Econ 371 Problem Set #1 Answer Sheet

Size: px
Start display at page:

Download "Econ 371 Problem Set #1 Answer Sheet"

Transcription

1 Econ 371 Problem Set #1 Answer Sheet 2.1 In this question, you are asked to consider the random variable Y, which denotes the number of heads that occur when two coins are tossed. a. The first part of the question asks you to derive the probability distribution for Y. For a discrete random variable, this is just a listing of all the possible outcomes and the probability that they can occur. Assuming that the two coins are fair, there are only four possible results when we flip the two coins: Heads,Heads (Y = 2) Heads,Tails (Y = 1) Tails,Heads (Y = 1) Tails,Tails (Y = 0) which happen with equal probability. The corresponding probability distribution is given by the following table. outcome (number of heads) Y = 0 Y = 1 Y = 2 probability b. The cumulative probability distribution function for Y corresponds to just computing the probabilities of Y being less than or equal to a given value outcome (number of heads) Y < 0 0 Y < 1 1 Y < 2 Y > 2 cumulative probability c. Finally, you are asked to derive the mean and variance of Y. These are given by: and E(Y ) = V ar(y ) = E[(Y µ Y ) 2 ] = k P r(y = y i )y i = k p i y i = (0.25) 0 + (0.50) 1 + (0.25) 2 = 1 k p i (y i µ Y ) 2 = (0.25) (0 1) 2 + (0.50) (1 1) 2 + (0.25) (2 1) 2 = (0.25) 1 + (0.50) 0 + (0.25) 1 = In this question, you are asked to compute various characteristics of two random variables, W and V that are functions of the random variables in Table 2.2 (X and Y ). Specifically, we have: W = 3 + 6X V = 20 7Y a. First, you are asked to compute E(W ) and E(V ). From equation (2.12) in the text, we know that: E(W ) = 3 + 6E(X) (1) 1

2 but, using Table 2.2 and our formula for computing means, we have that E(X) = k X p i x i = (0.30) 0 + (0.70) 1 = 0.7 Substituting this into (1) yields. E(W ) = 3 + 6E(X) = 3 + 6(0.7) = 7.2 (2) Similarly, E(Y ) = k Y p i x i = (0.22) 0 + (0.78) 1 = 0.78, so that E(V ) = 20 7E(Y ) = 20 7(0.78) = (3) b. In part b you are asked to compute the corresponding variances for W and V. Equation (2.13) in the text tells us that: σw 2 = 6 2 σx 2 = 36σX 2 σv 2 = ( 7) 2 σy 2 = 49σY 2 Turning to our formulas for variances, however, we know that: V ar(x) = k X p i (x i µ X ) 2 = (0.30) (0 0.7) 2 + (0.70) (1 0.7) 2 = (0.30) (0.49) + (0.70) (0.09) = 0.21 So that Similarly, σ 2 W = 6 2 σ 2 X = 36(0.21) = 7.56 (4) V ar(y ) = k Y p i (y i µ Y ) 2 = (0.22) (0 0.78) 2 + (0.78) (1 0.78) 2 = (0.22) (0.6084) + (0.78) (0.0484) = So that σ 2 V = 49 2 σ 2 Y = 49(0.1716) = (5) c. Finally, you are asked to compute σ W V and corr(w, V ) There are two ways to do this (at least). First, you can derive the formula for the covariance term using: Cov(W, V ) = Cov(3 + 6X, 20 7Y ) = 6( 7)Cov(X, Y ) (6) 2

3 But, using the formula in equation (2.24) in the text, we have that: So that Cov(X, Y ) = σ XY = E [(X µ X )(Y µ Y )] = k X k Y j=1 x i µ X )(y j µ Y )P r(x = x i, Y = y j ) = (0 0.7)(0 0.78)(0.15) + (1 0.7)(0 0.78)(0.07) + (0 0.7)(1 0.78)(0.15) + (1 0.7)(1 0.78)(0.63) = = Cov(W, V ) = Cov(3 + 6X, 20 7Y ) = 6( 7)(0.084) = (7) Alternatively, since knowing the values of X and Y tells the corresponding values for W and V, we can use this information to construct the probability distribution table for W and V. Specifically, we have that: The probability distribution for W and V can be used directly to compute X = 0 W = 3 X = 1 W = 9 Y = 0 V = Y = 1 V = Cov(W, V ) using equation 2.24 in the book, which will give us Cov(W, V ) = compute Cov(W, V ), the correlation results from using the equation: corr(w, V ) = However you Cov(W, V ) = = (8) V ar(w )V ar(v ) (7.56)(8.4084) 2.6 This question considers the joint probability distribution between employment status and college graduation. a. The first question asks you to compute the mean of the employed random variable Y. This would be given by: b. The unemployment rate is given by E(Y ) = k Y p i y i = (0.05) (0) + (0.95) (1) = 0.95 Unemployment rate = Number employed Number in labor force = P r(y = 0) = 1 P r(y = 1) = 1 E(Y ) c. In order to compute the conditional means in this question, we need to know the conditional probabilities. These can be calculated using equation (2.17). For the current problem: P r(y = 0 X = 0) = P r(y = 1 X = 0) = P r(y = 0 X = 1) = P r(y = 1 X = 1) = P r(x = 0, Y = 0) P r(x = 0) P r(x = 0, Y = 1) P r(x = 0) P r(x = 1, Y = 0) P r(x = 1) P r(x = 1, Y = 1) P r(x = 1) = = = = = = = =

4 The conditional means then follow using equation (2.18) in the text: E(Y X = 0) = (0) P r(y = 0 X = 0) + (1) P r(y = 1 X = 0) = E(Y X = 1) = (0) P r(y = 0 X = 1) + (1) P r(y = 1 X = 1) = d. The unemployment rate, conditional on the college graduation status, is computed in much the same way as the unemployment rate was computed in part (b), only now we are conditioning on graduation status. Thus, Similarly Unemployment rate X = 1 = Number employed among college graduates Number of college graduates in labor force = P r(y = 0 X = 1) = 1 P r(y = 1 X = 1) = 1 E(Y X = 1) = Unemployment rate X = 0 = Number employed among non-college graduates Number of non-college graduates in labor force = P r(y = 0 X = 0) = 1 P r(y = 1 X = 0) = 1 E(Y X = 0) = e. This question asks first what the probability of a randomly selected individual is unemployed. This is given by the P r[y = 0] = You are then asked to compute conditional probabilities. That is, you are asked to compute the probability that an individual is a college graduate, given that you know they are unemployed. Mathematically, this corresponds to: P r(x = 1 Y = 0) = P r(x = 1, Y = 0) P r(y = 0) = = 0.10 (9) Thus, there is only a ten percent chance that a randomly selected unemployed person is a college graduate. The probability that a randomly selected unemployed person is a non-college graduate is then P r(x = 0 Y = 0) = 1 P r(x = 1 Y = 0) = 0.90 (10) f. In order to check independence, we need to determine if equation (2.22) in the text holds; i.e., However, we know that this does not hold, since P r(y = y X = x) = P r(y = y). (11) P r(y = 0 X = 0) = P r(y = 0) = (12) 2.12 This question asks you to look up a number of the probabilities associated with specific distributions. a. The first question asks for P r(y > 1.75) if Y is distributed t 15. This corresponds to the 1-sided significance level in Table 2. Looking under the 15 degrees of freedom case, we find that the 1-sided significance level of 5% has a critical level of That is, P r(y > 1.75) = 0.05, which is what we were looking for. b. The second question asks for P r( 1.99 Y 1.99) if Y is distributed t 90. However, this can be rewritten as: P r( 1.99 Y 1.99) = 1 [P r(y < 1.99) + P r(y > 1.99)] (13) 4

5 The term in square brackets above is just the 2-sided significance level in Table 2 (i.e., the probability that Y lies in the tails of the t-distribution - above 1.99 or below -1.99). Looking under the 90 degrees of freedom case, we find that the 2-sided significance level of 5% has a critical level of That is, [P r(y < 1.99) + P r(y > 1.99)] = This in turn implies that P r( 1.99 Y 1.99) = 1 [P r(y < 1.99) + P r(y > 1.99)] = 0.95 (14) c. The third question asks for P r( 1.99 Y 1.99) if Y is distributed N(0, 1). This can be rewritten as: P r( 1.99 Y 1.99) = P r(y 1.99) P r(y < 1.99) (15) From Table 1 we know that P r(y 1.99) = and P r(y < 1.99) = , so that P r( 1.99 Y 1.99) = P r(y 1.99) P r(y < 1.99) = = (16) d. The t-distribution and the standard normal are approximately the same as the degrees of freedom become large. e. The fifth question as for P r(y > 4.12) if Y is distributed F 4,7. This corresponds to the significance level. Looking through the three tables 5A, 5B and 5C, we see that for an F 4,7 distribution: P r(y > 2.96) = 0.10 P r(y > 4.12) = 0.05 P r(y > 7.85) = 0.01 The answer we are looking for is the second one; i.e., P r(y > 4.12) = f. The sixth question as for P r(y > 2.79) if Y is distributed F 7,120. This corresponds to the significance level. Looking through the three tables 5A, 5B and 5C, we see that for an F 7,120 distribution: P r(y > 1.77) = 0.10 P r(y > 2.09) = 0.05 P r(y > 2.79) = 0.01 The answer we are looking for is the third one; i.e., P r(y > 2.79) = This question makes use of the central limit theorem, which says that as the sample size gets large, the sampling distribution for Ȳ can be approximated by N(µ Y, σ 2 ), where Ȳ This also means that Ȳ µ Ȳ σ Ȳ σ 2 Ȳ = σ2 Y n. (17) N(0, 1). (18) a. In this first question, you are told that n = 100, so that σ 2 Ȳ = σ2 Y n = = With this information, we know that: P r ( Ȳ 101 ) = P r ( ) Ȳ µ Ȳ 101 µ Ȳ (Ȳ ) µȳ 101 µȳ = P r σ Ȳ σ ( ) Ȳ 101 µȳ = Φ σ ( Ȳ ) = Φ 0.43 Φ(1.525) =

6 b. In this second question, you are told that n = 165, so that σ 2 Ȳ = σ2 Y n = information, we know that: P r ( Ȳ 98 ) = P r ( ) Ȳ µ Ȳ 98 µ Ȳ (Ȳ ) µȳ 98 µȳ = P r σ Ȳ σ ( ) Ȳ 98 µȳ = Φ σ ( Ȳ ) = Φ = With this Φ( 3.92) We can then use this to calculate: P r ( Ȳ > 98 ) = 1 P r ( Ȳ 98 ) 1. (19) c. In this third question, you are told that n = 64, so that σ 2 Ȳ = σ2 Y n = = With this information, we know that: P r ( 101 Ȳ 103) = P r ( 101 µ Ȳ Ȳ ) µȳ 103 µ Ȳ ( 101 µȳ = P r Ȳ ) µȳ 103 µȳ σ Ȳ σ Ȳ σ ( ) ( ) Ȳ 103 µȳ 101 µȳ = Φ Φ σ Ȳ σ ( ) ( Ȳ ) = Φ Φ Φ(3.66) Φ(1.22) = There are several ways to do this. Here is one way. Generate n draws of Y, Y 1, Y 2,... Y n. Let X i = 1 if Y i < 3.6, otherwise set X i = 0.. Notice that X i is a Bernoulli random variables with µ X = P r(x = 1) = P r(y < 3.6). Compute X. Because X converges in probability to µ X = P r(x = 1) = P r(y < 3.6), X will be an accurate approximation if n is large 6

Business Statistics 41000: Homework # 2 Solutions

Business Statistics 41000: Homework # 2 Solutions Business Statistics 4000: Homework # 2 Solutions Drew Creal February 9, 204 Question #. Discrete Random Variables and Their Distributions (a) The probabilities have to sum to, which means that 0. + 0.3

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

Properties of Summation Operator

Properties of Summation Operator Econ 325 Section 003/004 Notes on Variance, Covariance, and Summation Operator By Hiro Kasahara Properties of Summation Operator For a sequence of the values {x 1, x 2,..., x n, we write the sum of x 1,

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek Bhrushundi

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

ECON Fundamentals of Probability

ECON Fundamentals of Probability ECON 351 - Fundamentals of Probability Maggie Jones 1 / 32 Random Variables A random variable is one that takes on numerical values, i.e. numerical summary of a random outcome e.g., prices, total GDP,

More information

Exam 1 Review With Solutions Instructor: Brian Powers

Exam 1 Review With Solutions Instructor: Brian Powers Exam Review With Solutions Instructor: Brian Powers STAT 8, Spr5 Chapter. In how many ways can 5 different trees be planted in a row? 5P 5 = 5! =. ( How many subsets of S = {,,,..., } contain elements?

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, 008 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

18.05 Exam 1. Table of normal probabilities: The last page of the exam contains a table of standard normal cdf values.

18.05 Exam 1. Table of normal probabilities: The last page of the exam contains a table of standard normal cdf values. Name 18.05 Exam 1 No books or calculators. You may have one 4 6 notecard with any information you like on it. 6 problems, 8 pages Use the back side of each page if you need more space. Simplifying expressions:

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Probability & Statistics - FALL 2008 FINAL EXAM

Probability & Statistics - FALL 2008 FINAL EXAM 550.3 Probability & Statistics - FALL 008 FINAL EXAM NAME. An urn contains white marbles and 8 red marbles. A marble is drawn at random from the urn 00 times with replacement. Which of the following is

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Introduction to Probability Theory for Graduate Economics Fall 2008

Introduction to Probability Theory for Graduate Economics Fall 2008 Introduction to Probability Theory for Graduate Economics Fall 008 Yiğit Sağlam October 10, 008 CHAPTER - RANDOM VARIABLES AND EXPECTATION 1 1 Random Variables A random variable (RV) is a real-valued function

More information

Sections 5.1 and 5.2

Sections 5.1 and 5.2 Sections 5.1 and 5.2 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) 1 / 19 Sampling variability A random sample

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1.(10) What is usually true about a parameter of a model? A. It is a known number B. It is determined by the data C. It is an

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Objective - To understand experimental probability

Objective - To understand experimental probability Objective - To understand experimental probability Probability THEORETICAL EXPERIMENTAL Theoretical probability can be found without doing and experiment. Experimental probability is found by repeating

More information

STOR Lecture 16. Properties of Expectation - I

STOR Lecture 16. Properties of Expectation - I STOR 435.001 Lecture 16 Properties of Expectation - I Jan Hannig UNC Chapel Hill 1 / 22 Motivation Recall we found joint distributions to be pretty complicated objects. Need various tools from combinatorics

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Basic Probability Reference Sheet

Basic Probability Reference Sheet February 27, 2001 Basic Probability Reference Sheet 17.846, 2001 This is intended to be used in addition to, not as a substitute for, a textbook. X is a random variable. This means that X is a variable

More information

Multivariate probability distributions and linear regression

Multivariate probability distributions and linear regression Multivariate probability distributions and linear regression Patrik Hoyer 1 Contents: Random variable, probability distribution Joint distribution Marginal distribution Conditional distribution Independence,

More information

1 Random variables and distributions

1 Random variables and distributions Random variables and distributions In this chapter we consider real valued functions, called random variables, defined on the sample space. X : S R X The set of possible values of X is denoted by the set

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 9 Fall 2007

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 9 Fall 2007 UC Berkeley Department of Electrical Engineering and Computer Science EE 26: Probablity and Random Processes Problem Set 9 Fall 2007 Issued: Thursday, November, 2007 Due: Friday, November 9, 2007 Reading:

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

18.440: Lecture 26 Conditional expectation

18.440: Lecture 26 Conditional expectation 18.440: Lecture 26 Conditional expectation Scott Sheffield MIT 1 Outline Conditional probability distributions Conditional expectation Interpretation and examples 2 Outline Conditional probability distributions

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014 Time: 3 hours, 8:3-11:3 Instructions: MATH 151, FINAL EXAM Winter Quarter, 21 March, 214 (1) Write your name in blue-book provided and sign that you agree to abide by the honor code. (2) The exam consists

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Chapter 4 : Expectation and Moments

Chapter 4 : Expectation and Moments ECE5: Analysis of Random Signals Fall 06 Chapter 4 : Expectation and Moments Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu Expected Value of a Random Variable Definition. The expected or average

More information

Covariance and Correlation Class 7, Jeremy Orloff and Jonathan Bloom

Covariance and Correlation Class 7, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Covariance and Correlation Class 7, 18.05 Jerem Orloff and Jonathan Bloom 1. Understand the meaning of covariance and correlation. 2. Be able to compute the covariance and correlation

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Expectation and Variance

Expectation and Variance Expectation and Variance August 22, 2017 STAT 151 Class 3 Slide 1 Outline of Topics 1 Motivation 2 Expectation - discrete 3 Transformations 4 Variance - discrete 5 Continuous variables 6 Covariance STAT

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

Introduction. The Linear Regression Model One popular model is the linear regression model. It writes as :

Introduction. The Linear Regression Model One popular model is the linear regression model. It writes as : Introduction Definition From Wikipedia : The two main purposes of econometrics are to give empirical content to economic theory and to subject economic theory to potentially falsifying tests. Another popular

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017

First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017 First Midterm Examination Econ 103, Statistics for Economists February 14th, 2017 You will have 70 minutes to complete this exam. Graphing calculators, notes, and textbooks are not permitted. I pledge

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

Random Variables and Expectations

Random Variables and Expectations Inside ECOOMICS Random Variables Introduction to Econometrics Random Variables and Expectations A random variable has an outcome that is determined by an experiment and takes on a numerical value. A procedure

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

1. Regressions and Regression Models. 2. Model Example. EEP/IAS Introductory Applied Econometrics Fall Erin Kelley Section Handout 1

1. Regressions and Regression Models. 2. Model Example. EEP/IAS Introductory Applied Econometrics Fall Erin Kelley Section Handout 1 1. Regressions and Regression Models Simply put, economists use regression models to study the relationship between two variables. If Y and X are two variables, representing some population, we are interested

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Probability and random variables

Probability and random variables Probability and random variables Events A simple event is the outcome of an experiment. For example, the experiment of tossing a coin twice has four possible outcomes: HH, HT, TH, TT. A compound event

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 08 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March, 08 Notes: Notation: Unless otherwise noted, x, y, and z denote random variables,

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation)

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) Last modified: March 7, 2009 Reference: PRP, Sections 3.6 and 3.7. 1. Tail-Sum Theorem

More information

Some Basic Concepts of Probability and Information Theory: Pt. 2

Some Basic Concepts of Probability and Information Theory: Pt. 2 Some Basic Concepts of Probability and Information Theory: Pt. 2 PHYS 476Q - Southern Illinois University January 22, 2018 PHYS 476Q - Southern Illinois University Some Basic Concepts of Probability and

More information

Mathematics of Finance Problem Set 1 Solutions

Mathematics of Finance Problem Set 1 Solutions Mathematics of Finance Problem Set 1 Solutions 1. (Like Ross, 1.7) Two cards are randomly selected from a deck of 52 playing cards. What is the probability that they are both aces? What is the conditional

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1 IEOR 3106: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Probability. Hosung Sohn

Probability. Hosung Sohn Probability Hosung Sohn Department of Public Administration and International Affairs Maxwell School of Citizenship and Public Affairs Syracuse University Lecture Slide 4-3 (October 8, 2015) 1/ 43 Table

More information

Machine Learning: Homework Assignment 2 Solutions

Machine Learning: Homework Assignment 2 Solutions 10-601 Machine Learning: Homework Assignment 2 Solutions Professor Tom Mitchell Carnegie Mellon University January 21, 2009 The assignment is due at 1:30pm (beginning of class) on Monday, February 2, 2009.

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided!

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Math 447 Final Exam Fall 2015 No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Name: Section: Question Points Score 1 8 2 6 3 10 4 19 5 9 6 10 7 14 8 14

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

SCHOOL OF MATHEMATICS AND STATISTICS

SCHOOL OF MATHEMATICS AND STATISTICS RESTRICTED OPEN BOOK EXAMINATION (Not to be removed from the examination hall) Data provided: Statistics Tables by H.R. Neave MAS5052 SCHOOL OF MATHEMATICS AND STATISTICS Basic Statistics Spring Semester

More information

Preliminary statistics

Preliminary statistics 1 Preliminary statistics The solution of a geophysical inverse problem can be obtained by a combination of information from observed data, the theoretical relation between data and earth parameters (models),

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Question 1. Suppose you want to estimate the percentage of

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Homework 10 (due December 2, 2009)

Homework 10 (due December 2, 2009) Homework (due December, 9) Problem. Let X and Y be independent binomial random variables with parameters (n, p) and (n, p) respectively. Prove that X + Y is a binomial random variable with parameters (n

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

Probability and random variables. Sept 2018

Probability and random variables. Sept 2018 Probability and random variables Sept 2018 2 The sample space Consider an experiment with an uncertain outcome. The set of all possible outcomes is called the sample space. Example: I toss a coin twice,

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Random Variables Shiu-Sheng Chen Department of Economics National Taiwan University October 5, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I October 5, 2016

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information