STAT515, Review Worksheet for Midterm 2 Spring 2019

Size: px
Start display at page:

Download "STAT515, Review Worksheet for Midterm 2 Spring 2019"

Transcription

1 STAT55, Review Worksheet for Midterm 2 Spring 29. During a week, the proportion of time X that a machine is down for maintenance or repair has the following probability density function: 2( x, x, f(x The cost of this down time due to lost production and maintenance is given by C + 3X + 6X 2. Find the expectation of C. Solution: E(X xf(xdx x 2( xdx (2x 2x 2 dx (x 2 23 x3 3. E(X 2 Thus, x 2 f(xdx x 2 2( xdx (2x 2 2x 3 dx ( 2 3 x3 2 x4 6. E(C E ( + 3X + 6X 2 + 3E(X + 6E(X

2 2 2. Assume X is a normal random variable with mean 2 and variance 6, and Y is a Gamma random variable with parameters α 5 and β 2. In addition X and Y are independent. Construct a box with length L X, width W 2 X, and height H Y. Let V be the volume of the box. Calculate the expected value E(V. Solution: Since X N(µ, σ 2 N(2, 6, then E(X 2 V (X + [E(X] 2 σ 2 + µ Also, Y Gamma(α, β Gamma(5, 2, then E(Y αβ 5 2. By independence, we get E(V E(LW H E(2X 2 Y 2E(X 2 E(Y

3 3 3. If a is uniformly distributed over [, 2], what is the probability that the roots of the equation are both real? x 2 + ax + a + 5 Solution: The roots are both real if and only if the discriminant is nonnegative, that is, a 2 4(a + 5 (a (a + 6 a or a 6. Since a U(, 2, we get P ((a (a 6 P (a [, 6] [, 2] [( 6 ( ] + [2 ] 6 2 ( 32 2

4 4 4. A certain brand of cereal has an average shelf life of 7 months. Assume that based on the current technology used in the manufacturing and packaging processes the standard deviation from its average shelf life is σ month. (a Use Tchebysheff s Theorem to determine whether it is likely (probability of occurrence > 66% that the contents of a cereal box will stay fresh anywhere between 5 and 9 months. Solution: Let Y be the shelf life, then we only know the expected value µ 7 and standard deviation σ. By Tchebysheff s Theorem, P (5 Y 9 P ( Y µ 2σ 75% > 66%. 22 So it is very likely. (b What is the desired standard deviation if the percentage in (a needs to improve to at least 99%? Solution: We seek the value of σ such that P (5 Y 9 99%. Tchebysheff s Theorem, P (5 Y 9 P ( Y µ 2σ σ ( 2 2 σ2 4. σ By Then we just need σ2 4 99% σ2.4 σ.2.

5 5 5. Arrivals of customers at a checkout counter follow a Poisson distribution. It is known that, during a given 3-minute period, one customer arrived at the counter. Find the probability that the customer arrived during the last 5 minutes of the 3-minute period. Solution: Let Y be the arrival time of a customer during the given 3-minute period, then Y U(, 3, and thus P (Y 25 P (Y [25, 3]

6 6 6. The lifetime of a certain electric machine is modeled by an exponential distribution with mean β years. Let the random variable Y be the lifetime of the machine. (a Find the smallest value of β for which the probability that the product will last at least 4 years is greater than or equal to.6. Solution: Let Y be the lifetime of the electric machine, then Y exp(β. Its cdf for y > is given by F (y e y/β P (Y 4 F (4 e 4/β We require P (Y 4.6, then we need e 4/β.6 β 4 ln (b Now assume that the mean of Y is 5 (that is, β 5. If Y is the lifetime of the machine, then the machine will generate a total profit of e 2Y +3 dollars. Compute the expected profit over the lifetime of the machine. You should compute all integrals but you can leave your final answer in terms of exponentials. Solution: When β 5, the pdf of Y is given by 5 f(y e y/5, y >, Thus, E ( e 2Y So the expected profit is e 2y f(ydy 5 ( 5 e 2y 5 e y/5 dy e 5 y dy 5 e 5 y E ( e 2Y + 3 E ( e 2Y

7 7 8. The following questions concern a circular dartboard of radius r. Suppose that a dart player throws uniformly at random, that is, πr, f(x, y 2 x2 + y 2 r 2, (a Show that the x coordinate and the y-coordinate of the dart cannot be independent. Solution: Consider two special events A (X.8r and B (Y.8r. It is not hard to see that P (A > and P (B >. Also, for any (x, y A B, we must have x 2 + y r 2.28r 2 > r 2, then A B is outside the circle of radius, and therefore, P (A B. If X and Y are independent, so are events A and B. However, P (A B < P (AP (B. Contradiciton!. So X and Y must be dependent. (b What is the probability that the dart is closer to the bulls-eye than the outside of the board? Solution: The probability is ( P X2 + Y 2 r/2 X 2 +Y 2 r/2 πr 2 dxdy polar 2π dθ πr 2 ( πr 2π 2 2 ρ r/2 r/2 ρdρ 4. (c If the dart is closer to the bulls-eye than the outside, what is the probability that the dart at most r away from the bulls-eye? 4 Solution: The probability is ( P X2 + Y 2 r/4 X 2 + Y 2 r/2 P ( X 2 + Y 2 r/4 P ( X 2 + Y 2 r/2 /6 /4 4. where for the numerator, we apply similar calculations as part (b.

8 8 9. Suppose that X Uniform(,. Given the value X x, we generate Y X x Uniform(x,, that is, the conditional distribution of Y given X x is uniform over the interval [x, ]. (a What is the joint density of (X, Y. Solution: By the given information, we have, x, f X (x f Y (y X x, elsewhere, Then the joint density is f(x, y f X (x f Y (y X x (b What is the marginal density of Y? Solution: f Y (y f(x, ydx (c Find the expected value E(Y. Solution: E(Y yf(x, ydxdy y x x x y,, elsewhere, x x y, dx, y,, elsewhere. ln x xy x, y, ln( y, y, ( y x dy dx x 2 2 x ( 2 y2 x 2 x dx ( + xdx 4 ( + x y yx dx

9 9. Let Y and Y 2 have joint density function e (y +y 2 f(y, y 2, if y >, y 2 >,, elsewhere (a Find the marginal density functions for Y and Y 2. (b What is P ( < Y < 2.5? (c For any y 2 >, what is the conditional density function of Y given that Y 2 y 2? (d Using Part (c to answer: Are X and Y independent or not? Solution: (a f (y f(y, y 2 dy 2 e (y +y 2 dy 2, y >, elsewhere e y, y >, elsewhere f 2 (y 2 f(y, y 2 dy e (y +y 2 dy, y 2 >, elsewhere e y 2, y 2 >, elsewhere (b P ( < Y < (c and (d: If y 2 >, f (y Y 2 y 2 f(y, y 2 f 2 (y 2 f (y dy So Y and Y 2 are independent. 2.5 e y dy e y 2.5 e e 2.5 e (y +y 2, y e y >, 2 elsewhere e y, y >, elsewhere f (y

10 . Let Y and Y 2 have joint density function, if y C, y 2 f(y, y 2, elsewhere Find C and after that compute the probability: P ( Y 2 e Y Solution: As f(y, y 2 is a bivariate pdf, we have f(y, y 2 dy dy 2. The integral of LHS is equal to C dy dy 2 dy dy 2 C C [ ( ][ ( ] 4 C So 4 C and thus C 4. P ( Y 2 e Y 4 max, e y } y 2 min,e y } ( e y e y dy 2 dy dy dy 2 ( dy 2 dy 4 2e y dy dy 4 2ey e

11 2. The lifetime of lightbulbs that are advertised to last for 4 hours are normally distributed with a mean of 45 hours and a standard deviation of 5 hours. What is the probability that a bulb lasts longer than the advertised figure? Solution: let Y be the lifetime of lightbulb, then Y N(µ, σ 2 with µ 45 and σ 5. P (Y > 4 ( 5 2π exp (y 42 dy

12 2 3. Because of the relatively high interest rates, most consumers attempt to pay off their credit card bills promptly. However, this is not always possible. An analysis of the amount of interest paid monthly by a bank s Visa cardholders reveals that the amount is normally distributed with a mean of 25 dollars and a standard deviation of 8 dollars. What proportion of the bank s Visa cardholders pay more than 33 dollars in interest? Solution: let Y be the monthly interest paid, then Y N(µ, σ 2 with µ 25 and σ 8. P (Y > 33 ( 8 2π exp (y 252 dy

13 3 4. Wires manufactured for use in a system are specified to have lengths between 2 and 4 mm. The actual wires produced by company X have a normal distribution with mean length 3mm and standard deviation.5mm. (a What is the probability that a randomly selected wire from company X s production will meet specifications? Solution: Let Y be the length of the wires, then Y N(µ, σ 2 with µ 3 and σ.5. The probability to meet specifications is P (2 Y 4 P ( Y µ 2σ 95% (b If of these wires are used in each system and all are selected from company X, what is the probability that all ten in a randomly selected system will meet the specifications? Solution: Let Z be the number of wires which meet the specifications, then Z B(n, p with n and p.95. the probability that all ten will meet the specifications is ( P (Z.95 (

14 4 5. Suppose that X is the total time between a customer s arrival in the store and departure from the service window, Y is the time spent in line before reaching the window, and the joint densities of these variables is given by e x, y x, f(x, y (a Find the marginal densities f X (x for X and f Y (y for Y. Solution: f X (x f Y (y f(x, ydy f(x, ydx x e x dy, x,, elsewhere y e x dx, y,, elsewhere xe x, x,, elsewhere e y, y,, elsewhere (b What is the conditional density of Y given that X x? Be sure to specify the values of x for which this density is defined. Solution: f Y (y X x f(x, y f X (x e x xe, < y x x x (c Are X and Y independent? Please support your answer. Solution: No, since f Y (y X x f Y (y. (d Find the expected value E ( Y X. ( Y y E f(x, ydxdy X x ( x y x e x dy dx ( e x yx x 2 y2 dx 2 y xe x dx 2 Γ(2 2 2.

STAT 515 MIDTERM 2 EXAM November 14, 2018

STAT 515 MIDTERM 2 EXAM November 14, 2018 STAT 55 MIDTERM 2 EXAM November 4, 28 NAME: Section Number: Instructor: In problems that require reasoning, algebraic calculation, or the use of your graphing calculator, it is not sufficient just to write

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

ENGG2430A-Homework 2

ENGG2430A-Homework 2 ENGG3A-Homework Due on Feb 9th,. Independence vs correlation a For each of the following cases, compute the marginal pmfs from the joint pmfs. Explain whether the random variables X and Y are independent,

More information

Solution to Assignment 3

Solution to Assignment 3 The Chinese University of Hong Kong ENGG3D: Probability and Statistics for Engineers 5-6 Term Solution to Assignment 3 Hongyang Li, Francis Due: 3:pm, March Release Date: March 8, 6 Dear students, The

More information

STAT:2020 Probability and Statistics for Engineers Exam 2 Mock-up. 100 possible points

STAT:2020 Probability and Statistics for Engineers Exam 2 Mock-up. 100 possible points STAT:2020 Probability and Statistics for Engineers Exam 2 Mock-up 100 possible points Student Name Section [letter/#] Section [day/time] Instructions: 1) Make sure you have the correct number of pages.

More information

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm)

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Name: MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Instructions: The total score is 200 points. There are ten problems. Point values per problem are shown besides the questions.

More information

Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.)

Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.) Name: Section: Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.) The total score is 120 points. Instructions: There are 10 questions. Please circle 8 problems below that you want to

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 23 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

MCS Introduction to Probability and Statistics FIRST MIDTERM

MCS Introduction to Probability and Statistics FIRST MIDTERM Department of Mathematics and Computer Sciences 1-11 Spring Semester MCS 4 - Introduction to Probability and Statistics FIRST MIDTERM 1 The following data represents the grades of a group of students:

More information

1. Consider a random independent sample of size 712 from a distribution with the following pdf. c 1+x. f(x) =

1. Consider a random independent sample of size 712 from a distribution with the following pdf. c 1+x. f(x) = 1. Consider a random independent sample of size 712 from a distribution with the following pdf f(x) = c 1+x 0

More information

EE 345 MIDTERM 2 Fall 2018 (Time: 1 hour 15 minutes) Total of 100 points

EE 345 MIDTERM 2 Fall 2018 (Time: 1 hour 15 minutes) Total of 100 points Problem (8 points) Name EE 345 MIDTERM Fall 8 (Time: hour 5 minutes) Total of points How many ways can you select three cards form a group of seven nonidentical cards? n 7 7! 7! 765 75 = = = = = = 35 k

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION. MATH 110 FINAL EXAM SPRING 2008 FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil on your scantron.

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

STA 4321/5325 Solution to Homework 5 March 3, 2017

STA 4321/5325 Solution to Homework 5 March 3, 2017 STA 4/55 Solution to Homework 5 March, 7. Suppose X is a RV with E(X and V (X 4. Find E(X +. By the formula, V (X E(X E (X E(X V (X + E (X. Therefore, in the current setting, E(X V (X + E (X 4 + 4 8. Therefore,

More information

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2 Short Guides to Microeconometrics Fall 2018 Kurt Schmidheiny Unversität Basel Elements of Probability Theory 2 1 Random Variables and Distributions Contents Elements of Probability Theory matrix-free 1

More information

0, otherwise, (a) Find the value of c that makes this a valid pdf. (b) Find P (Y < 5) and P (Y 5). (c) Find the mean death time.

0, otherwise, (a) Find the value of c that makes this a valid pdf. (b) Find P (Y < 5) and P (Y 5). (c) Find the mean death time. 1. In a toxicology experiment, Y denotes the death time (in minutes) for a single rat treated with a toxin. The probability density function (pdf) for Y is given by cye y/4, y > 0 (a) Find the value of

More information

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2},

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2}, ECE32 Spring 25 HW Solutions April 6, 25 Solutions to HW Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

More information

Chapter 4. Continuous Random Variables

Chapter 4. Continuous Random Variables Chapter 4. Continuous Random Variables Review Continuous random variable: A random variable that can take any value on an interval of R. Distribution: A density function f : R R + such that 1. non-negative,

More information

Statistics 427: Sample Final Exam

Statistics 427: Sample Final Exam Statistics 427: Sample Final Exam Instructions: The following sample exam was given several quarters ago in Stat 427. The same topics were covered in the class that year. This sample exam is meant to be

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1 Stat 366 A1 Fall 6) Midterm Solutions October 3) page 1 1. The opening prices per share Y 1 and Y measured in dollars) of two similar stocks are independent random variables, each with a density function

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R Random Variables Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R As such, a random variable summarizes the outcome of an experiment

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Practice Examination # 3

Practice Examination # 3 Practice Examination # 3 Sta 23: Probability December 13, 212 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use a single

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2-5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 14-3339 Cathy Poliak,

More information

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University.

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University. Random Signals and Systems Chapter 3 Jitendra K Tugnait Professor Department of Electrical & Computer Engineering Auburn University Two Random Variables Previously, we only dealt with one random variable

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Continuous r.v practice problems

Continuous r.v practice problems Continuous r.v practice problems SDS 321 Intro to Probability and Statistics 1. (2+2+1+1 6 pts) The annual rainfall (in inches) in a certain region is normally distributed with mean 4 and standard deviation

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Problem Let A be the event that the fungus is present, and B the event that the staph-bacteria is present. We have P A = 4, P B = 9, P B A =. We wish to find P AB, to do this we use the multiplication

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

Conditioning a random variable on an event

Conditioning a random variable on an event Conditioning a random variable on an event Let X be a continuous random variable and A be an event with P (A) > 0. Then the conditional pdf of X given A is defined as the nonnegative function f X A that

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2 & 5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13-3339 Cathy

More information

Chapter 6: Functions of Random Variables

Chapter 6: Functions of Random Variables Chapter 6: Functions of Random Variables We are often interested in a function of one or several random variables, U(Y 1,..., Y n ). We will study three methods for determining the distribution of a function

More information

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE STAT131 PROBABILITY AND STATISTICS I EXAMPLE CLASS 8 Review Conditional Distributions and Conditional Expectation For any two

More information

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday.

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday. 1. Suppose that we ask n randomly selected people whether they share your birthday. (a) Give an expression for the probability that no one shares your birthday (ignore leap years). (5 marks) Solution:

More information

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U).

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U). 1. Suppose Y U(0, 2) so that the probability density function (pdf) of Y is 1 2, 0 < y < 2 (a) Find the pdf of U = Y 4 + 1. Make sure to note the support. (c) Suppose Y 1, Y 2,..., Y n is an iid sample

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Exercise 4.1 Let X be a random variable with p(x)

More information

Solution: By Markov inequality: P (X > 100) 0.8. By Chebyshev s inequality: P (X > 100) P ( X 80 > 20) 100/20 2 = The second estimate is better.

Solution: By Markov inequality: P (X > 100) 0.8. By Chebyshev s inequality: P (X > 100) P ( X 80 > 20) 100/20 2 = The second estimate is better. MA 485-1E, Probability (Dr Chernov) Final Exam Wed, Dec 12, 2001 Student s name Be sure to show all your work. Each problem is 4 points. Full credit will be given for 9 problems (36 points). You are welcome

More information

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

Theory of probability and mathematical statistics

Theory of probability and mathematical statistics Theory of probability and mathematical statistics Tomáš Mrkvička Bibliography [1] J. [2] J. Andďż l: Matematickďż statistika, SNTL/ALFA, Praha 1978 Andďż l: Statistickďż metody, Matfyzpress, Praha 1998

More information

2) Are the events A and B independent? Say why or why not [Sol] No : P (A B) = 0.12 is not equal to P (A) P (B) = =

2) Are the events A and B independent? Say why or why not [Sol] No : P (A B) = 0.12 is not equal to P (A) P (B) = = Stat 516 (Spring 2010) Hw 1 (due Feb. 2, Tuesday) Question 1 Suppose P (A) =0.45, P (B) = 0.32 and P (Ā B) = 0.20. 1) Find P (A B) [Sol] Since P (B) =P (A B)+P (Ā B), P (A B) =P (B) P (Ā B) =0.32 0.20

More information

Homework 10 (due December 2, 2009)

Homework 10 (due December 2, 2009) Homework (due December, 9) Problem. Let X and Y be independent binomial random variables with parameters (n, p) and (n, p) respectively. Prove that X + Y is a binomial random variable with parameters (n

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

Math 116 Second Midterm March 19, 2012

Math 116 Second Midterm March 19, 2012 Math 6 Second Midterm March 9, 22 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has pages including this cover. There are 9 problems. Note that

More information

Chapter 2: Random Variables (Cont d)

Chapter 2: Random Variables (Cont d) Civil Engineering Department: Engineering Statistics (ECIV 005) Chapter : Random Variables (Cont d) Section.6: Combinations and Functions of Random Variables Problem (): Suppose that the random variables

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

The Table of Integrals (pages of the text) and the Formula Page may be used. They will be attached to the nal exam.

The Table of Integrals (pages of the text) and the Formula Page may be used. They will be attached to the nal exam. The Table of Integrals (pages 558-559 of the text) and the Formula Page may be used. They will be attached to the nal exam. 1. If f(x; y) =(xy +1) 2 p y 2 x 2,evaluatef( 2; 1). A. 1 B. 1 p 5 C. Not de

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

8.4 Application to Economics/ Biology & Probability

8.4 Application to Economics/ Biology & Probability 8.4 Application to Economics/ Biology & 8.5 - Probability http://classic.hippocampus.org/course_locat or?course=general+calculus+ii&lesson=62&t opic=2&width=800&height=684&topictitle= Costs+&+probability&skinPath=http%3A%2F%

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Course 1 Solutions November 2001 Exams

Course 1 Solutions November 2001 Exams Course Solutions November Exams . A For i =,, let R = event that a red ball is drawn form urn i i B = event that a blue ball is drawn from urn i. i Then if x is the number of blue balls in urn, ( R R)

More information

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution Some Continuous Probability Distributions: Part I Continuous Uniform distribution Normal Distribution Exponential Distribution 1 Chapter 6: Some Continuous Probability Distributions: 6.1 Continuous Uniform

More information

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise Name M36K Final. Let X be a random variable with probability density function { /x x < f(x = 0 otherwise Compute the following. You can leave your answers in integral form. (a ( points Find F X (t = P

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if University of California, Los Angeles Department of Statistics Statistics 1A Instructor: Nicolas Christou Continuous probability distributions Let X be a continuous random variable, < X < f(x) is the so

More information

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999.

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999. Math 447. 1st Homework. First part of Chapter 2. Due Friday, September 17, 1999. 1. How many different seven place license plates are possible if the first 3 places are to be occupied by letters and the

More information

MAT 4872 Midterm Review Spring 2007 Prof. S. Singh

MAT 4872 Midterm Review Spring 2007 Prof. S. Singh MAT 487 Midterm Review Spring 007 Prof S Singh Answer all questions carefully and give references for material used from journals Sketch all state spaces for all transformations You are required to work

More information

Chapter 5 Joint Probability Distributions

Chapter 5 Joint Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 5 Joint Probability Distributions 5 Joint Probability Distributions CHAPTER OUTLINE 5-1 Two

More information

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided!

No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Math 447 Final Exam Fall 2015 No books, no notes, only SOA-approved calculators. Please put your answers in the spaces provided! Name: Section: Question Points Score 1 8 2 6 3 10 4 19 5 9 6 10 7 14 8 14

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Gamma and Normal Distribuions

Gamma and Normal Distribuions Gamma and Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

ECE Lecture #9 Part 2 Overview

ECE Lecture #9 Part 2 Overview ECE 450 - Lecture #9 Part Overview Bivariate Moments Mean or Expected Value of Z = g(x, Y) Correlation and Covariance of RV s Functions of RV s: Z = g(x, Y); finding f Z (z) Method : First find F(z), by

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Definition: n-dimensional random vector, joint pmf (pdf), marginal pmf (pdf) Theorem: How to calculate marginal pmf (pdf) given joint pmf (pdf) Example: How to calculate

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February PID: Last Name, First Name: Section: Approximate time spent to complete this assignment: hour(s) Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February Readings: Chapters 16.6-16.7 and the

More information

CH5 CH6(Sections 1 through 5) Homework Problems

CH5 CH6(Sections 1 through 5) Homework Problems 550.40 CH5 CH6(Sections 1 through 5) Homework Problems 1. Part of HW #6: CH 5 P1. Let X be a random variable with probability density function f(x) = c(1 x ) 1 < x < 1 (a) What is the value of c? (b) What

More information

(u v) = f (u,v) Equation 1

(u v) = f (u,v) Equation 1 Problem Two-horse race.0j /.8J /.5J / 5.07J /.7J / ESD.J Solution Problem Set # (a). The conditional pdf of U given that V v is: The marginal pdf of V is given by: (u v) f (u,v) Equation f U V fv ( v )

More information