Inference in Regression Analysis

Size: px
Start display at page:

Download "Inference in Regression Analysis"

Transcription

1 Inference in Regression Analysis Dr. Frank Wood Frank Wood, Linear Regression Models Lecture 4, Slide 1

2 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor variable in the i th trial ǫ i ~ iid N(0,σ 2 ) i = 1,,n Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 2

3 Inferences concerning β 1 Tests concerning β 1 (the slope) are often of interest, particularly H 0 : β 1 = 0 H a : β1 0 the null hypothesis model Y i = β 0 +(0)X i + ǫ i implies that there is no relationship between Y and X Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 3

4 Review : Hypothesis Testing Elements of a statistical test Null hypothesis, H 0 Alternative hypothesis, H a Test statistic Rejection region Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 4

5 Review : Hypothesis Testing - Errors Errors A type I error is made if H 0 is rejected when H 0 is true. The probability of a type I error is denoted by α. The value of α is called the level of the test. A type II error is made if H 0 is accepted when H a is true. The probability of a type II error is denoted by β. Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 5

6 P-value The p-value, or attained significance level, is the smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected. Frank Wood, Linear Regression Models Lecture 4, Slide 6

7 Null Hypothesis If β 1 = 0 then with 95% confidence the b 1 would fall in some range around zero 40 Guess, y = 0x , mse: 37.1 True, y = 2x + 9, mse: Response/Output Predictor/Input Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 7

8 Alternative Hypothesis : Least Squares Fit Estimate, y = 2.09x , mse: 4.15 True, y = 2x + 9, mse: 4.22 Response/Output b 1 rescaled is test statistic Predictor/Input Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 8

9 Testing This Hypothesis Only have a finite sample Different finite set of samples (from the same population / source) will (almost always) produce different estimates of β 0 and β 1 (b 0, b 1 ) given the same estimation procedure b 0 and b 1 are random variables whose sampling distributions can be statistically characterized Hypothesis tests can be constructed using these distributions. Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 9

10 Example : Sampling Dist. Of b 1 The point estimator for b 1 is b 1 = (Xi X)(Y i Ȳ) (Xi X) 2 The sampling distribution for b 1 is the distribution over b 1 that occurs when the predictor variables X i are held fixed and the observed outputs are repeatedly sampled Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 10

11 Sampling Dist. Of b 1 In Normal Regr. Model For a normal error regression model the sampling distribution of b 1 is normal, with mean and variance given by E(b 1 ) = β 1 σ 2 V(b 1 ) = (Xi X) 2 To show this we need to go through a number of algebraic steps. Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 11

12 First step To show (Xi X)(Y i Ȳ)= (X i X)Y i we observe (Xi X)(Y i Ȳ) = (X i X)Y i (X i X)Ȳ = (X i X)Y i Ȳ (X i X) = (X i X)Y i Ȳ (X i )+Ȳn Xi n = (X i X)Y i Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 12

13 Slope as linear combination of outputs b 1 can be expressed as a linear combination of the Y i s b 1 = (Xi X)(Y i Ȳ) (Xi X) 2 = (Xi X)Y i (Xi X) 2 where = k i Y i k i = (Xi X) (Xi X) 2 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 13

14 Properties of the k i s It can be shown that ki = 0 ki X i = 1 k 2 i = 1 (Xi X) 2 (possible homework). We will use these properties to prove various properties of the sampling distributions of b 1 and b 0. write on board Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 14

15 Normality of b 1 s Sampling Distribution Useful fact: A linear combination of independent normal random variables is normally distributed More formally: when Y 1,, Y n are independent normal random variables, the linear combination a 1 Y 1 + a 2 Y a n Y n is normally distributed, with mean a i E(Y i ) and variance a 2 iv(y i ) Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 15

16 Normality of b 1 s Sampling Distribution Since b 1 is a linear combination of the Y i s and each Y i is an independent normal random variable, then b 1 is distributed normally as well b 1 = k i Y i, k i = (X i X) (Xi X) 2 write on board Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 16

17 b 1 is an unbiased estimator This can be seen using two of the properties E(b 1 ) = E( k i Y i )= k i E(Y i )= k i (β 0 + β 1 X i ) = β 0 ki + β 1 ki X i = β 0 (0)+β 1 (1) = β 1 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 17

18 Variance of b 1 Since the Y i are independent random variables with variance σ 2 and the k i s are constants we get V(b 1 ) = V( k i Y i )= k 2 i V(Y i) = k 2 i σ2 = σ 2 k 2 i = σ 2 1 (Xi X) 2 note that this assumes that we know σ 2. Can we? Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 18

19 Estimated variance of b 1 If we don t know σ 2 then we can replace it with the MSE estimate Remember s 2 = MSE= SSE n 2 = (Yi Ŷ i ) 2 n 2 = e 2 i n 2 plugging in we get V(b 1 ) = ˆV(b 1 ) = σ 2 (Xi X) 2 s 2 (Xi X) 2 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 19

20 Digression : Gauss-Markov Theorem In a regression model where E(ǫ i ) = 0 and variance V(ǫ i ) = σ 2 < and ǫ i and ǫ j are uncorrelated for all i and j the least squares estimators b 0 and b 1 and unbiased and have minimum variance among all unbiased linear estimators. Remember b 1 = (Xi X)(Y i Ȳ) (Xi X) 2 b 0 = Ȳ b 1 X Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 20

21 Proof The theorem states that b 1 as minimum variance among all unbiased linear estimators of the form ˆβ 1 = c i Y i As this estimator must be unbiased we have E(ˆβ 1 ) = c i E(Y i )=β 1 = c i (β 0 + β 1 X i )=β 0 ci + β 1 ci X i = β 1 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 21

22 Proof cont. Given these constraints β 0 ci + β 1 ci X i = β 1 clearly it must be the case that c i =0 and c i X i = 1 write these on board as conditions of unbiasedness The variance of this estimator is V(ˆβ 1 ) = c 2 i V(Y i )=σ 2 c 2 i Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 22

23 Proof cont. Now define c i = k i + d i where the k i are the constants we already defined and the d i are arbitrary constants. Let s look at the variance of the estimator V(ˆβ 1 ) = c 2 i V(Y i )=σ 2 (k i + d i ) 2 = σ 2 ( k 2 i + d 2 i +2 k i d i ) Note we just demonstrated that σ 2 k 2 i = V(b 1) Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 23

24 Proof cont. Now by showing that k i d i = 0 we re almost done ki d i = k i (c i k i ) = k i (c i k i ) = k i c i k 2 i = c i ( Xi X (Xi X) 2 ) 1 (Xi X) 2 = ci X i X c i (Xi X) 2 1 (Xi X) 2 =0 from conditions of unbiasedness Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 24

25 So we are left with Proof end V(ˆβ 1 ) = σ 2 ( k 2 i + d 2 i) = V(b 1 )+σ 2 ( d 2 i ) which is minimized when the d i s = 0. This means that the least squares estimator b 1 has minimum variance among all unbiased linear estimators. Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 25

26 Sampling Distribution of (b 1 - β 1 )/S(b 1 ) b 1 is normally distributed so (b 1 -β 1 )/(V(b 1 ) 1/2 ) is a standard normal variable We don t know V(b 1 ) so it must be estimated from data. We have already denoted it s estimate ˆV(b 1 ) Using this estimate we it can be shown that b 1 β 1 Ŝ(b 1 ) t(n 2) Ŝ(b 1)= ˆV(b1 ) Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 26

27 Where does this come from? We need to rely upon the following theorem For the normal error regression model SSE σ 2 = (Yi Ŷ i ) 2 σ 2 χ 2 (n 2) and is independent of b 0 and b 1 Intuitively this follows the standard result for the sum of squared normal random variables Here there are two linear constraints imposed by the regression parameter estimation that each reduce the number of degrees of freedom by one. Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 27

28 Another useful fact : t distribution Let z and χ 2 (ν) be independent random variables (standard normal and χ 2 respectively). We then define a t random variable as follows: t(ν)= z χ 2 (ν) ν This version of the t distribution has one parameter, the degrees of freedom ν Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 28

29 Distribution of the studentized statistic To derive the distribution of this statistic, first we do the following rewrite b1 β1 b 1 β 1 Ŝ(b 1 ) = S(b 1 ) Ŝ(b 1 ) S(b 1 ) This is a standard normal variable Ŝ(b 1 ) ˆV(b1 S(b 1 ) = ) V(b 1 ) Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 29

30 Studentized statistic cont. And note the following (X i X) 2 MSE ˆV(b 1 ) V(b 1 ) = = MSE σ 2 σ = SSE 2 σ 2 (n 2) (X i X) 2 where we know (by the given theorem) the distribution of the last term is χ 2 and indep. of b 1 and b 0 SSE σ 2 (n 2) χ2 (n 2) n 2 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 30

31 Studentized statistic final But by the given definition of the t distribution we have our result b 1 β 1 Ŝ(b 1 ) t(n 2) because putting everything together we can see that b 1 β 1 Ŝ(b 1 ) z χ 2 (n 2) n 2 Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 31

32 Confidence Intervals and Hypothesis Tests Now that we know the sampling distribution of b 1 (t with n-2 degrees of freedom) we can construct confidence intervals and hypothesis tests easily Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 32

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

Regression Estimation Least Squares and Maximum Likelihood

Regression Estimation Least Squares and Maximum Likelihood Regression Estimation Least Squares and Maximum Likelihood Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 3, Slide 1 Least Squares Max(min)imization Function to minimize

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1 Multiple Regression Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 12, Slide 1 Review: Matrix Regression Estimation We can solve this equation (if the inverse of X

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

BNAD 276 Lecture 10 Simple Linear Regression Model

BNAD 276 Lecture 10 Simple Linear Regression Model 1 / 27 BNAD 276 Lecture 10 Simple Linear Regression Model Phuong Ho May 30, 2017 2 / 27 Outline 1 Introduction 2 3 / 27 Outline 1 Introduction 2 4 / 27 Simple Linear Regression Model Managerial decisions

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Simple linear regression

Simple linear regression Simple linear regression Biometry 755 Spring 2008 Simple linear regression p. 1/40 Overview of regression analysis Evaluate relationship between one or more independent variables (X 1,...,X k ) and a single

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

1. Simple Linear Regression

1. Simple Linear Regression 1. Simple Linear Regression Suppose that we are interested in the average height of male undergrads at UF. We put each male student s name (population) in a hat and randomly select 100 (sample). Then their

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Y i = η + ɛ i, i = 1,...,n.

Y i = η + ɛ i, i = 1,...,n. Nonparametric tests If data do not come from a normal population (and if the sample is not large), we cannot use a t-test. One useful approach to creating test statistics is through the use of rank statistics.

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng Nonparametric Regression and Bonferroni joint confidence intervals Yang Feng Simultaneous Inferences In chapter 2, we know how to construct confidence interval for β 0 and β 1. If we want a confidence

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

Linear Regression. 1 Introduction. 2 Least Squares

Linear Regression. 1 Introduction. 2 Least Squares Linear Regression 1 Introduction It is often interesting to study the effect of a variable on a response. In ANOVA, the response is a continuous variable and the variables are discrete / categorical. What

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

6. Multiple Linear Regression

6. Multiple Linear Regression 6. Multiple Linear Regression SLR: 1 predictor X, MLR: more than 1 predictor Example data set: Y i = #points scored by UF football team in game i X i1 = #games won by opponent in their last 10 games X

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

Statistical View of Least Squares

Statistical View of Least Squares Basic Ideas Some Examples Least Squares May 22, 2007 Basic Ideas Simple Linear Regression Basic Ideas Some Examples Least Squares Suppose we have two variables x and y Basic Ideas Simple Linear Regression

More information

Chapter 1 Linear Regression with One Predictor

Chapter 1 Linear Regression with One Predictor STAT 525 FALL 2018 Chapter 1 Linear Regression with One Predictor Professor Min Zhang Goals of Regression Analysis Serve three purposes Describes an association between X and Y In some applications, the

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Simple Linear Regression: The Model

Simple Linear Regression: The Model Simple Linear Regression: The Model task: quantifying the effect of change X in X on Y, with some constant β 1 : Y = β 1 X, linear relationship between X and Y, however, relationship subject to a random

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

Linear Model Under General Variance

Linear Model Under General Variance Linear Model Under General Variance We have a sample of T random variables y 1, y 2,, y T, satisfying the linear model Y = X β + e, where Y = (y 1,, y T )' is a (T 1) vector of random variables, X = (T

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Introduction to Simple Linear Regression

Introduction to Simple Linear Regression Introduction to Simple Linear Regression Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Introduction to Simple Linear Regression 1 / 68 About me Faculty in the Department

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Multiple Regression Analysis: The Problem of Inference

Multiple Regression Analysis: The Problem of Inference Multiple Regression Analysis: The Problem of Inference Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Multiple Regression Analysis: Inference POLS 7014 1 / 10

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

Multiple Regression Analysis

Multiple Regression Analysis Chapter 4 Multiple Regression Analysis The simple linear regression covered in Chapter 2 can be generalized to include more than one variable. Multiple regression analysis is an extension of the simple

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5)

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5) 10 Simple Linear Regression (Chs 12.1, 12.2, 12.4, 12.5) Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 2 Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 3 Simple Linear Regression

More information

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients 17: INFERENCE FOR MULTIPLE REGRESSION Inference for Individual Regression Coefficients The results of this section require the assumption that the errors u are normally distributed. Let c i ij denote the

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Financial Econometrics

Financial Econometrics Material : solution Class : Teacher(s) : zacharias psaradakis, marian vavra Example 1.1: Consider the linear regression model y Xβ + u, (1) where y is a (n 1) vector of observations on the dependent variable,

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

STAT 4385 Topic 03: Simple Linear Regression

STAT 4385 Topic 03: Simple Linear Regression STAT 4385 Topic 03: Simple Linear Regression Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2017 Outline The Set-Up Exploratory Data Analysis

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-2 STATS 202: Data mining and analysis Sergio Bacallado September 19, 2018 1 / 23 Announcements Starting next week, Julia Fukuyama

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1 Review - Interpreting the Regression If we estimate: It can be shown that: where ˆ1 r i coefficients β ˆ+ βˆ x+ βˆ ˆ= 0 1 1 2x2 y ˆβ n n 2 1 = rˆ i1yi rˆ i1 i= 1 i= 1 xˆ are the residuals obtained when

More information

Linear Regression & Correlation

Linear Regression & Correlation Linear Regression & Correlation Jamie Monogan University of Georgia Introduction to Data Analysis Jamie Monogan (UGA) Linear Regression & Correlation POLS 7012 1 / 25 Objectives By the end of these meetings,

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Linear Regression Model. Badr Missaoui

Linear Regression Model. Badr Missaoui Linear Regression Model Badr Missaoui Introduction What is this course about? It is a course on applied statistics. It comprises 2 hours lectures each week and 1 hour lab sessions/tutorials. We will focus

More information

Statistics for Engineers Lecture 9 Linear Regression

Statistics for Engineers Lecture 9 Linear Regression Statistics for Engineers Lecture 9 Linear Regression Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu April 17, 2017 Chong Ma (Statistics, USC) STAT 509 Spring 2017 April

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination ST 430/514 The coefficient of determination, R 2, is defined as before: R 2 = 1 SS E (yi ŷ i ) = 1 2 SS yy (yi ȳ) 2 The interpretation of R 2 is still the fraction of variance

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Christopher Ting Christopher Ting : christophert@smu.edu.sg : 688 0364 : LKCSB 5036 January 7, 017 Web Site: http://www.mysmu.edu/faculty/christophert/ Christopher Ting QF 30 Week

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence la Non-ar Contents Non-ar Non-ar Non-ar Consider n observations (pairs) (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

Chapter 2 Multiple Regression I (Part 1)

Chapter 2 Multiple Regression I (Part 1) Chapter 2 Multiple Regression I (Part 1) 1 Regression several predictor variables The response Y depends on several predictor variables X 1,, X p response {}}{ Y predictor variables {}}{ X 1, X 2,, X p

More information

Graduate Econometrics Lecture 4: Heteroskedasticity

Graduate Econometrics Lecture 4: Heteroskedasticity Graduate Econometrics Lecture 4: Heteroskedasticity Department of Economics University of Gothenburg November 30, 2014 1/43 and Autocorrelation Consequences for OLS Estimator Begin from the linear model

More information