Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Size: px
Start display at page:

Download "Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting"

Transcription

1 Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier h (hypothesis) on a sample S train of pairs drawn independently (of one another) and identically distributed according to D (i.i.d sample) Task is to estimate the generalization error (or true error or expected risk) of h over the entire distribution p: R[h] = δ(y, h(x))p(x, y)dxdy X Y Estimating the accuracy of a hypothesis Problem D is unknown need to approximate with a sample error (or empirical error): where r is the number of errors, n = S. R S [h] = 1 S (x,y) S δ(y, h(x)) = r n bias in estimate: accuracy on the training sample S train is an optimistically biased estimate need an independent i.i.d test sample S test variance in estimate: measured accuracy can be different from true accuracy because of the specificity of the (even unbiased) sample employed need to estimate such variance Probability distribution of empirical error estimator Binomial distribution R S [h] = r/n can be modeled as a random variable, measuring the probability of having r of positive outcomes (errors) in n trials (with p true unknown probability of error). Such random variable obeys a Binomial distribution (E[x] = np, Var[x] = np(1 p)) Unbiased estimator The estimation bias of an estimator Y of a parameter p is E[Y ] p The empirical error is an unbiased estimator of the true error p: E[r/n] p = E[r]/n p = np/n p = 0

2 Probability distribution of empirical error estimator Estimator standard deviation The standard deviation of n independently drawn tests of a random variable with standard deviation σ is: σ n = σ n = p(1 p) n (for Binomial distribution) Empirical standard deviation can be approximated replacing true error p with predicted error R S [h] RS [h](1 R S [h]) σ RS [h] n Confidence intervals Definition A N% confidence interval for some parameter p is the interval expected to contain p with probability N% Confidence interval for error estimation Supply the estimated error R S [h] with a N% confidence interval (typical value is 95%) The true error R[h] will fall within such interval with N% probability Confidence intervals Problem It is difficult to compute confidence intervals for the Binomial distribution Solution For large enough n, the Binomial distribution can be approximated with a Normal distribution with same mean and variance Alternative rules of thumb for valid approximation: n 30 np(1 p) 5 Computing 95% confidence interval 2

3 Two-sided bound 2.5% left-out probability on each tail of the distribution Recover value z such that p(x z) 2.5% from N(0, 1) distribution table multiply z by standard deviation obtaining: Hypothesis testing Test statistic R S [h] ± z RS [h](1 R S [h]) null hypothesis H 0 default hypothesis, for rejecting which evidence should be provided test statistic Given a sample of n realizations of random variables X 1,..., X n H 1, a test statistic is a statistic T = h(x 1,..., X n ) whose value is used to decide wether to reject H 0 or not. n Example Given a set of measurements X 1,..., X n, decide wether the actual value to be measured is zero. null hypothesis the actual value is zero test statistic sample mean: T = h(x 1,..., X n ) = 1 n n X i Hypothesis testing Glossary tail probability probability that T is at least as great (right tail) or at least as small (left tail) as the observed value t. p-value the probability of obtaining a value T at least as extreme as the one observed t, in case H 0 is true. Type I error reject the null hypothesis when it s true Type II error accept the null hypothesis when it s false significance level the largest acceptable probability for committing a type I error critical region set of values of T for which we reject the null hypothesis critical values values on the boundary of the critical region Hypothesis test example Setting A measuring device takes three speed measurements and returns their average. The measurement error can be modelled as a Gaussian N(0, 4). The maximum speed limit is 120. The acceptable percentage of wrongly fined drivers is 5% (significance level 0.05) 3

4 Is a measured speed of 121 significantly over the limit? Z-Test compute probability that the test statistic T is greater or equal than 121 in case the actual value is 120: Standardize distribution: Z = T µ σ2 /n = T 120 2/ 3 Compute probability from N(0, 1) distribution table: P (T 121) = P ( T 120 2/ 3 Verify if probability is greater or equal to the significance level: P (Z 0.87) = / ) = P (Z 0.87) 3 What is the critical value for the speed limit test? Procedure compute minimal value c such that P (T c) = 0.05: P (Z c 120 2/ 3 ) = 0.05 c 120 2/ = (from distribution table) 3 c = t-test Setting Given a set of values for X 1,..., X n i.i.d random variables Decide wether to reject the null hypothesis that their distribution has mean µ 0. Problem The variance of the distribution is unknown Solution Replace the unknown variance with an unbiased estimate: S 2 n = 1 n 1 n (X i X n ) 2 4

5 t-test The test The test statistics is given by the standardized (also called studentized) mean: T = X n µ 0 S n / n Assuming the dataset comes from an unknown Normal distribution, the test statistics has a t n 1 distribution under the null hypothesis The null hypothesis can be rejected at significance level α if: T t n 1,α/2 or T t n 1,α/2 t-test 5

6 6

7 t n 1 distribution bell-shaped distribution similar to the Normal one wider and shorter: reflects greater variance due to using S 2 n instead of the true unknown variance of the distribution. n 1 is the number of degrees of freedom of the distribution (related to number of independent events observed) t n 1 tends to the standardized normal z for n. 7

8 Comparing learning algorithms Task Given two learning algorithm L A and L B, we want to estimate if they are significantly different in learning function f: E S D [R[L A (S)] R[L B (S)]] that is the expected difference between generalization errors when training on a random sample is significantly different from zero. Comparing learning algorithms Problem D is unknown we must rely on a sample D 0. Solution: k-fold cross validation Split D 0 in k equal sized disjoint subsets T i. For i [1, k] train L A and L B on S i = D 0 \ T i return test L A and L B on T i compute δ i R Ti [L A (S i )] R Ti [L B (S i )] δ = 1 k k δ i Comparing learning algorithms: t-test Null hypothesis the mean error difference is zero t-test at significance level α: Note where: δ S δ S δ = t k 1,α/2 or δ S δ Sk 2/k = 1 k(k 1) paired test the two hypotheses where evaluated over identical samples t k 1,α/2 k (δ i δ) 2 two-tailed test if no prior knowledge can tell the direction of difference (otherwise use one-tailed test) 8

9 t-test example 10-fold cross validation Test errors: T i R Ti [L A (S i)] R Ti [L B (S i)] δ i T T T T T T T T T T Average error difference: δ = δ i = t-test example 10-fold cross validation Unbiased estimate of standard deviation: Standardized mean error difference: S δ = 1 10 (δ i 10 9 δ) 2 = δ S δ = = 2.98 t distribution for α = 0.05 and k = 10: Null hypothesis rejected, classifiers are different t k 1,α/2 = t 9,0.025 = < 2.98 t-test example 9

10 t-distribution Table t The shaded area is equal to α for t = t α. d f t.100 t.050 t.025 t.010 t Gilles Cazelais. Typeset with LATEX on April 20,

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

Evaluating Hypotheses

Evaluating Hypotheses Evaluating Hypotheses IEEE Expert, October 1996 1 Evaluating Hypotheses Sample error, true error Confidence intervals for observed hypothesis error Estimators Binomial distribution, Normal distribution,

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

CS 543 Page 1 John E. Boon, Jr.

CS 543 Page 1 John E. Boon, Jr. CS 543 Machine Learning Spring 2010 Lecture 05 Evaluating Hypotheses I. Overview A. Given observed accuracy of a hypothesis over a limited sample of data, how well does this estimate its accuracy over

More information

Empirical Evaluation (Ch 5)

Empirical Evaluation (Ch 5) Empirical Evaluation (Ch 5) how accurate is a hypothesis/model/dec.tree? given 2 hypotheses, which is better? accuracy on training set is biased error: error train (h) = #misclassifications/ S train error

More information

Evaluating Classifiers. Lecture 2 Instructor: Max Welling

Evaluating Classifiers. Lecture 2 Instructor: Max Welling Evaluating Classifiers Lecture 2 Instructor: Max Welling Evaluation of Results How do you report classification error? How certain are you about the error you claim? How do you compare two algorithms?

More information

CHAPTER EVALUATING HYPOTHESES 5.1 MOTIVATION

CHAPTER EVALUATING HYPOTHESES 5.1 MOTIVATION CHAPTER EVALUATING HYPOTHESES Empirically evaluating the accuracy of hypotheses is fundamental to machine learning. This chapter presents an introduction to statistical methods for estimating hypothesis

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption Summary: the confidence interval for the mean (σ known) with gaussian assumption on X Let X be a Gaussian r.v. with mean µ and variance σ. If X 1, X,..., X n is a random sample drawn from X then the confidence

More information

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4]

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Evaluating Hypotheses [Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Sample error, true error Condence intervals for observed hypothesis error Estimators Binomial distribution, Normal distribution,

More information

Performance Evaluation and Hypothesis Testing

Performance Evaluation and Hypothesis Testing Performance Evaluation and Hypothesis Testing 1 Motivation Evaluating the performance of learning systems is important because: Learning systems are usually designed to predict the class of future unlabeled

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Hypothesis Evaluation

Hypothesis Evaluation Hypothesis Evaluation Machine Learning Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Hypothesis Evaluation Fall 1395 1 / 31 Table of contents 1 Introduction

More information

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline Other Measures 1 / 52 sscott@cse.unl.edu learning can generally be distilled to an optimization problem Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 CptS 570 Machine Learning School of EECS Washington State University CptS 570 - Machine Learning 1 IEEE Expert, October 1996 CptS 570 - Machine Learning 2 Given sample S from all possible examples D Learner

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned Data Mining Chapter 5. Credibility: Evaluating What s Been Learned 1 Evaluating how different methods work Evaluation Large training set: no problem Quality data is scarce. Oil slicks: a skilled & labor-intensive

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2004 alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml CHAPTER 14: Assessing and Comparing Classification Algorithms

More information

Chapter IR:VIII. VIII. Evaluation. Laboratory Experiments Performance Measures Training and Testing Logging

Chapter IR:VIII. VIII. Evaluation. Laboratory Experiments Performance Measures Training and Testing Logging Chapter IR:VIII VIII. Evaluation Laboratory Experiments Performance Measures Logging IR:VIII-62 Evaluation HAGEN/POTTHAST/STEIN 2018 Statistical Hypothesis Testing Claim: System 1 is better than System

More information

Smart Home Health Analytics Information Systems University of Maryland Baltimore County

Smart Home Health Analytics Information Systems University of Maryland Baltimore County Smart Home Health Analytics Information Systems University of Maryland Baltimore County 1 IEEE Expert, October 1996 2 Given sample S from all possible examples D Learner L learns hypothesis h based on

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline)

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) Gujarati D. Basic Econometrics, Appendix A.8 Barrow M. Statistics

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Design of Engineering Experiments

Design of Engineering Experiments Design of Engineering Experiments Hussam Alshraideh Chapter 2: Some Basic Statistical Concepts October 4, 2015 Hussam Alshraideh (JUST) Basic Stats October 4, 2015 1 / 29 Overview 1 Introduction Basic

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

Machine Learning: Evaluation

Machine Learning: Evaluation Machine Learning: Evaluation Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim Wintersemester 2007 / 2008 Comparison of Algorithms Comparison of Algorithms Is algorithm A better

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

10-701/ Machine Learning, Fall

10-701/ Machine Learning, Fall 0-70/5-78 Machine Learning, Fall 2003 Homework 2 Solution If you have questions, please contact Jiayong Zhang .. (Error Function) The sum-of-squares error is the most common training

More information

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2 Math 205 Spring 206 Dr. Lily Yen Midterm 2 Show all your work Name: 8 Problem : The library at Capilano University has a copy of Math 205 text on two-hour reserve. Let X denote the amount of time the text

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

CHAPTER 8. Test Procedures is a rule, based on sample data, for deciding whether to reject H 0 and contains:

CHAPTER 8. Test Procedures is a rule, based on sample data, for deciding whether to reject H 0 and contains: CHAPTER 8 Test of Hypotheses Based on a Single Sample Hypothesis testing is the method that decide which of two contradictory claims about the parameter is correct. Here the parameters of interest are

More information

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59)

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59) GOALS: 1. Understand that 2 approaches of hypothesis testing exist: classical or critical value, and p value. We will use the p value approach. 2. Understand the critical value for the classical approach

More information

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012

STA301- Statistics and Probability Solved Subjective From Final term Papers. STA301- Statistics and Probability Final Term Examination - Spring 2012 STA30- Statistics and Probability Solved Subjective From Final term Papers Feb 6,03 MC004085 Moaaz.pk@gmail.com Mc004085@gmail.com PSMD0 STA30- Statistics and Probability Final Term Examination - Spring

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables?

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables? Linear Regression Machine Learning CSE546 Sham Kakade University of Washington Oct 4, 2016 1 What about continuous variables? Billionaire says: If I am measuring a continuous variable, what can you do

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

The definitions and notation are those introduced in the lectures slides. R Ex D [h

The definitions and notation are those introduced in the lectures slides. R Ex D [h Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 October 04, 2016 Due: October 18, 2016 A. Rademacher complexity The definitions and notation

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables?

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables? Linear Regression Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2014 1 What about continuous variables? n Billionaire says: If I am measuring a continuous variable, what

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

VTU Edusat Programme 16

VTU Edusat Programme 16 VTU Edusat Programme 16 Subject : Engineering Mathematics Sub Code: 10MAT41 UNIT 8: Sampling Theory Dr. K.S.Basavarajappa Professor & Head Department of Mathematics Bapuji Institute of Engineering and

More information

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience Hypothesis Testing Definitions Hypothesis a claim about something Null hypothesis ( H 0 ) the hypothesis that suggests no change from previous experience Alternative hypothesis ( H 1 ) the hypothesis that

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Y i = η + ɛ i, i = 1,...,n.

Y i = η + ɛ i, i = 1,...,n. Nonparametric tests If data do not come from a normal population (and if the sample is not large), we cannot use a t-test. One useful approach to creating test statistics is through the use of rank statistics.

More information

An Introduction to Statistical Machine Learning - Theoretical Aspects -

An Introduction to Statistical Machine Learning - Theoretical Aspects - An Introduction to Statistical Machine Learning - Theoretical Aspects - Samy Bengio bengio@idiap.ch Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP) CP 592, rue du Simplon 4 1920 Martigny,

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor 1. The regression equation 2. Estimating the equation 3. Assumptions required for

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2015/2016, Our model and tasks The model: two variables are usually present: - the first one is typically discrete

More information

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics A short review of the principles of mathematical statistics (or, what you should have learned in EC 151).

More information

Point Estimation. Maximum likelihood estimation for a binomial distribution. CSE 446: Machine Learning

Point Estimation. Maximum likelihood estimation for a binomial distribution. CSE 446: Machine Learning Point Estimation Emily Fox University of Washington January 6, 2017 Maximum likelihood estimation for a binomial distribution 1 Your first consulting job A bored Seattle billionaire asks you a question:

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

Two Sample Hypothesis Tests

Two Sample Hypothesis Tests Note Packet #21 Two Sample Hypothesis Tests CEE 3710 November 13, 2017 Review Possible states of nature: H o and H a (Null vs. Alternative Hypothesis) Possible decisions: accept or reject Ho (rejecting

More information

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm Math 408 - Mathematical Statistics Lecture 29-30. Testing Hypotheses: The Neyman-Pearson Paradigm April 12-15, 2013 Konstantin Zuev (USC) Math 408, Lecture 29-30 April 12-15, 2013 1 / 12 Agenda Example:

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Difference between means - t-test /25

Difference between means - t-test /25 Difference between means - t-test 1 Discussion Question p492 Ex 9-4 p492 1-3, 6-8, 12 Assume all variances are not equal. Ignore the test for variance. 2 Students will perform hypothesis tests for two

More information

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Sampling A trait is measured on each member of a population. f(y) = propn of individuals in the popn with measurement

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank Predicting performance Assume the estimated error rate is 5%. How close is this to the true error rate? Depends on the amount of test data Prediction

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

41.2. Tests Concerning a Single Sample. Introduction. Prerequisites. Learning Outcomes

41.2. Tests Concerning a Single Sample. Introduction. Prerequisites. Learning Outcomes Tests Concerning a Single Sample 41.2 Introduction This Section introduces you to the basic ideas of hypothesis testing in a non-mathematical way by using a problem solving approach to highlight the concepts

More information

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information