IIT JAM : MATHEMATICAL STATISTICS (MS) 2013

Size: px
Start display at page:

Download "IIT JAM : MATHEMATICAL STATISTICS (MS) 2013"

Transcription

1 IIT JAM : MATHEMATICAL STATISTICS (MS 2013 Question Paper with Answer Keys Ctanujit Classes Of Mathematics, Statistics & Economics Visit our website for more: IMPORTANT NOTE FOR CANDIDATES Question 1 10 (objective questions carry two marks each, question (fill in the blank questions carry three marks each and questions (descriptive questions carry five marks each. In objective questions there are negative marking. For each wrong answer you will be awarded 0.5 mark. There is no negative marking in fill in the blank questions & descriptive type questions. Q.1 Let E and F be two events with P(E = 0.7, P(F = 0.4 and P(E F C = 0.4. Then P(F E F C is equal to (A (B (C (D Solution: (B P(E F C = P(E + P(F - P(E F C = = 0.9 Also we have P(E F = P(E - P(E F C = = 0.3 Now, P(F E F C = = =., since P(F FC = 0. 1

2 Q.2 Let {a n } be a sequence of positive real numbers such that Then is equal to (A (B (C (D Solution: (D is given. Let us assume a n =. Now,. Q.3 Let f : [0, be a twice differentiable and increasing function with f(0 = 0. Suppose that, for any t 0, the length of the curve y = f(x, x 0 between x = 0 and x = t is * + Then f(4 is equal to (A (B (C (D Solution: (D Length of the arc =. We know, = * +» = * +» =»». Q.4 Let f : be defined by ( where is a real constant. If f is continuous at (0,0, then is equal to 1 (B 2 (C 3 (D 4 2

3 Solution: (B ( ( ( ( ( Q.5 Let A be a 3 real matrix with eigenvalues 1, 2, 3 and let B = A -1 + A 2. Then the trace of the matrix B is equal to (A (B (C (D Solution: (B Trace(B = Sum of the eigenvalues of B = (Sum of the eigenvalues of A -1 + (Sum of the eigenvalues of A 2 = (1 + ½ + 1/3 + ( =. Q.6 Let X 1,X 2,... be a sequence of i.i.d random samples with variance 1. Then ( is equal to (A Φ(x (B Φ(2x (C Φ(x (D Φ( Solution: (D Let Z = Now it is clear that E(Z = 0 & Var(Z = 2n. By Central Limit Theorem,. So, ( = ( = Φ(. 3

4 Q.7 Let X 1,X 2,...,X 100 be a random sample from N(2,4 Population. Let and W = Then the distribution of W is (A (B (C (D Solution: (C W = ; So, W, i.e., W Q.8 Let X 1,X 2,...,X n,x n+1 be a random sample from N(μ,1 Population. Let and T = then for estimating μ (A T is unbiased and consistent (C T is unbiased and inconsistent (b T is biased and consistent (d T is biased and inconsistent Solution: (C E(T = E * + * + So, T is unbiased. Now calculate Var(T Q.9. Let X be an observation from a population with density f(x = = 0, elsewhere For testing H 0 : = 2 against H 1 : = 1, the most powerful test of size is given by Reject H 0 if X > c, where c is given by (B (C (D. Solution: (A Here Now you need to calculate =» x > log4c.. Your final answer will be 4

5 Q.10 A continuous random variable X has the density f(x = 2φ(x Φ(x, x. Then (A E(X > 0 (B E(X < 0 (C P[X 0] > 0.5 (D P[X 0] < 0.25 Solution: (A E(X = 2 = > 0. Q. 11 If X has the probability density function then Var(.... ( ( (. Q.12 Let the joint density function of (X,Y be {... :.13 Let X be an observation from a population with density function f(x. Then the power of the most powerful test of size = 0.19 for testing, vs.,... 5

6 : =» x > [ ] [ ].14 Bulbs produced by a factory F i have lifetimes (in months distributed as Exp( for i = 1,2,3. A firm randomly produces 40% of its required bulbs from F 1, 30% from F 2 and 30% from F 3. A randomly selected bulb from the firm is found to be working after 27 months. The probability that it was produced by the factory F 3 is Let X 1,X 2,...,X n be a random sample from a population with density { And let X (1 = min{ X 1,X 2,...,X n }. Then ( is a... % confidence Interval for. Solution: Steps at a glance: (i Calculate the density of. (ii Here (iii Now, calculate the probability. Q.16 Ten percent of bolts produced in a factory are defective. They are randomly packed in boxes such that each box contains 3 bolts. Four of these boxes are bought by a customer. The probability, taht the boxes that this customer bought have no defective bolt in them, is equal to... 6

7 Solution:- Let the factory produces n bolts. Total defective items = n/10, non-defective = 9n/10. Prob(12 bolts are non-defective = ( (. items Let be defined by { Where and are real constants. If f is differentiable at x = 1 then the value of 3 + is equal to... Solution:- LHD = RHD gives f (1- = f (1+ gives α = 2. So, β = -1. So, 3α+β = 5. Q.18 Let be a sequence of real numbers such that Then ( is equal to... Solution:- ( ( Q.19 Consider the linear system x + y + 2z = x + 4y + z = 4 3y z = γ In the unknowns x, y and z. If the above system always has a solution then the value of + γ is equal to... Solution:- The given system has a solution if Rank(A b=rank(a Rank(A = 2. Rank(A b=2 iff 4 γ =0. So, + γ=4. Q. 20 The general solution of the differential equation is equal to... 7

8 Solution: Mdx + Ndy = 0 ; M =, N =.. 21 Consider the matrix P = [ ] If P has eigenvalues 0 and 3 then determine the values of the pair (,. Solution: Characteristic equation is Here = 0 and 3. Putting the values of in the characteristic equation. So, P = 0 for = 0» = 0» 2 2 = 0» Either = 0 or = 2. Also for = 3»» = (* Now putting = 0 or = 2 respectively in the equation (*, we get For = 0 or = 3, For = 2, we have = 1, so = 2. Hence, the values of the pair (, are (0,3 and (2,1. Q. 22 Let a function f : [0,1] be continuous on [0,1] and differentiable in (0,1. If f(0 = 1 and [f(1] 2 + 2f(1 = 5, then prove that there exists a c (0,1 such that Hints:- This is a simple application of Lagrange s Mean Value Theorem. 8

9 Q. 23 Let {a n } be a sequence of real numbers such that converges absolutely. Prove that the series converges. Solution:- converges absolutely => converges absolutely. Now we know log(1+x x => log(1+x 4 x 4 =>, Now by the convergence of power series we know that converges absolutely. So, by Comparison Test, also converges absolutely. Q. 24 Let D = {(x,y and let f : D be defined by f(x,y = x 2 2xy + 2, {(x,y D. Then determine the maximum value of f in the region D. Solution:- f(x,y = x 2 2xy +2, f x = 2x 2y, f y = - 2x For minimum or maximum value of f, we put f x = 0 & f y = 0 So, (x,y (0,0 Also f xx = 2, f yy = 0 & f xy = - 2. Now, D = f xx. f yy f 2 xx = - 4 < 0. So, f(0,0 is the maximum value. F(0,0 = 2. Q.25 Let X, Y and Z be independent random variables with respective moment generating functions M X (t =, t < 1: M Y (t = = M Z (t, t. Let W = 2X + Y 2 + Z 2 then determine the value of P(W>2. Solution :- M X (t =, t < 1: so, f(x = : x. So, X Exp(1. Same as, from MGF of Y & Z, we can see Y, Z N(0,1. So, Y 2 + Z 2. Also, 2X. So, W. Now, calculate the probability using integration by yourself. 9

10 Q.26 Ram rolls a pair of fair dice. If the sum of the numbers shown on the upper faces is 5, 6, 10, 11 or 12 then Ram wins a gold coin. Otherwise, he rolls the pair of dice once again and wins a silver coin if the sum of the numbers shown on the upper faces in the second throw is the same as the sum of the numbers in the first throw. What is the probability that he wins a gold or silver coin? Solution:- Prob(he wins a gold coin = = Prob(he wins a silver coin Trials are independent of each other here. So, the probability that he wins a gold or silver coin is. Q.27 Let X 1, X 2,.,X n be a random sample from a uniform distribution on the interval [θ,2θ], θ>0. Find the method of moments estimator and the maximum likelihood estimator of θ. Further find the bias of the MLE. Solution:- Method of moments estimator: f(x i,θ =, θ>0. m 1 = μ 1 = =. So, = Method of maximum likelihood estimator: Likelihood function is given by L(θ = = For L to be maximum, Hence, MLE of θ is =. Now, the bias of MLE is = E[ = = Q.28 Let (X 1,Y 1, (X 2,Y 2, be a sequence of i.i.d. bivariate normal random variables with E(X i = 75, E(Y i = 25, Var(X i = 36, Var(Y i = 16 and Corr(X i,y i = Let =. Find the maximum value of n so that P(. 10

11 Solution:- X i + Y i N(100,64 So, = N(100,. Now, P( =, given in the table. P* = + =, Q.29 The joint probability dencity function of (X,Y is, Find the probability density function of X and E(Y X = x, x>0. Solution:-. PDF of Y given X = x is given by E(Y X = x = Q.30 Suppose the F is a cdf, where F(x = { i. Find all possible values of c. ii. Find P(0.5 and P(X=1+P(X=2. Solution:- i. Since F(x is a c.d.f. so it is right continuous. F(x+0 = implying c = 0. 11

12 Similarly, F(1 = c implying c = 1 e -1. ii.p(0.5 (Do yourself iii. P(X=1+P(X=2=F(1 - F(1 - + F(2 F(2 - =e -1 - e

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2013 MODULE 5 : Further probability and inference Time allowed: One and a half hours Candidates should answer THREE questions.

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Probability & Statistics - FALL 2008 FINAL EXAM

Probability & Statistics - FALL 2008 FINAL EXAM 550.3 Probability & Statistics - FALL 008 FINAL EXAM NAME. An urn contains white marbles and 8 red marbles. A marble is drawn at random from the urn 00 times with replacement. Which of the following is

More information

ECON Fundamentals of Probability

ECON Fundamentals of Probability ECON 351 - Fundamentals of Probability Maggie Jones 1 / 32 Random Variables A random variable is one that takes on numerical values, i.e. numerical summary of a random outcome e.g., prices, total GDP,

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A AMCS243/CS243/EE243 Probability and Statistics Fall 2013 Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A *********************************************************** ID: ***********************************************************

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

1. Let A be a 2 2 nonzero real matrix. Which of the following is true?

1. Let A be a 2 2 nonzero real matrix. Which of the following is true? 1. Let A be a 2 2 nonzero real matrix. Which of the following is true? (A) A has a nonzero eigenvalue. (B) A 2 has at least one positive entry. (C) trace (A 2 ) is positive. (D) All entries of A 2 cannot

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

SDS 321: Practice questions

SDS 321: Practice questions SDS 2: Practice questions Discrete. My partner and I are one of married couples at a dinner party. The 2 people are given random seats around a round table. (a) What is the probability that I am seated

More information

Masters Comprehensive Examination Department of Statistics, University of Florida

Masters Comprehensive Examination Department of Statistics, University of Florida Masters Comprehensive Examination Department of Statistics, University of Florida May 6, 003, 8:00 am - :00 noon Instructions: You have four hours to answer questions in this examination You must show

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics The candidates for the research course in Statistics will have to take two shortanswer type tests

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Solutionbank S1 Edexcel AS and A Level Modular Mathematics Heinemann Solutionbank: Statistics S Page of Solutionbank S Exercise A, Question Write down whether or not each of the following is a discrete random variable. Give a reason for your answer. a The average

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL

MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL 1). Two urns are provided as follows: urn 1 contains 2 white chips and 4 red chips, while urn 2 contains 5 white chips and 3 red chips. One chip is chosen

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40 Assignment 4 Fall 07. Exercise 3.. on Page 46: If the mgf of a rom variable X is ( 3 + 3 et) 5, find P(X or 3). Since the M(t) of X is ( 3 + 3 et) 5, X has a binomial distribution with n 5, p 3. The probability

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Problem 1 (20) Log-normal. f(x) Cauchy

Problem 1 (20) Log-normal. f(x) Cauchy ORF 245. Rigollet Date: 11/21/2008 Problem 1 (20) f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 4 2 0 2 4 Normal (with mean -1) 4 2 0 2 4 Negative-exponential x x f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.5

More information

MATH20802: STATISTICAL METHODS EXAMPLES

MATH20802: STATISTICAL METHODS EXAMPLES MATH20802: STATISTICAL METHODS EXAMPLES 1 1. If X N(µ, σ 2 ) show that its mgf is M X (t) = exp ( µt + σ2 t 2 2 2. If X 1 N(µ 1, σ 2 1 ) and X 2 N(µ 2, σ 2 2 ) are independent then show that ax 1 + bx

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 4 EXAINATIONS SOLUTIONS GRADUATE DIPLOA PAPER I STATISTICAL THEORY & ETHODS The Societ provides these solutions to assist candidates preparing for the examinations in future

More information

Class 8 Review Problems solutions, 18.05, Spring 2014

Class 8 Review Problems solutions, 18.05, Spring 2014 Class 8 Review Problems solutions, 8.5, Spring 4 Counting and Probability. (a) Create an arrangement in stages and count the number of possibilities at each stage: ( ) Stage : Choose three of the slots

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Edexcel past paper questions

Edexcel past paper questions Edexcel past paper questions Statistics 1 Discrete Random Variables Past examination questions Discrete Random variables Page 1 Discrete random variables Discrete Random variables Page 2 Discrete Random

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

HT Introduction. P(X i = x i ) = e λ λ x i

HT Introduction. P(X i = x i ) = e λ λ x i MODS STATISTICS Introduction. HT 2012 Simon Myers, Department of Statistics (and The Wellcome Trust Centre for Human Genetics) myers@stats.ox.ac.uk We will be concerned with the mathematical framework

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 20, 2009, 8:00 am - 2:00 noon Instructions:. You have four hours to answer questions in this examination. 2. You must show

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

Qualifying Exam in Probability and Statistics.

Qualifying Exam in Probability and Statistics. Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Inference and Regression

Inference and Regression Inference and Regression Assignment 3 Department of IOMS Professor William Greene Phone:.998.0876 Office: KMC 7-90 Home page:www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/econometrics/econometrics.htm.

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions)

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) 1. (Confidence Intervals, CLT) Let X 1,..., X n be iid with unknown mean θ and known variance σ 2. Assume

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

Math 362, Problem set 1

Math 362, Problem set 1 Math 6, roblem set Due //. (4..8) Determine the mean variance of the mean X of a rom sample of size 9 from a distribution having pdf f(x) = 4x, < x

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages Name No calculators. 18.05 Final Exam Number of problems 16 concept questions, 16 problems, 21 pages Extra paper If you need more space we will provide some blank paper. Indicate clearly that your solution

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA5530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (R.V.) X: A function on sample space X: S R Cumulative distribution function

More information

Class 8 Review Problems 18.05, Spring 2014

Class 8 Review Problems 18.05, Spring 2014 1 Counting and Probability Class 8 Review Problems 18.05, Spring 2014 1. (a) How many ways can you arrange the letters in the word STATISTICS? (e.g. SSSTTTIIAC counts as one arrangement.) (b) If all arrangements

More information

Final Examination Statistics 200C. T. Ferguson June 11, 2009

Final Examination Statistics 200C. T. Ferguson June 11, 2009 Final Examination Statistics 00C T. Ferguson June, 009. (a) Define: X n converges in probability to X. (b) Define: X m converges in quadratic mean to X. (c) Show that if X n converges in quadratic mean

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Bivariate Distributions

Bivariate Distributions Bivariate Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? Many random processes produce Examples.»

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Applied Quantitative Methods II

Applied Quantitative Methods II Applied Quantitative Methods II Lecture 4: OLS and Statistics revision Klára Kaĺıšková Klára Kaĺıšková AQM II - Lecture 4 VŠE, SS 2016/17 1 / 68 Outline 1 Econometric analysis Properties of an estimator

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (RV)X (R.V.) X: A function on sample space X: S R Cumulative distribution

More information

STAT515, Review Worksheet for Midterm 2 Spring 2019

STAT515, Review Worksheet for Midterm 2 Spring 2019 STAT55, Review Worksheet for Midterm 2 Spring 29. During a week, the proportion of time X that a machine is down for maintenance or repair has the following probability density function: 2( x, x, f(x The

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

University of California, Los Angeles Department of Statistics. Joint probability distributions

University of California, Los Angeles Department of Statistics. Joint probability distributions Universit of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Joint probabilit distributions So far we have considered onl distributions with one random variable.

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information