6. Multiple Linear Regression

Size: px
Start display at page:

Download "6. Multiple Linear Regression"

Transcription

1 6. Multiple Linear Regression SLR: 1 predictor X, MLR: more than 1 predictor Example data set: Y i = #points scored by UF football team in game i X i1 = #games won by opponent in their last 10 games X i2 = #healthy starters for UF (out of 22) in game i i points X i1 X i

2 Simplest Multiple Linear Regression (MLR) Model: Y i = β 0 + β 1 X i1 + β 2 X i2 + ɛ i, i = 1, 2,..., n ɛ i iid N(0, σ 2 ) β 0, β 1, β 2, and σ 2 are unknown parameters X ij s are known constants. SLR: E(Y ) = β 0 + β 1 X β 1 is the change in E(Y ) corresponding to a unit increase in X. MLR: E(Y ) = β 0 + β 1 X 1 + β 2 X 2 When we have more than 1 predictor, we have to worry about how they affect each other. 2

3 Suppose we fix X i1 = 5 (games won by ith opponent): Suppose we fix X i1 = 7: E(Y i ) = β 0 + β 1 (5) + β 2 X i2 = (β 0 + β 1 (5)) + β 2 X i2 E(Y i ) = β 0 + β 1 (7) + β 2 X i2 = (β 0 + β 1 (7)) + β 2 X i2 We ve got SLR models with different intercepts but equal slopes. Plot of E(Y ) vs X 2 for fixed values of X 1 3

4 E(points) β 0 + β 1 (5) 1 1 β 2 β 2 opponent won 5/10 (β 0 + β 1 (5)) + β 2 X i2 opponent won 7/10 (β 0 + β 1 (7)) + β 2 X i2 By this model, we assumed that, for any fixed value of X i1 (opponent wins), the change in E(Y ) corresponding to the addition of 1 healthy starter is β 2 for all games. Is this reasonable? β 0 + β 1 (7) #healthy starters 4

5 Suppose AU is winless in their last 10 games. Our model says that if we add 1 healthy starter, we expect that UF scores β 2 more points. Suppose BU won their last 10 games. Again, if we add 1 healthy starter, we expect to score β 2 more points. Starters probably won t play against AU, so we expect to gain nothing if a starter becomes healthy. Maybe the plot should look like: 5

6 opponent won 5/10 E(points) 1 <β 2 β 2 opponent won 7/10 Smaller slope since starters are less important against bad teams. Q: How can we change our model to allow for this? 1 A: Add an interaction term #healthy starters 6

7 E(Y i ) = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i1 X i2 This function is not a simple plane any more! When X i1 = 5: When X i1 = 7: E(Y i ) = (β 0 + β 1 (5)) + (β 2 + β 3 (5))X i2 E(Y i ) = (β 0 + β 1 (7)) + (β 2 + β 3 (7))X i2 7

8 opponent won 5/10 E(points) β 0 + β 1 (5) 1 1 β 2 + β 3 (5) opponent won 7/10 β 2 + β 3 (7) Now the gain in expected points corresponding to the addition of 1 healthy starter depends on X i1 as it should. β 1 < 0, β 2 > 0, β 3 > 0 β 0 + β 1 (7) #healthy starters 8

9 General Linear Regression Model Data (X i1, X i2,..., X i,p 1, Y i ), i = 1, 2,..., n Model Equation and Assumptions Y i = β 0 + β 1 X i1 + β 2 X i2 + + β p 1 X i,p 1 + ɛ i ɛ i iid N(0, σ 2 ) β 0, β 1, β 2,..., β p 1 and σ 2 are unknown param s X ij s are known constants. 9

10 Two cases: 1. p 1 different predictors 2. some of the predictors are functions of the others (a) polynomial regression Y i = β 0 + β 1 X i + β 2 Xi 2 + ɛ i Let Z i1 = X i and Z i2 = X 2 i then Y i = β 0 + β 1 Z i1 + β 2 Z i2 + ɛ i (b) interaction effects Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i1 X i2 + ɛ i Let X i3 = X i1 X i2 and we re back to the general linear regression model 10

11 (c) both of (a) and (b) Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X 2 i1 + β 4 X 2 i2 + β 5 X i1 X i2 + ɛ i With Z i1 = X i1, Z i2 = X i2, Z i3 = X 2 i1, Z i4 = X 2 i2, Z i5 = X i1 X i2 this transforms to the general linear regression model Y i = β 0 + β 1 Z i1 + β 2 Z i2 + β 3 Z i3 + β 4 Z i4 + β 5 Z i5 + ɛ i 11

12 General Linear Model in Matrix Terms Y n 1 = Y 1 Y 2. Y n β p 1 = X n p = β 0 β 1. β p 1 1 X 11 X X 1,p 1 1 X 21 X X 2,p X n1 X n2... X n,p 1 ɛ n 1 = ɛ 1 ɛ 2. ɛ n 12

13 Model: Y = Xβ + ɛ Assumptions: ɛ N(0, σ 2 I) β and σ 2 are unknown parameters X is a (n p) matrix of fixed known constants 13

14 Least Squares Estimates: b p 1 = b 0 b 1. b p 1 = (X X) 1 X Y Fitted Values: Ŷ n 1 = Ŷ 1 Ŷ 2. Ŷ n = b 0 + b 1 X b p 1 X 1,p 1 b 0 + b 1 X b p 1 X 2,p 1. b 0 + b 1 X n b p 1 X n,p 1 = Xb 14

15 Residuals: e n 1 = Y Ŷ = Y Xb = Y X(X X) 1 X Y = (I H)Y with the (n n) hat matrix H = X(X X) 1 X 15

16 ANalysis Of VAriance Formulas are exactly the same. Remember SSTO = SSR + SSE n n n (Y i Ȳ )2 = (Ŷi Ȳ )2 + (Y i Ŷi) 2 i=1 i=1 but their degrees of freedom (df) change: SSTO still has n 1 df SSR now has p 1 because of the p param s in Ŷi SSE therefore has n p df i=1 16

17 ANOVA Table for MLR: Source variat. Sum of Squares (SS) df mean SS Regr. SSR = i (Ŷi Ȳ )2 p 1 SSR p 1 Error SSE = i (Y i Ŷi) 2 n p SSE n p Total SSTO = i (Y i Ȳ )2 n 1 17

18 Overall F-Test for Regression Relation H 0 : β 1 = β 2 = = β p 1 = 0 H A : not all β j (j = 1,..., p 1) equal zero. H 0 states that all predictors X 1,..., X p 1 are useless (no relation between Y and the set of X variables), whereas H A says that at least one is useful. Test Statistic F = MSR MSE Rejection Rule: reject H 0, if F > F (1 α; p 1, n p) Note: when p 1 = 1, this is the F-test for H 0 : β 1 = 0 in the SLR. 18

19 Coefficient of Multiple Determination: it s the same as in SLR s, R 2 = SSR SSTO = 1 SSE SSTO It measures the relative reduction in the total variation (SSTO) due to the MLR. 19

20 Inferences about Regression Parameters Since with C p n = (X X) 1 X we can write b = (X X) 1 X Y = c c 1n. c p1... c pn Y 1. Y n Thus, every element of b is a linear combination of the Y s and is therefore a normal r.v. Again E(b) = (X X) 1 X E(Y) = β Thus b is an unbiased estimator for β. Moreover Var(b) = σ 2 (X X) 1 20

21 This means that for any k = 0, 1,..., p 1 we have b k N ( β k, σ 2 [ (X X) 1] ) k+1,k+1 where [ ] jj is the jth diagonal element of the matrix. 21

22 Thus σ 2 b k β k ] [(X X) 1 and because the MSE now has df = n p k+1,k+1 N(0, 1) MSE b k β k ] [(X X) 1 k+1,k+1 t(n p) Using this we can construct tests and CI s for each individual β k Test Statistic: t = MSE b k [(X X) 1 ] Rejection Rule: reject H 0 if t > t(1 α/2; n p) 22 k+1,k+1

23 (1 α)100% CI for the parameter β k b k ± t(1 α/2; n p) MSE [(X X) 1 ] k+1,k+1 (1 α)100% CI for the mean of Y at X h = (1 X h1 X h2... X h,p 1 ) Say we want a CI for the mean #points scored by UF when the opponent win 90% (X h1 = 9) and there are 20 healthy starters (X h2 = 20). So X h = (1 9 20) The point estimate of E(Y h ) = X h β is Ê(Y h ) = Ŷh = X hb Because this equals X h (X X) 1 X hy, it is a linear combination of normals and is thus normal with E(Ê(Y h)) = X h E(b) = X hβ 23

24 (unbiased) and Var(Ê(Y h)) = X h Var(b) X h = σ 2 X h(x X) 1 X h Thus and Ê(Y h ) X h β σ2 X h (X X) 1 X h N(0, 1) Ê(Y h ) X h β MSE X h (X X) 1 X h t(n p) The CI for X hβ is constructed in the usual manner. (1 α)100% Prediction Interval for a New Observation at X h = (1 X h1 X h2... X h,p 1 ) 24

25 Call the new observation Y h(new) and use Y h(new) Ê(Y h(new)) } MSE {1 + X h (X X) 1 X h t(n p) with Ê(Y h(new) ) = X hb 25

26 House Price Example using R > houses <- read.table("houses.dat", col.names = + c("price", "area", "bed", "bath", "new")) > attach(houses) > plot(area, price); plot(bed, price) 26

27 price price area bed 27

28 > model <- lm(price ~ area + bed) > model Coefficients: (Intercept) area bed > model.i <- lm(price ~ area + bed + area*bed) > summary(model.i, corr=t) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) area ** bed area:bed Residual standard error: on 89 df Multiple R-Squared: 0.814, Adjusted R-squared: F-statistic: on 3 and 89 df, p-value: 0 28

29 price price area area 29

30 > anova(model.i) Analysis of Variance Table Response: price Df Sum Sq Mean Sq F value Pr(>F) area < 2e-16 *** bed area:bed Residuals Sig.codes: 0 *** ** 0.01 *

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Need for Several Predictor Variables

Need for Several Predictor Variables Multiple regression One of the most widely used tools in statistical analysis Matrix expressions for multiple regression are the same as for simple linear regression Need for Several Predictor Variables

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

3. Diagnostics and Remedial Measures

3. Diagnostics and Remedial Measures 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed where ɛ i iid N(0, σ 2 ), Y i = β 0 + β 1 X i + ɛ i i = 1, 2,..., n, β 0, β 1 and σ 2 are unknown parameters, X i s

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

STOR 455 STATISTICAL METHODS I

STOR 455 STATISTICAL METHODS I STOR 455 STATISTICAL METHODS I Jan Hannig Mul9variate Regression Y=X β + ε X is a regression matrix, β is a vector of parameters and ε are independent N(0,σ) Es9mated parameters b=(x X) - 1 X Y Predicted

More information

Chapter 2 Inferences in Simple Linear Regression

Chapter 2 Inferences in Simple Linear Regression STAT 525 SPRING 2018 Chapter 2 Inferences in Simple Linear Regression Professor Min Zhang Testing for Linear Relationship Term β 1 X i defines linear relationship Will then test H 0 : β 1 = 0 Test requires

More information

Concordia University (5+5)Q 1.

Concordia University (5+5)Q 1. (5+5)Q 1. Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/1 40 Examination Date Time Pages Mid Term Test May 26, 2004 Two Hours 3 Instructor Course Examiner

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Chapter 2 Multiple Regression I (Part 1)

Chapter 2 Multiple Regression I (Part 1) Chapter 2 Multiple Regression I (Part 1) 1 Regression several predictor variables The response Y depends on several predictor variables X 1,, X p response {}}{ Y predictor variables {}}{ X 1, X 2,, X p

More information

Lecture 1 Linear Regression with One Predictor Variable.p2

Lecture 1 Linear Regression with One Predictor Variable.p2 Lecture Linear Regression with One Predictor Variablep - Basics - Meaning of regression parameters p - β - the slope of the regression line -it indicates the change in mean of the probability distn of

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 LAST NAME: SOLUTIONS FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 302 STA 1001 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator.

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1 Multiple Regression Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 12, Slide 1 Review: Matrix Regression Estimation We can solve this equation (if the inverse of X

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination ST 430/514 The coefficient of determination, R 2, is defined as before: R 2 = 1 SS E (yi ŷ i ) = 1 2 SS yy (yi ȳ) 2 The interpretation of R 2 is still the fraction of variance

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

Chapter 12: Multiple Linear Regression

Chapter 12: Multiple Linear Regression Chapter 12: Multiple Linear Regression Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 55 Introduction A regression model can be expressed as

More information

Chapter 6 Multiple Regression

Chapter 6 Multiple Regression STAT 525 FALL 2018 Chapter 6 Multiple Regression Professor Min Zhang The Data and Model Still have single response variable Y Now have multiple explanatory variables Examples: Blood Pressure vs Age, Weight,

More information

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO.

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO. Analysis of variance approach to regression If x is useless, i.e. β 1 = 0, then E(Y i ) = β 0. In this case β 0 is estimated by Ȳ. The ith deviation about this grand mean can be written: deviation about

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

Lecture 4 Multiple linear regression

Lecture 4 Multiple linear regression Lecture 4 Multiple linear regression BIOST 515 January 15, 2004 Outline 1 Motivation for the multiple regression model Multiple regression in matrix notation Least squares estimation of model parameters

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Lecture 18 MA Applied Statistics II D 2004

Lecture 18 MA Applied Statistics II D 2004 Lecture 18 MA 2612 - Applied Statistics II D 2004 Today 1. Examples of multiple linear regression 2. The modeling process (PNC 8.4) 3. The graphical exploration of multivariable data (PNC 8.5) 4. Fitting

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

Applied Regression Analysis. Section 2: Multiple Linear Regression

Applied Regression Analysis. Section 2: Multiple Linear Regression Applied Regression Analysis Section 2: Multiple Linear Regression 1 The Multiple Regression Model Many problems involve more than one independent variable or factor which affects the dependent or response

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Section 4: Multiple Linear Regression

Section 4: Multiple Linear Regression Section 4: Multiple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 The Multiple Regression

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal yuppal@ysu.edu Sampling Distribution of b 1 Expected value of b 1 : Variance of b 1 : E(b 1 ) = 1 Var(b 1 ) = σ 2 /SS x Estimate of

More information

Chapter 3. Diagnostics and Remedial Measures

Chapter 3. Diagnostics and Remedial Measures Chapter 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed Y i = β 0 + β 1 X i + ǫ i i = 1, 2,..., n, where ǫ i iid N(0, σ 2 ), β 0, β 1 and σ 2 are unknown parameters,

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013 STAC67H3 Regression Analysis Duration: One hour and fifty minutes Last Name: First Name: Student

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Week 3: Multiple Linear Regression

Week 3: Multiple Linear Regression BUS41100 Applied Regression Analysis Week 3: Multiple Linear Regression Polynomial regression, categorical variables, interactions & main effects, R 2 Max H. Farrell The University of Chicago Booth School

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Topic 14: Inference in Multiple Regression

Topic 14: Inference in Multiple Regression Topic 14: Inference in Multiple Regression Outline Review multiple linear regression Inference of regression coefficients Application to book example Inference of mean Application to book example Inference

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

Lecture 12 Inference in MLR

Lecture 12 Inference in MLR Lecture 12 Inference in MLR STAT 512 Spring 2011 Background Reading KNNL: 6.6-6.7 12-1 Topic Overview Review MLR Model Inference about Regression Parameters Estimation of Mean Response Prediction 12-2

More information

5. Multiple Regression (Regressioanalyysi) (Azcel Ch. 11, Milton/Arnold Ch. 12) The k-variable Multiple Regression Model

5. Multiple Regression (Regressioanalyysi) (Azcel Ch. 11, Milton/Arnold Ch. 12) The k-variable Multiple Regression Model 5. Multiple Regression (Regressioanalyysi) (Azcel Ch. 11, Milton/Arnold Ch. 12) The k-variable Multiple Regression Model The population regression model of a dependent variable Y on a set of k independent

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is.

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is. Linear regression We have that the estimated mean in linear regression is The standard error of ˆµ Y X=x is where x = 1 n s.e.(ˆµ Y X=x ) = σ ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. 1 n + (x x)2 i (x i x) 2 i x i. The

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

1. Simple Linear Regression

1. Simple Linear Regression 1. Simple Linear Regression Suppose that we are interested in the average height of male undergrads at UF. We put each male student s name (population) in a hat and randomly select 100 (sample). Then their

More information

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression Chapter 12 12-1 North Seattle Community College BUS21 Business Statistics Chapter 12 Learning Objectives In this chapter, you learn:! How to use regression analysis to predict the value of a dependent

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or.

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or. Chapter Simple Linear Regression : comparing means across groups : presenting relationships among numeric variables. Probabilistic Model : The model hypothesizes an relationship between the variables.

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

Multiple Linear Regression

Multiple Linear Regression Andrew Lonardelli December 20, 2013 Multiple Linear Regression 1 Table Of Contents Introduction: p.3 Multiple Linear Regression Model: p.3 Least Squares Estimation of the Parameters: p.4-5 The matrix approach

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

F-tests and Nested Models

F-tests and Nested Models F-tests and Nested Models Nested Models: A core concept in statistics is comparing nested s. Consider the Y = β 0 + β 1 x 1 + β 2 x 2 + ǫ. (1) The following reduced s are special cases (nested within)

More information

Chaper 5: Matrix Approach to Simple Linear Regression. Matrix: A m by n matrix B is a grid of numbers with m rows and n columns. B = b 11 b m1 ...

Chaper 5: Matrix Approach to Simple Linear Regression. Matrix: A m by n matrix B is a grid of numbers with m rows and n columns. B = b 11 b m1 ... Chaper 5: Matrix Approach to Simple Linear Regression Matrix: A m by n matrix B is a grid of numbers with m rows and n columns B = b 11 b 1n b m1 b mn Element b ik is from the ith row and kth column A

More information