Review of probability and statistics 1 / 31

Size: px
Start display at page:

Download "Review of probability and statistics 1 / 31"

Transcription

1 Review of probability and statistics 1 / 31

2 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction to statistics. When analyzing observational data, we must rely on basic concepts of probability theory and statistics. We would like to identify causal effects in a population, but usually only have a sample from this population available. Under what conditions can we make statements about the population? One key assumption: Sample has to be a random draw.

3 3 / 31 General Probability The probability of an outcome is the proportion of the time that the outcome occurs in the long run. Random variables A random variable is a numerical summary of a random outcome. Probability distribution The probability distribution of a discrete random variable is the list of all possible values of the variable and the probability that each value will occur. These probabilities sum to 1.

4 4 / 31 Expected value The expected value of a random variable Y, denoted E(Y), is the long-run average value of the random variable over many repeated trials or occurrences. It is computed as a weighted average of the possible outcomes of a random variable where the weights are the probabilities of the outcome k E(Y) = y i p i It is also called the expectation of Y or the mean of Y and is denoted by µ Y. The mean of Y is also referred to as the first moment of Y. Question: What is the expected value when throwing a dice? i=1

5 5 / 31 Variance The variance measures the dispersion or the spread of a probability distribution. [ σy 2 = var(y) = E (Y µ Y ) 2] = k (y i µ Y ) 2 p i i=1 The standard deviation σ Y is the square root of the variance.

6 6 / 31 Joint distribution The joint probability distribution of two random variables, say X and Y, is the probability that the random variables simultaneously take on certain values, say x and y. The probabilities of all possible combinations sum to 1. We can express the joint probability distribution as Pr(X = x, Y = y).

7 7 / 31 Conditional distribution The distribution of a random variable Y conditional on another variable X taking on a specific value is called the conditional distribution of Y given X. We can express the conditional distribution as PR(Y = y X = x) = Pr(X = x, Y = y). Pr(X = x)

8 Joint and conditional distribution 8 / 31

9 9 / 31 Conditional expectation The conditional expectation (or mean) of Y given X is the mean of the conditional distribution of Y given X. If Y takes on values y 1,..., y k, then the conditional mean of Y given X = x is E (Y X = x) = k y i Pr(Y = y i X = x i ) i=1 Question: What is the expected number of computer crashes given the computer is old? The conditional variance follows the same logic.

10 10 / 31 Covariance & correlation These are two measures that describe to which extent two random variables move together. The covariance between X and Y is the expected value E [(X µ X )(Y µ Y )] and denoted cov(x, Y). If X can take on l values and Y can take on k values, then the covariance is given by cov(x, Y) = σ XY = E [(X µ X ) (Y µ Y )] k l = (x j µ X ) (y i µ Y ) Pr (X = x j, Y = y i ) i=1 j=1

11 11 / 31 Covariance & correlation The units of the covariance are the units of X multiplied by the units of Y This makes the covariance difficult to interpret. The correlation overcomes this problem and is defined as the covariance between X and Y divided by their standard deviation: corr(x, Y) = cov(x, Y) var(x)var(y) = σ XY σ X σ Y As units cancel, correlation is unitless and ranges between -1 and 1.

12 12 / 31 Correlation & conditional mean If the conditional mean of Y does not depend on X, then Y and X are uncorrelated, that is if E(Y X) = µ Y then cov(x, Y) = corr(x, Y) = 0

13 13 / 31 Random sampling Almost all the statistical and econometric procedures used here involve averages of a sample of data. Characterizing the distribution of sample averages is thus essential to understand the performance of these techniques. Random sampling makes the sample average a random variable! It has a probability distribution, called sampling distribution.

14 14 / 31 Random sampling Independent distribution Suppose you record your commuting time to the university over the whole year. If knowing the commuting time at one randomly drawn day provides no information about the commuting time on another specific day: Then, the values of the commuting time are independently distributed.

15 15 / 31 Random sampling Identical distribution When Y i has the same marginal distribution for all i = 1,..., n, then Y i,..., Y n are said to be identically distributed. That means, for every draw it is equally likely to obtain a certain value of the random variable. We will mostly rely on the assumption that a random variable is i.i.d. (independently and identically distributed)

16 16 / 31 Random sampling With random sampling, each observation of the sample has the same expected value, variance and standard deviation: E(Y i ) = µ Y var(y i ) = σ 2 Y std.dev(y i ) = σ Y

17 Random sampling For the sample average Ȳ = 1 n n i=1 Y i, we get E(Ȳ) = 1 n E (Y i ) = µ Y n i=1 var(ȳ) = σ 2 Ȳ = var ( 1 n ) n Y i i=1 = 1 n var (Y n 2 i ) + 1 n 2 i=1 n n i=1 j=1,j i cov (Y i, Y j ) = σ2 Y n std.dev.(ȳ) = σ Ȳ = σ Y n Note: σ 2 Ȳ is the var. of the sampling distribution of the sample average Ȳ, while σ 2 Y is the var. of each individual Y i 17 / 31

18 18 / 31 Approximations It is crucial to characterize the sampling distribution. We discuss two tools: 1 Law of large numbers: When n is large, the sample mean will be close to the population mean. 2 Central limit theorem: When n is large, the sampling distribution of the sample average is approximately normally distributed.

19 19 / 31 Estimation Suppose you want to know the mean value of Y, that is µ Y, in a population. (Let ˆµ Y be the estimator of µ Y.) A natural way to estimate this mean is to compute the sample average Ȳ from a sample of n i.i.d. observations. Alternatively, one could use the first observation of the sample, Y 1. Both Y 1 and Ȳ are estimators of µ Y. What makes one estimator better than another?

20 20 / 31 Estimation An estimator is a function of a sample of data to be drawn randomly from a population. An estimate is the numerical value of the estimator when it is actually computed using data from a specific sample. An estimator is a random variable because of randomness in selecting the sample, while an estimate is a nonrandom number.

21 21 / 31 Estimation What are desirable characteristics of the sampling distribution of an estimator? Unbiasedness: The estimator ˆµ Y is unbiased if E(ˆµ Y ) = µ Y. Consistency: The probability that ˆµ Y is within a small interval of the true value of µ Y approaches 1 as the sample size increases. Efficiency: Among two unbiased estimators, choose the one with the lower variance.

22 22 / 31 Estimation Is Ȳ a good estimator? It is unbiased because E(Ȳ) = µ Y. It is also consistent as the law of large number ensures that Ȳ p µ Y. Y 1 is also unbiased, but has a higher variance: var(y 1 ) = σ 2 Y > var(ȳ) = σ 2 Y/n So Ȳ is more efficient than Y 1 and should therefore be preferred!

23 23 / 31 Estimation Ȳ is the least-squares estimator of µ Y. n i=1 (Y i m) 2 is a measure of the total squared distance between the estimator m and the sample point. The sample average provides the best fit to the data in the sense that n (Y i m) 2 i=1 is minimized. That is, choose m = Ȳ. (For proof see Appendix 3.2 in Stock and Watson.)

24 24 / 31 Hypothesis tests We want to find answers to questions like: Are mean earnings the same for men and women in reality? Is it true that graduate students earn 20 EUR on average? The key is that we want to find answers about the population, not about the sample (that would be trivial!) Null and alternative hypothesis (µ Y,0 = 20): H 0 : E(Y) = µ Y,0 H 1 : E(Y) µ Y,0

25 25 / 31 Hypothesis test Ȳ act : the value of the sample average actually computed in the data set at hand

26 26 / 31 Hypothesis tests Problem: The formula for the p-value depends on the variance of the population distribution which is unknown. ( ) p value = 2Φ Ȳ µ Y,0 σ Ȳ Solution: We can replace the unknown standard deviation of the population by its estimate, the standard error of Ȳ. ( ) p value = 2Φ Ȳ µ Y,0 SE(Ȳ)

27 27 / 31 Hypothesis tests How do we obtain the standard error? We need the sample variance s 2 Y = 1 n 1 n (Y i Ȳ) 2 i=1 Two modifications compared to the population variance: 1 µ Y is replaced by Ȳ because it is unknown. 2 Degrees-of-freedom-adjustment: Divide by n 1 instead of n.

28 28 / 31 Hypothesis tests How do we obtain the standard error? Because the standard deviation of the sampling distribution of Ȳ is σ Ȳ = σ Y / n, we employ s Y / n as an estimator for σ Ȳ. This estimator is called the standard error of Ȳ. So we have SE(Ȳ) = ˆσ Ȳ = s Y n

29 Hypothesis tests The t-statistic: The standardized sample average plays a key role and has a special name, the t-statistic: t = Ȳ µ Y,0 SE(Ȳ) For large n, t is approximately distributed N(0, 1). This value can be used to reject the null for given significance levels. For instance, at 5% Reject H 0 if t act > / 31

30 30 / 31 Confidence intervals Because of random sampling, it is impossible to learn the true value with certainty. However, we can construct a set of values that contains the true value with a given probability. Such a set is called confidence set or confidence interval. The prespecified probability is referred to as confidence level.

31 31 / 31 Confidence intervals A 95% two-sided confidence interval for µ Y is an interval constructed so that it contains the true value of µ Y in 95% of all possible random samples. When the sample size n is large, the 95% confidence interval for µ Y = {Ȳ ± 1.96SE(Ȳ)}. the 90% confidence interval for µ Y = {Ȳ ± 1.64SE(Ȳ)}. the 99% confidence interval for µ Y = {Ȳ ± 2.58SE(Ȳ)}.

ECON Introductory Econometrics. Lecture 2: Review of Statistics

ECON Introductory Econometrics. Lecture 2: Review of Statistics ECON415 - Introductory Econometrics Lecture 2: Review of Statistics Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 2-3 Lecture outline 2 Simple random sampling Distribution of the sample

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

Paul Schrimpf. January 23, UBC Economics 326. Statistics and Inference. Paul Schrimpf. Properties of estimators. Finite sample inference

Paul Schrimpf. January 23, UBC Economics 326. Statistics and Inference. Paul Schrimpf. Properties of estimators. Finite sample inference UBC Economics 326 January 23, 2018 1 2 3 4 Wooldridge (2013) appendix C Stock and Watson (2009) chapter 3 Angrist and Pischke (2014) chapter 1 appendix Diez, Barr, and Cetinkaya-Rundel (2012) chapters

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Econometrics I Lecture 3: The Simple Linear Regression Model

Econometrics I Lecture 3: The Simple Linear Regression Model Econometrics I Lecture 3: The Simple Linear Regression Model Mohammad Vesal Graduate School of Management and Economics Sharif University of Technology 44716 Fall 1397 1 / 32 Outline Introduction Estimating

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model

Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model Most of this course will be concerned with use of a regression model: a structure in which one or more explanatory

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics Lecture 2 : Causal Inference and Random Control Trails(RCT) Zhaopeng Qu Business School,Nanjing University Sep 18th, 2017 Zhaopeng Qu (Nanjing University) Introduction to Econometrics

More information

ECON3150/4150 Spring 2015

ECON3150/4150 Spring 2015 ECON3150/4150 Spring 2015 Lecture 3&4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo January 29, 2015 1 / 67 Chapter 4 in S&W Section 17.1 in S&W (extended OLS assumptions) 2

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

Introduction to bivariate analysis

Introduction to bivariate analysis Introduction to bivariate analysis When one measurement is made on each observation, univariate analysis is applied. If more than one measurement is made on each observation, multivariate analysis is applied.

More information

Introduction to bivariate analysis

Introduction to bivariate analysis Introduction to bivariate analysis When one measurement is made on each observation, univariate analysis is applied. If more than one measurement is made on each observation, multivariate analysis is applied.

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Introduction to Econometrics. Review of Probability & Statistics

Introduction to Econometrics. Review of Probability & Statistics 1 Introduction to Econometrics Review of Probability & Statistics Peerapat Wongchaiwat, Ph.D. wongchaiwat@hotmail.com Introduction 2 What is Econometrics? Econometrics consists of the application of mathematical

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline)

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) Gujarati D. Basic Econometrics, Appendix A.8 Barrow M. Statistics

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

Simple linear regression

Simple linear regression Simple linear regression Biometry 755 Spring 2008 Simple linear regression p. 1/40 Overview of regression analysis Evaluate relationship between one or more independent variables (X 1,...,X k ) and a single

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics A short review of the principles of mathematical statistics (or, what you should have learned in EC 151).

More information

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables.

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables. Probability UBC Economics 326 January 23, 2018 1 2 3 Wooldridge (2013) appendix B Stock and Watson (2009) chapter 2 Linton (2017) chapters 1-5 Abbring (2001) sections 2.1-2.3 Diez, Barr, and Cetinkaya-Rundel

More information

F3: Classical normal linear rgression model distribution, interval estimation and hypothesis testing

F3: Classical normal linear rgression model distribution, interval estimation and hypothesis testing F3: Classical normal linear rgression model distribution, interval estimation and hypothesis testing Feng Li Department of Statistics, Stockholm University What we have learned last time... 1 Estimating

More information

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla Outline for Today 1 Review of In-class Exercise 2 Bivariate hypothesis testing 2: difference of means 3 Bivariate hypothesis testing 3: correlation 2 / 51 Task for ext Week Any questions? 3 / 51 In-class

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Random Variables and Expectations

Random Variables and Expectations Inside ECOOMICS Random Variables Introduction to Econometrics Random Variables and Expectations A random variable has an outcome that is determined by an experiment and takes on a numerical value. A procedure

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Econ 371 Problem Set #1 Answer Sheet

Econ 371 Problem Set #1 Answer Sheet Econ 371 Problem Set #1 Answer Sheet 2.1 In this question, you are asked to consider the random variable Y, which denotes the number of heads that occur when two coins are tossed. a. The first part of

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3 Probability Paul Schrimpf January 23, 2018 Contents 1 Definitions 2 2 Properties 3 3 Random variables 4 3.1 Discrete........................................... 4 3.2 Continuous.........................................

More information

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47 ECON2228 Notes 2 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 2 2014 2015 1 / 47 Chapter 2: The simple regression model Most of this course will be concerned with

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Applied Quantitative Methods II

Applied Quantitative Methods II Applied Quantitative Methods II Lecture 4: OLS and Statistics revision Klára Kaĺıšková Klára Kaĺıšková AQM II - Lecture 4 VŠE, SS 2016/17 1 / 68 Outline 1 Econometric analysis Properties of an estimator

More information

3. Linear Regression With a Single Regressor

3. Linear Regression With a Single Regressor 3. Linear Regression With a Single Regressor Econometrics: (I) Application of statistical methods in empirical research Testing economic theory with real-world data (data analysis) 56 Econometrics: (II)

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2 Math 205 Spring 206 Dr. Lily Yen Midterm 2 Show all your work Name: 8 Problem : The library at Capilano University has a copy of Math 205 text on two-hour reserve. Let X denote the amount of time the text

More information

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not?

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not? Hypothesis testing Question Very frequently: what is the possible value of μ? Sample: we know only the average! μ average. Random deviation or not? Standard error: the measure of the random deviation.

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

Introduction. The Linear Regression Model One popular model is the linear regression model. It writes as :

Introduction. The Linear Regression Model One popular model is the linear regression model. It writes as : Introduction Definition From Wikipedia : The two main purposes of econometrics are to give empirical content to economic theory and to subject economic theory to potentially falsifying tests. Another popular

More information

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han Econometrics Honor s Exam Review Session Spring 2012 Eunice Han Topics 1. OLS The Assumptions Omitted Variable Bias Conditional Mean Independence Hypothesis Testing and Confidence Intervals Homoskedasticity

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Econometrics Lecture 1 Introduction and Review on Statistics

Econometrics Lecture 1 Introduction and Review on Statistics Econometrics Lecture 1 Introduction and Review on Statistics Chau, Tak Wai Shanghai University of Finance and Economics Spring 2014 1 / 69 Introduction This course is about Econometrics. Metrics means

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Probability and random variables. Sept 2018

Probability and random variables. Sept 2018 Probability and random variables Sept 2018 2 The sample space Consider an experiment with an uncertain outcome. The set of all possible outcomes is called the sample space. Example: I toss a coin twice,

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Probability. Hosung Sohn

Probability. Hosung Sohn Probability Hosung Sohn Department of Public Administration and International Affairs Maxwell School of Citizenship and Public Affairs Syracuse University Lecture Slide 4-3 (October 8, 2015) 1/ 43 Table

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

ACE 562 Fall Lecture 2: Probability, Random Variables and Distributions. by Professor Scott H. Irwin

ACE 562 Fall Lecture 2: Probability, Random Variables and Distributions. by Professor Scott H. Irwin ACE 562 Fall 2005 Lecture 2: Probability, Random Variables and Distributions Required Readings: by Professor Scott H. Irwin Griffiths, Hill and Judge. Some Basic Ideas: Statistical Concepts for Economists,

More information

MATH1725 Introduction to Statistics: Worked examples

MATH1725 Introduction to Statistics: Worked examples MATH725 Introduction to Statistics: Worked examples Worked Example: Lectures 2 The lifetimes of 400 light-bulbs were found to the nearest hour. The results were recorded as follows. Lifetime (hours) 0

More information

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators Thilo Klein University of Cambridge Judge Business School Session 4: Linear regression,

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Probability & Statistics - FALL 2008 FINAL EXAM

Probability & Statistics - FALL 2008 FINAL EXAM 550.3 Probability & Statistics - FALL 008 FINAL EXAM NAME. An urn contains white marbles and 8 red marbles. A marble is drawn at random from the urn 00 times with replacement. Which of the following is

More information

Introduction to Econometrics Third Edition James H. Stock Mark W. Watson The statistical analysis of economic (and related) data

Introduction to Econometrics Third Edition James H. Stock Mark W. Watson The statistical analysis of economic (and related) data Introduction to Econometrics Third Edition James H. Stock Mark W. Watson The statistical analysis of economic (and related) data 1/2/3-1 1/2/3-2 Brief Overview of the Course Economics suggests important

More information

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima Applied Statistics Lecturer: Serena Arima Hypothesis testing for the linear model Under the Gauss-Markov assumptions and the normality of the error terms, we saw that β N(β, σ 2 (X X ) 1 ) and hence s

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Basic Probability Reference Sheet

Basic Probability Reference Sheet February 27, 2001 Basic Probability Reference Sheet 17.846, 2001 This is intended to be used in addition to, not as a substitute for, a textbook. X is a random variable. This means that X is a variable

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

Problem set 1: answers. April 6, 2018

Problem set 1: answers. April 6, 2018 Problem set 1: answers April 6, 2018 1 1 Introduction to answers This document provides the answers to problem set 1. If any further clarification is required I may produce some videos where I go through

More information

LECTURE 1. Introduction to Econometrics

LECTURE 1. Introduction to Econometrics LECTURE 1 Introduction to Econometrics Ján Palguta September 20, 2016 1 / 29 WHAT IS ECONOMETRICS? To beginning students, it may seem as if econometrics is an overly complex obstacle to an otherwise useful

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

7 Estimation. 7.1 Population and Sample (P.91-92)

7 Estimation. 7.1 Population and Sample (P.91-92) 7 Estimation MATH1015 Biostatistics Week 7 7.1 Population and Sample (P.91-92) Suppose that we wish to study a particular health problem in Australia, for example, the average serum cholesterol level for

More information

Estimators as Random Variables

Estimators as Random Variables Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maimum likelihood Consistency Confidence intervals Properties of the mean estimator Introduction Up until

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment.

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Course information: Instructor: Tim Hanson, Leconte 219C, phone 777-3859. Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Text: Applied Linear Statistical Models (5th Edition),

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2013 MODULE 5 : Further probability and inference Time allowed: One and a half hours Candidates should answer THREE questions.

More information

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals (SW Chapter 5) Outline. The standard error of ˆ. Hypothesis tests concerning β 3. Confidence intervals for β 4. Regression

More information

Correlation analysis. Contents

Correlation analysis. Contents Correlation analysis Contents 1 Correlation analysis 2 1.1 Distribution function and independence of random variables.......... 2 1.2 Measures of statistical links between two random variables...........

More information

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012 Econometric Methods Prediction / Violation of A-Assumptions Burcu Erdogan Universität Trier WS 2011/2012 (Universität Trier) Econometric Methods 30.11.2011 1 / 42 Moving on to... 1 Prediction 2 Violation

More information

STATISTICS 3A03. Applied Regression Analysis with SAS. Angelo J. Canty

STATISTICS 3A03. Applied Regression Analysis with SAS. Angelo J. Canty STATISTICS 3A03 Applied Regression Analysis with SAS Angelo J. Canty Office : Hamilton Hall 209 Phone : (905) 525-9140 extn 27079 E-mail : cantya@mcmaster.ca SAS Labs : L1 Friday 11:30 in BSB 249 L2 Tuesday

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last two weeks: Sample, population and sampling

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information