018, week 7 1 / 17 Some commonly used experimental designs related to mixed models Two way or three way random/mixed effects

More information

ST4241 Design and Analysis of Clinical Trials Lecture 4: 2 2 factorial experiments, a special cases of parallel groups study

ST4241 Design and Analysis of Clinical Trials Lecture 4: 2 2 factorial experiments, a special cases of parallel groups study ST4241 Design and Analysis of Clinical Trials Lecture 4: 2 2 factorial experiments, a special cases of parallel groups study Chen Zehua Department of Statistics & Applied Probability 8:00-10:00 am, Tuesday,

More information

Major Genes, Polygenes, and

Major Genes, Polygenes, and Major Genes, Polygenes, and QTLs Major genes --- genes that have a significant effect on the phenotype Polygenes --- a general term of the genes of small effect that influence a trait QTL, quantitative

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

Lecture 9. ANOVA: Random-effects model, sample size

Lecture 9. ANOVA: Random-effects model, sample size Lecture 9. ANOVA: Random-effects model, sample size Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regressions and Analysis of Variance fall 2015 Fixed or random? Is it reasonable

More information

Quantitative trait evolution with mutations of large effect

Quantitative trait evolution with mutations of large effect Quantitative trait evolution with mutations of large effect May 1, 2014 Quantitative traits Traits that vary continuously in populations - Mass - Height - Bristle number (approx) Adaption - Low oxygen

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Blood coagulation time T avg A 62 60 63 59 61 B 63 67 71 64 65 66 66 C 68 66 71 67 68 68 68 D 56 62 60 61 63 64 63 59 61 64 Blood coagulation time A B C D Combined 56 57 58 59 60 61

More information

Analysis Of Variance Compiled by T.O. Antwi-Asare, U.G

Analysis Of Variance Compiled by T.O. Antwi-Asare, U.G Analysis Of Variance Compiled by T.O. Antwi-Asare, U.G 1 ANOVA Analysis of variance compares two or more population means of interval data. Specifically, we are interested in determining whether differences

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35 General Linear Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 35 Suppose the NTGMM holds so that y = Xβ + ε, where ε N(0, σ 2 I). opyright

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

ECON Introductory Econometrics. Lecture 2: Review of Statistics

ECON Introductory Econometrics. Lecture 2: Review of Statistics ECON415 - Introductory Econometrics Lecture 2: Review of Statistics Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 2-3 Lecture outline 2 Simple random sampling Distribution of the sample

More information

Chapter 12. Analysis of variance

Chapter 12. Analysis of variance Serik Sagitov, Chalmers and GU, January 9, 016 Chapter 1. Analysis of variance Chapter 11: I = samples independent samples paired samples Chapter 1: I 3 samples of equal size J one-way layout two-way layout

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

1 Use of indicator random variables. (Chapter 8)

1 Use of indicator random variables. (Chapter 8) 1 Use of indicator random variables. (Chapter 8) let I(A) = 1 if the event A occurs, and I(A) = 0 otherwise. I(A) is referred to as the indicator of the event A. The notation I A is often used. 1 2 Fitting

More information

microrna pseudo-targets

microrna pseudo-targets microrna pseudo-targets Natalia Pinzón Restrepo Institut de Génétique Humaine (CNRS), Montpellier, France August, 2012 microrna target identification mir: target: 2 7 5 N NNNNNNNNNNNNNN NNNNNN 3 the seed

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data Juliane Schäfer Department of Statistics, University of Munich Workshop: Practical Analysis of Gene Expression Data

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Chapter 5: Microarray Techniques

Chapter 5: Microarray Techniques Chapter 5: Microarray Techniques 5.2 Analysis of Microarray Data Prof. Yechiam Yemini (YY) Computer Science Department Columbia University Normalization Clustering Overview 2 1 Processing Microarray Data

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 13, Part A: Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis

More information

Adv. App. Stat. Presentation On a paradoxical property of the Kolmogorov Smirnov two-sample test

Adv. App. Stat. Presentation On a paradoxical property of the Kolmogorov Smirnov two-sample test Adv. App. Stat. Presentation On a paradoxical property of the Kolmogorov Smirnov two-sample test Stefan Hasselgren Niels Bohr Institute March 9, 2017 Slide 1/11 Bias of Kolmogorov g.o.f. test Draw a sample

More information

SPH 247 Statistical Analysis of Laboratory Data. April 28, 2015 SPH 247 Statistics for Laboratory Data 1

SPH 247 Statistical Analysis of Laboratory Data. April 28, 2015 SPH 247 Statistics for Laboratory Data 1 SPH 247 Statistical Analysis of Laboratory Data April 28, 2015 SPH 247 Statistics for Laboratory Data 1 Outline RNA-Seq for differential expression analysis Statistical methods for RNA-Seq: Structure and

More information

STAT Final Practice Problems

STAT Final Practice Problems STAT 48 -- Final Practice Problems.Out of 5 women who had uterine cancer, 0 claimed to have used estrogens. Out of 30 women without uterine cancer 5 claimed to have used estrogens. Exposure Outcome (Cancer)

More information

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous.

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous. COMPLETELY RANDOM DESIGN (CRD) Description of the Design -Simplest design to use. -Design can be used when experimental units are essentially homogeneous. -Because of the homogeneity requirement, it may

More information

21.0 Two-Factor Designs

21.0 Two-Factor Designs 21.0 Two-Factor Designs Answer Questions 1 RCBD Concrete Example Two-Way ANOVA Popcorn Example 21.4 RCBD 2 The Randomized Complete Block Design is also known as the two-way ANOVA without interaction. A

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Optimal normalization of DNA-microarray data

Optimal normalization of DNA-microarray data Optimal normalization of DNA-microarray data Daniel Faller 1, HD Dr. J. Timmer 1, Dr. H. U. Voss 1, Prof. Dr. Honerkamp 1 and Dr. U. Hobohm 2 1 Freiburg Center for Data Analysis and Modeling 1 F. Hoffman-La

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

Lecture 18: Analysis of variance: ANOVA

Lecture 18: Analysis of variance: ANOVA Lecture 18: Announcements: Exam has been graded. See website for results. Lecture 18: Announcements: Exam has been graded. See website for results. Reading: Vasilj pp. 83-97. Lecture 18: Announcements:

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Unit 7: Random Effects, Subsampling, Nested and Crossed Factor Designs

Unit 7: Random Effects, Subsampling, Nested and Crossed Factor Designs Unit 7: Random Effects, Subsampling, Nested and Crossed Factor Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand how to interpret a random effect Know the different

More information

Quantitative characters - exercises

Quantitative characters - exercises Quantitative characters - exercises 1. a) Calculate the genetic covariance between half sibs, expressed in the ij notation (Cockerham's notation), when up to loci are considered. b) Calculate the genetic

More information

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available

More information

robustness: revisting the significance of mirna-mediated regulation

robustness: revisting the significance of mirna-mediated regulation : revisting the significance of mirna-mediated regulation Hervé Seitz IGH (CNRS), Montpellier, France October 13, 2012 microrna target identification .. microrna target identification mir: target: 2 7

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

Optimal design of microarray experiments

Optimal design of microarray experiments University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst 7 June 2011 What is a cdna Microarray Experiment? GREEN (Cy3) Cancer Tissue mrna Mix tissues in equal amounts G G G R R R R R G R G

More information

Poisson Approximation for Two Scan Statistics with Rates of Convergence

Poisson Approximation for Two Scan Statistics with Rates of Convergence Poisson Approximation for Two Scan Statistics with Rates of Convergence Xiao Fang (Joint work with David Siegmund) National University of Singapore May 28, 2015 Outline The first scan statistic The second

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

Reference: Chapter 13 of Montgomery (8e)

Reference: Chapter 13 of Montgomery (8e) Reference: Chapter 1 of Montgomery (8e) Maghsoodloo 89 Factorial Experiments with Random Factors So far emphasis has been placed on factorial experiments where all factors are at a, b, c,... fixed levels

More information

Statistical analysis of microarray data: a Bayesian approach

Statistical analysis of microarray data: a Bayesian approach Biostatistics (003), 4, 4,pp. 597 60 Printed in Great Britain Statistical analysis of microarray data: a Bayesian approach RAPHAEL GTTARD University of Washington, Department of Statistics, Box 3543, Seattle,

More information

Lesson 11. Functional Genomics I: Microarray Analysis

Lesson 11. Functional Genomics I: Microarray Analysis Lesson 11 Functional Genomics I: Microarray Analysis Transcription of DNA and translation of RNA vary with biological conditions 3 kinds of microarray platforms Spotted Array - 2 color - Pat Brown (Stanford)

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Example. Populations and samples

Example. Populations and samples Example Two strains of mice: A and B. Measure cytokine IL10 (in males all the same age) after treatment. A B 500 1000 1500 2000 2500 IL10 A B 500 1000 1500 2000 2500 IL10 (on log scale) Point: We re not

More information

SAMPLING IN FIELD EXPERIMENTS

SAMPLING IN FIELD EXPERIMENTS SAMPLING IN FIELD EXPERIMENTS Rajender Parsad I.A.S.R.I., Library Avenue, New Delhi-0 0 rajender@iasri.res.in In field experiments, the plot size for experimentation is selected for achieving a prescribed

More information

Multiple Sample Numerical Data

Multiple Sample Numerical Data Multiple Sample Numerical Data Analysis of Variance, Kruskal-Wallis test, Friedman test University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 /

More information

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37 Scheffé s Method opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 37 Scheffé s Method: Suppose where Let y = Xβ + ε, ε N(0, σ 2 I). c 1β,..., c qβ be q estimable functions, where

More information

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan COSC 341 Human Computer Interaction Dr. Bowen Hui University of British Columbia Okanagan 1 Last Topic Distribution of means When it is needed How to build one (from scratch) Determining the characteristics

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS We begin with a relatively simple special case. Suppose y ijk = µ + τ i + u ij + e ijk, (i = 1,..., t; j = 1,..., n; k = 1,..., m) β =

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Lecture 11: Nested and Split-Plot Designs

Lecture 11: Nested and Split-Plot Designs Lecture 11: Nested and Split-Plot Designs Montgomery, Chapter 14 1 Lecture 11 Page 1 Crossed vs Nested Factors Factors A (a levels)and B (b levels) are considered crossed if Every combinations of A and

More information

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik Factorial Treatment Structure: Part I Lukas Meier, Seminar für Statistik Factorial Treatment Structure So far (in CRD), the treatments had no structure. So called factorial treatment structure exists if

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

Exam: high-dimensional data analysis January 20, 2014

Exam: high-dimensional data analysis January 20, 2014 Exam: high-dimensional data analysis January 20, 204 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question not the subquestions on a separate piece of paper. - Finish

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Lecture 4. Random Effects in Completely Randomized Design

Lecture 4. Random Effects in Completely Randomized Design Lecture 4. Random Effects in Completely Randomized Design Montgomery: 3.9, 13.1 and 13.7 1 Lecture 4 Page 1 Random Effects vs Fixed Effects Consider factor with numerous possible levels Want to draw inference

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 6, Issue 1 2007 Article 28 A Comparison of Methods to Control Type I Errors in Microarray Studies Jinsong Chen Mark J. van der Laan Martyn

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS FALL 1999

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS FALL 1999 MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS 350 - FALL 1999 Instructor: A. Oyet Date: December 16, 1999 Name(Surname First): Student Number INSTRUCTIONS

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block.

Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block. G. Latin Square Designs Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block. 500 CLASSIC AG EXAMPLE: A researcher

More information