Design of Engineering Experiments

Size: px
Start display at page:

Download "Design of Engineering Experiments"

Transcription

1 Design of Engineering Experiments Hussam Alshraideh Chapter 2: Some Basic Statistical Concepts October 4, 2015 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

2 Overview 1 Introduction Basic probability concepts Common probability distributions 2 Statistical Inference Estimation Hypothesis testing Normal Probability Plots Hussam Alshraideh (JUST) Basic Stats October 4, / 29

3 Introduction Basic probability concepts Basic concepts Random experiment: an experiment whose outcome is not known in advance. Flipping a coin {H, T} Throwing a dice {1,2,3,4,5,6} Two dice {(1,1),(1,2),,(6,6)} Student height Sample space (S): the set of all possible outcomes of a random experiment. Flipping a coin S = {H, T } Throwing a dice S = {1, 2, 3, 4, 5, 6} Two dice S = {(1, 1), (1, 2),, (6, 6)} Student height S = {100 h 250} Continuous vs. Discrete sample space. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

4 Introduction Basic probability concepts Basic concepts Event: a subset of the sample space. Coin: E = {H} Dice: E = {1, 2} 2 dice: sum 3 E = {(1, 1), (1, 2), (2, 1)} Probability of an event P(E): the likelihood of observing the event E. P(E) = # of elements in E # of elements in S Coin: E={H}, P(E) = 1 2 = 0.5 Dice: E={1,2}, P(E) = dice: sum 3 E={(1,1),(1,2),(2,1)}, P(E) = 3 36 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

5 Introduction Basic probability concepts Basic concepts Random variable: a real valued function defined over the sample space of a random experiment. Coin: { 1, H P(X = 1) = P({H}) = 0.5 X = 0, T P(X = 0) = P({T }) = dice: X = sum of two numbers, X {2, 3,, 12} P(X = 3) = P({(1, 2), (2, 1)}) = 2 36 Student height: X = height, 100 X 250 Continuous vs. Discrete random variables. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

6 Introduction Basic probability concepts Basic concepts Discrete random variables are described by their Probability Mass Function (pmf). X P(X) Hussam Alshraideh (JUST) Basic Stats October 4, / 29

7 Introduction Basic probability concepts Basic concepts Probability density function (pdf): a function that is used to determine probabilities of continuous random variable from the area under the function. P(a X b) = b a f (x)dx such that: f (x) 0, f (x)dx = 1 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

8 Introduction Basic probability concepts Basic concepts Expected value E(X ): Discrete r.v. µ = E(X ) = x xp(x) Continuous r.v. µ = E(X ) = xf (x)dx Hussam Alshraideh (JUST) Basic Stats October 4, / 29

9 Introduction Basic probability concepts Basic concepts Variance Var(X ): Discrete r.v. σ 2 = Var(X ) = x (x µ) 2 p(x) Continuous r.v. σ 2 = Var(X ) = (x µ) 2 f (x)dx Var(X ) = σ 2 = E(X 2 ) (E(X )) 2 = E(X 2 ) µ 2 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

10 Introduction Common probability distributions The Normal distribution f (x) = 1 2πσ e (x µ)2 2σ 2, x Mean µ and variance σ 2 are called distribution parameters. µ controls the location, while σ 2 controls the shape. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

11 Introduction Common probability distributions The Normal distribution Special case when µ = 0 and σ = 1, the standard normal distribution. f (x) = 1 2π e x2 2, x Probabilities under the standard normal curve are given in tables at the end of the textbook. Any normal r.v. can be transformed to a standard normal r.v. using: z = x µ σ Hussam Alshraideh (JUST) Basic Stats October 4, / 29

12 Introduction Common probability distributions The Normal distribution Example: The diameter of a shaft in a storage drive is normally distributed with mean inch and standard deviation inch. The specifications on the shaft are ± inch. What proportion of shafts conforms to specifications? Hussam Alshraideh (JUST) Basic Stats October 4, / 29

13 Estimation Population vs. sample The totality of all observations of a random variable is the population. A portion used for analysis is a random sample. A population is described, in part, by its parameters, i.e., mean (µ) and standard deviation (σ). A random sample of size n is drawn from a population and is described, in part, by its statistics, i.e., mean (x-bar) and standard deviation (s). The statistics are used to estimate the parameters. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

14 Estimation Point estimation A point estimate of some population parameter θ is a single numerical value θ of a statistic Θ. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

15 Estimation Point estimation The point estimator Θ is an unbiased estimator for the parameter θ if: E( Θ) = θ if not unbiased, then the quantity : E( Θ) θ is called the bias. Sampling distribution: the distribution of a statistic. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

16 Hypothesis testing Hypothesis testing A statistical hypothesis is a statement about the parameters of one or more populations. H 0 : µ = 50 H 1 : µ 50 Type I error: rejecting the null hypothesis H 0 when it is true. Type II error: failing to reject the null hypothesis when it is false. α = p(type I error), β = p(type II error) Hussam Alshraideh (JUST) Basic Stats October 4, / 29

17 Hypothesis testing Hypothesis testing Note: see handout of hypothesis testing procedures. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

18 Hypothesis testing Inference on the mean of a population, variance known Given X N(µ, σ 2 ) where µ in unknown and σ 2 is known. Test the hypothesis: H 0 : µ = µ 0 H 1 : µ µ 0 under normality and independent samples assumptions, the statistic z = x µ 0 σ/ n N(0, 1) Idea: calculate z for the given sample, then find the probability that it came from the N(0, 1) distribution. If this probability is large, then accept H 0. If not, then reject H 0. Large enough is determined by 1 α. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

19 Hypothesis testing Inference on the mean of a population, variance known Example: Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an important product characteristic. Specifications require that the mean burning rate must be 50 cm/s. We know that the standard deviation of burning rate is σ = 2 cm/s. The experimenter decides to specify a type I error probability or significance level of α = He selects a random sample of n = 25 and obtains a sample average burning rate of x = 51.3 cm/s. What conclusions should he draw? Solution: Test z 0 = H 0 : µ = 50 H 1 : µ / 25 = 3.25 SInce z 0 > z α/2 = z = 1.96, then reject H 0. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

20 Hypothesis testing Inference on the mean of a population, variance known Can get the same result using the P-value. P-value=Probability that the distribution under the null hypothesis produces a value that is as extreme as the test statistic. P-value=p(z z0) Hussam Alshraideh (JUST) Basic Stats October 4, / 29

21 Hypothesis testing Two sample t-test Example: An engineer is studying the formulation of a Portland cement mortar. He has added a polymer latex emulsion during mixing to determine if this impacts the curing time and tension bond strength of the mortar. The experimenter prepared 10 samples of the original formulation and 10 samples of the modified formulation. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

22 Hypothesis testing Two sample t-test Hussam Alshraideh (JUST) Basic Stats October 4, / 29

23 Hypothesis testing Two sample t-test Test: H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

24 Hypothesis testing Two sample t-test Test statistic: Statistic Modified mortar Unmodified mortar y S S n t 0 = y 1 y 2, S S 1 p n p 2 = (n 1 1)S (n 2 1)S2 2 n 1 + n 2 2 n 2 Note: this is a Signal to Noise ratio t 0 = Hence, reject H = 2.20, t α/2,n1 +n 2 2 = t 0.025,18 = Hussam Alshraideh (JUST) Basic Stats October 4, / 29

25 Normal Probability Plots Assumptions 1 Data is normally distributed, Check using Normal Probability Plots (NPP) 2 Independent samples. No need to validate if random samples are used. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

26 Normal Probability Plots Normal Probability Plot To construct a Normal Probability Plot (NPP): 1 Sort the data observations in an ascending order: x (1), x (2),, x (n). 2 The observed value x (j) is plotted against the cumulative distribution (j 0.5). n 3 If the paired numbers form a straight line, it is reasonable to assume that the data follows the proposed distribution. Hussam Alshraideh (JUST) Basic Stats October 4, / 29

27 Normal Probability Plots Normal Probability Plot: Example Hussam Alshraideh (JUST) Basic Stats October 4, / 29

28 Normal Probability Plots Homework Solve (both manually and using Minitab) the following problems from the end of chapter 2 problems in the textbook. 1 Problem Problem Problem Problem Problem Problem 2.35 Hussam Alshraideh (JUST) Basic Stats October 4, / 29

29 Normal Probability Plots Question What if more than two samples? Hussam Alshraideh (JUST) Basic Stats October 4, / 29

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments The hypothesis testing framework The two-sample t-test Checking assumptions, validity Comparing more that

More information

Tests about a population mean

Tests about a population mean October 2 nd, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes Stat251/551 (Spring 2017) Stochastic Processes Lecture: 1 Introduction to Stochastic Processes Lecturer: Sahand Negahban Scribe: Sahand Negahban 1 Organization Issues We will use canvas as the course webpage.

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

MTMS Mathematical Statistics

MTMS Mathematical Statistics MTMS.01.099 Mathematical Statistics Lecture 12. Hypothesis testing. Power function. Approximation of Normal distribution and application to Binomial distribution Tõnu Kollo Fall 2016 Hypothesis Testing

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

CH.9 Tests of Hypotheses for a Single Sample

CH.9 Tests of Hypotheses for a Single Sample CH.9 Tests of Hypotheses for a Single Sample Hypotheses testing Tests on the mean of a normal distributionvariance known Tests on the mean of a normal distributionvariance unknown Tests on the variance

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

STAT 430/510 Probability Lecture 7: Random Variable and Expectation

STAT 430/510 Probability Lecture 7: Random Variable and Expectation STAT 430/510 Probability Lecture 7: Random Variable and Expectation Pengyuan (Penelope) Wang June 2, 2011 Review Properties of Probability Conditional Probability The Law of Total Probability Bayes Formula

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm Math 408 - Mathematical Statistics Lecture 29-30. Testing Hypotheses: The Neyman-Pearson Paradigm April 12-15, 2013 Konstantin Zuev (USC) Math 408, Lecture 29-30 April 12-15, 2013 1 / 12 Agenda Example:

More information

Lecture 2. October 21, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 2. October 21, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. Lecture 2 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University October 21, 2007 1 2 3 4 5 6 Define probability calculus Basic axioms of probability Define

More information

Precept 4: Hypothesis Testing

Precept 4: Hypothesis Testing Precept 4: Hypothesis Testing Soc 500: Applied Social Statistics Ian Lundberg Princeton University October 6, 2016 Learning Objectives 1 Introduce vectorized R code 2 Review homework and talk about RMarkdown

More information

the amount of the data corresponding to the subinterval the width of the subinterval e x2 to the left by 5 units results in another PDF g(x) = 1 π

the amount of the data corresponding to the subinterval the width of the subinterval e x2 to the left by 5 units results in another PDF g(x) = 1 π Math 10A with Professor Stankova Worksheet, Discussion #42; Friday, 12/8/2017 GSI name: Roy Zhao Problems 1. For each of the following distributions, derive/find all of the following: PMF/PDF, CDF, median,

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

MATH 450: Mathematical statistics

MATH 450: Mathematical statistics Departments of Mathematical Sciences University of Delaware August 28th, 2018 General information Classes: Tuesday & Thursday 9:30-10:45 am, Gore Hall 115 Office hours: Tuesday Wednesday 1-2:30 pm, Ewing

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2017 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis jmding/math475/index.

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis   jmding/math475/index. istical A istic istics : istical Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html August 29, 2013 istical August 29, 2013 1 / 18 istical A istic

More information

STAT 430/510: Lecture 10

STAT 430/510: Lecture 10 STAT 430/510: Lecture 10 James Piette June 9, 2010 Updates HW2 is due today! Pick up your HW1 s up in stat dept. There is a box located right when you enter that is labeled "Stat 430 HW1". It ll be out

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

Statistical Preliminaries. Stony Brook University CSE545, Fall 2016

Statistical Preliminaries. Stony Brook University CSE545, Fall 2016 Statistical Preliminaries Stony Brook University CSE545, Fall 2016 Random Variables X: A mapping from Ω to R that describes the question we care about in practice. 2 Random Variables X: A mapping from

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Hypothesis Testing. Testing Hypotheses MIT Dr. Kempthorne. Spring MIT Testing Hypotheses

Hypothesis Testing. Testing Hypotheses MIT Dr. Kempthorne. Spring MIT Testing Hypotheses Testing Hypotheses MIT 18.443 Dr. Kempthorne Spring 2015 1 Outline Hypothesis Testing 1 Hypothesis Testing 2 Hypothesis Testing: Statistical Decision Problem Two coins: Coin 0 and Coin 1 P(Head Coin 0)

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

IENG581 Design and Analysis of Experiments INTRODUCTION

IENG581 Design and Analysis of Experiments INTRODUCTION Experimental Design IENG581 Design and Analysis of Experiments INTRODUCTION Experiments are performed by investigators in virtually all fields of inquiry, usually to discover something about a particular

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Jane Bae Stanford University hjbae@stanford.edu September 16, 2014 Jane Bae (Stanford) Probability and Statistics September 16, 2014 1 / 35 Overview 1 Probability Concepts Probability

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions)

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) 1. (Confidence Intervals, CLT) Let X 1,..., X n be iid with unknown mean θ and known variance σ 2. Assume

More information

Evaluating Hypotheses

Evaluating Hypotheses Evaluating Hypotheses IEEE Expert, October 1996 1 Evaluating Hypotheses Sample error, true error Confidence intervals for observed hypothesis error Estimators Binomial distribution, Normal distribution,

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Continuous Distributions

Continuous Distributions Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages Name No calculators. 18.05 Final Exam Number of problems 16 concept questions, 16 problems, 21 pages Extra paper If you need more space we will provide some blank paper. Indicate clearly that your solution

More information

Week 2: Review of probability and statistics

Week 2: Review of probability and statistics Week 2: Review of probability and statistics Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED

More information

Probability and Statisitcs

Probability and Statisitcs Probability and Statistics Random Variables De La Salle University Francis Joseph Campena, Ph.D. January 25, 2017 Francis Joseph Campena, Ph.D. () Probability and Statisitcs January 25, 2017 1 / 17 Outline

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 271E Probability and Statistics Spring 2011 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 16.30, Wednesday EEB? 10.00 12.00, Wednesday

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

18.05 Practice Final Exam

18.05 Practice Final Exam No calculators. 18.05 Practice Final Exam Number of problems 16 concept questions, 16 problems. Simplifying expressions Unless asked to explicitly, you don t need to simplify complicated expressions. For

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Math438 Actuarial Probability

Math438 Actuarial Probability Math438 Actuarial Probability Jinguo Lian Department of Math and Stats Jan. 22, 2016 Continuous Random Variables-Part I: Definition A random variable X is continuous if its set of possible values is an

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Probability & Statistics - FALL 2008 FINAL EXAM

Probability & Statistics - FALL 2008 FINAL EXAM 550.3 Probability & Statistics - FALL 008 FINAL EXAM NAME. An urn contains white marbles and 8 red marbles. A marble is drawn at random from the urn 00 times with replacement. Which of the following is

More information

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume?

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume? Stat 400, section.1-.2 Random Variables & Probability Distributions notes by Tim Pilachowski For a given situation, or experiment, observations are made and data is recorded. A sample space S must contain

More information

Homework 2. Spring 2019 (Due Thursday February 7)

Homework 2. Spring 2019 (Due Thursday February 7) ECE 302: Probabilistic Methods in Electrical and Computer Engineering Spring 2019 Instructor: Prof. A. R. Reibman Homework 2 Spring 2019 (Due Thursday February 7) Homework is due on Thursday February 7

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

Chapter 2. Continuous random variables

Chapter 2. Continuous random variables Chapter 2 Continuous random variables Outline Review of probability: events and probability Random variable Probability and Cumulative distribution function Review of discrete random variable Introduction

More information

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing ECO22Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Terminology. Experiment = Prior = Posterior =

Terminology. Experiment = Prior = Posterior = Review: probability RVs, events, sample space! Measures, distributions disjoint union property (law of total probability book calls this sum rule ) Sample v. population Law of large numbers Marginals,

More information

Chapter 8 of Devore , H 1 :

Chapter 8 of Devore , H 1 : Chapter 8 of Devore TESTING A STATISTICAL HYPOTHESIS Maghsoodloo A statistical hypothesis is an assumption about the frequency function(s) (i.e., PDF or pdf) of one or more random variables. Stated in

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

Lecture 15: Inference Based on Two Samples

Lecture 15: Inference Based on Two Samples Lecture 15: Inference Based on Two Samples MSU-STT 351-Sum17B (P. Vellaisamy: STT 351-Sum17B) Probability & Statistics for Engineers 1 / 26 9.1 Z-tests and CI s for (µ 1 µ 2 ) The assumptions: (i) X =

More information

VTU Edusat Programme 16

VTU Edusat Programme 16 VTU Edusat Programme 16 Subject : Engineering Mathematics Sub Code: 10MAT41 UNIT 8: Sampling Theory Dr. K.S.Basavarajappa Professor & Head Department of Mathematics Bapuji Institute of Engineering and

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017 Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2017 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test statistic f (x H 0

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2014 January 1, 2017 1 /22 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

Discrete Probability distribution Discrete Probability distribution

Discrete Probability distribution Discrete Probability distribution 438//9.4.. Discrete Probability distribution.4.. Binomial P.D. The outcomes belong to either of two relevant categories. A binomial experiment requirements: o There is a fixed number of trials (n). o On

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Mathematical statistics

Mathematical statistics November 1 st, 2018 Lecture 18: Tests about a population mean Overview 9.1 Hypotheses and test procedures test procedures errors in hypothesis testing significance level 9.2 Tests about a population mean

More information

IIT JAM : MATHEMATICAL STATISTICS (MS) 2013

IIT JAM : MATHEMATICAL STATISTICS (MS) 2013 IIT JAM : MATHEMATICAL STATISTICS (MS 2013 Question Paper with Answer Keys Ctanujit Classes Of Mathematics, Statistics & Economics Visit our website for more: www.ctanujit.in IMPORTANT NOTE FOR CANDIDATES

More information

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics The candidates for the research course in Statistics will have to take two shortanswer type tests

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing Robert Vanderbei Fall 2014 Slides last edited on November 24, 2014 http://www.princeton.edu/ rvdb Coin Tossing Example Consider two coins.

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017 Linear Models: Comparing Variables Stony Brook University CSE545, Fall 2017 Statistical Preliminaries Random Variables Random Variables X: A mapping from Ω to ℝ that describes the question we care about

More information

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve. The curve is called the probability

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information

Chapter 4. Continuous Random Variables 4.1 PDF

Chapter 4. Continuous Random Variables 4.1 PDF Chapter 4 Continuous Random Variables In this chapter we study continuous random variables. The linkage between continuous and discrete random variables is the cumulative distribution (CDF) which we will

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information