COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan

Size: px
Start display at page:

Download "COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan"

Transcription

1 COSC 341 Human Computer Interaction Dr. Bowen Hui University of British Columbia Okanagan 1

2 Last Topic Distribution of means When it is needed How to build one (from scratch) Determining the characteristics of one Z- test Revised hypothesis testing procedure with: Sample of 1+ individuals A distribution of means as comparison distribution Revised formula: Z = (M μ M )/σ M 2

3 This Topic Build on existing concepts Hypothesis testing procedure Distribution of means What s new: Estimate variance/standard deviation t distribution T- test For one sample For dependent means (two samples) 3

4 Scenario: Reported Studies with Mean Course union study found on average, students in COSC spend 2.5 hours studying for their midterms But you think students in this class study more. You randomly pick 16 students from the class and found they studied on average 3.2 hours Can you conclude students in this class are statistically significantly more studious than the average COSC student? 4

5 What s Different? We don t have a known population anymore! For Z- test, we used to: Compare mean of one sample to a population with known mean and known variance What to do now? Comparison of mean of one sample to a population with known mean and unknown variance Solution: Estimate variance using t- test 5

6 What s Different? We don t have a known population anymore! For Z- test, we used to: Compare mean of one sample to a population with known mean and known variance What to do now? Comparison of mean of one sample to a population with known mean and unknown variance Solution: Estimate variance and test using t- test 6

7 1. Setting up Hypotheses Population 1: The kind of students who study COSC 341. Population 2: The kind of students who study COSC generally. H R : Population 1 students study more than Population 2 students. H 0 : Population 1 students study the same amount or less than Population 2 students. 7

8 2. Characteristics of the Comparison Distribution Given, about test sample: N = individual data points X 1, X 2,, X 16 M = 3.2 Given, about population 2: μ = 2.5 σ 2 = need to estimate! Call this estimate S 2 8

9 Computing S 2 Recall: Your sample is a random sample from population Variance of sample ought to reflect variance of population Variance of your sample provides an informed guess about variance of the population However, variance of sample will generally be slightly smaller than variance of its population Creating a biased estimate of population variance Consistently underestimates actual population variance Solution: Create an unbiased estimate of population variance 9

10 Computing S 2 Recall: Your sample is a random sample from population Variance of sample ought to reflect variance of population Variance of your sample provides an informed guess about variance of the population However, variance of sample will generally be slightly smaller than variance of its population Creating a biased estimate of population variance Consistently underestimates actual population variance Solution: Create an unbiased estimate of population variance 10

11 Computing S 2 An unbiased estimate of population variance: S 2 = Σ(X i M) 2 / (N 1) i where: Σ(X i M) 2 = sum of squared deviation scores i N = number of scores N 1 = degrees of freedom (df) Estimated population standard deviation: S = S 2 11

12 2. Characteristics of the Comparison Distribution Given, about test sample: N = 16 M = 3.2 Σ(X i M) 2 = 9.6 (given for simplicity) i Given, about population 2: μ = 2.5 S 2 = Σ(X i M) 2 / (N 1) = 9.6/16 1 = 0.64 i Use your sample data to estimate variance of underlying population 12

13 2. Characteristics of the Comparison Distribution Given, about test sample: N = 16 M = 3.2 Σ(X i M) 2 = 9.6 (given for simplicity) i Given, about population 2: μ = 2.5 S 2 = Σ(X i M) 2 / (N 1) = 9.6/16 1 = 0.64 i Comparison distribution: μ M = μ = 2.5 S 2 M = S 2 / N = 0.64 / 16 = 0.04 same calculation as in z- test, but we use estimates instead of actual population variance 13

14 2. Characteristics of the Comparison Distribution Comparison distribution: μ M = 2.5 S 2 M = 0.04, so S M = 0.20 Shape: t distribution To account for more extreme means 14 fatter tails: need more extreme sample mean to achieve stat. sig.

15 Family of t distributions As a function of df Note: infinite sample size - > t distribution = normal distribution Image taken from statistics.com 15

16 3. Cutoff Sample Score on Comparison Distribution Use 5% or 1%? Is this a one- tailed or two- tailed test? Cutoff t score is Cutoff Z score for df = 15 is? 16

17 4. Determine Sample Score on Comparison Distribution M = 3.5 (test sample s mean from 16 people) Compute t score for μ = 2.5 t = (M μ)/s M = ( )/0.20 = 0.70/0.20 = 3.50 Recall: Z = (M μ M )/σ M 17

18 18

19 5. Decide to Reject H 0 or Not Is data s t score more extreme than cutoff? Yes: 3.50 > Thus, result of the one sample t test is statistically significance at p < 0.05 level Interpretation: Students in COSC 341 study more for an exam than the average COSC student 19

20 Comparing Two Techniques For each interface from A1 and A2: Interface A and Interface B (your conditions) 8 participants carry out a set of tasks using Interface A then carry out similar tasks using Interface B The same person now has 2 data points Two sets of data Compare the data across the two conditions How to do hypothesis testing? 20

21 What s Different? We don t have a known population at all! For t- test for one sample, we used to: Compare mean of one sample to a population with known mean and unknown variance What to do now? Change two sample scores to one sample scores Comparison of mean of that sample to a population with a mean of zero Solution: Compute difference scores and test using t- test for dependent means 21

22 t Test for Dependent Means t test for dependent means Procedure used when each person in sample is measured twice Also called repeated measures design, within subjects design Example scenarios: Measure change in participant scores before and after treatment Measure difference in participant scores for software 1 and software 2 22

23 Difference Scores and the Comparison Distribution Given two sets of scores: Subtract one score from the other for each person to create a single set of difference scores Mean of population of difference scores is unknown Recall: H 0 indicates no difference between two groups Mean of population of difference scores is 0 Thus, you compare: population of difference scores of your sample to population of difference scores with a mean of 0 23

24 Worked out Example Scenario: Does premarital counseling impact communication quality of husbands before and after marriage One study with 19 husbands in premarital counseling group Scores on next slide 24

25 ß Focus on these columns first On average, these 19 husbands communication quality changed by 229/19 = points Is this decrease statistically significant? 25

26 1. Setting up Hypotheses Population 1: Husbands who receive premarital counseling. Population 2: Husbands whose communication quality does not change from before to after marriage. H R : Population 1 s mean difference score is different from Population 2 s mean difference score. H 0 : There is no difference between the two mean difference scores. 26

27 1. Setting up Hypotheses Population 1: Husbands who receive premarital counseling. Population 2: Husbands whose communication quality does not change from before to after marriage. H R : Population 1 s mean difference score is different from Population 2 s mean difference score. H 0 : There is no difference between the two mean difference scores. 27

28 1. Setting up Hypotheses Population 1: Husbands who receive premarital counseling. Population 2: Husbands whose communication quality does not change from before to after marriage. Note if H R is correct, then Population 2 doesn t exist! H R : Population 1 s mean difference score is different from Population 2 s mean difference score. H 0 : There is no difference between the two mean difference scores. 28

29 2. Characteristics of the Comparison Distribution Given, about test sample: N = 19 M = Given, about population 2: μ = 0 (by definition, with no difference) S 2 = Σ( X M) 2 / (N 1) = see data on next slide 29

30 ß same as ( X M) 2 ß same as Σ( X M) 2

31 2. Characteristics of the Comparison Distribution Given, about test sample: N = 19 M = 299 / 19 = Given, about population 2: μ = 0 (by definition, with no difference) S 2 = Σ( X M) 2 / (N 1) = 2, / (19 1) =

32 2. Characteristics of the Comparison Distribution Given, about test sample: N = 19 M = Given, about population 2: μ = 0 (by definition, with no difference) S 2 = Distribution of means: μ M = μ = 0 S 2 M = S 2 /N = / 19 = 8.11 S M = S 2 M = 8.11 =

33 3. Cutoff Sample Score on Comparison Distribution Use 5% or 1%? Not sensitive data so 5% Is this a one- tailed or two- tailed test? H R : Population 1 s mean difference score is different from Population 2 s mean difference score. So two- tailed What is df? Since df = N 1 then df = 18 Cutoff is? 33

34 ß this row 34

35 3. Cutoff Sample Score on Comparison Distribution Use 5% or 1%? Not sensitive data so 5% Is this a one- tailed or two- tailed test? H R : Population 1 s mean difference score is different from Population 2 s mean difference score. So two- tailed What is df? Since df = N 1 then df = 18 Cutoff is ±

36 We had: 4. Determine Sample Score on Comparison Distribution M = (test sample s mean from 19 people) μ = 0 S M = 2.85 t = (M μ)/s M = ( )/2.85 =

37 37

38 5. Decide to Reject H 0 or Not Is data s t score more extreme than cutoff? Yes: 4.23 < Thus, result of the t test for dependent means is statistically significance at p < 0.05 level Interpretation: Husbands communication quality is different after marriage from what it was before marriage (it is lower) 38

39 Summary One sample t- test Unbiased estimate of population variance t distribution, parameterized by df Look up cutoff Calculate t score Two sample t- test for dependent means Formulate hypothesis Calculate difference scores Apply the above steps Many more statistical analyses in real world 39

40 Exam Expectations Given scenario Identify relevant populations and state the hypotheses Identify which hypothesis testing procedure should be used and why Given scenario and pre- calculated results Indicate whether to reject H 0 Provide the interpretation of the study 40

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan COSC 341 Human Computer Interaction Dr. Bowen Hui University of British Columbia Okanagan 1 Last Class Introduced hypothesis testing Core logic behind it Determining results significance in scenario when:

More information

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies The t-test: So Far: Sampling distribution benefit is that even if the original population is not normal, a sampling distribution based on this population will be normal (for sample size > 30). Benefit

More information

Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6.

Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6. Chapter 7 Reading 7.1, 7.2 Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6.112 Introduction In Chapter 5 and 6, we emphasized

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

The t-statistic. Student s t Test

The t-statistic. Student s t Test The t-statistic 1 Student s t Test When the population standard deviation is not known, you cannot use a z score hypothesis test Use Student s t test instead Student s t, or t test is, conceptually, very

More information

Student s t-distribution. The t-distribution, t-tests, & Measures of Effect Size

Student s t-distribution. The t-distribution, t-tests, & Measures of Effect Size Student s t-distribution The t-distribution, t-tests, & Measures of Effect Size Sampling Distributions Redux Chapter 7 opens with a return to the concept of sampling distributions from chapter 4 Sampling

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Introduction to Business Statistics QM 220 Chapter 12

Introduction to Business Statistics QM 220 Chapter 12 Department of Quantitative Methods & Information Systems Introduction to Business Statistics QM 220 Chapter 12 Dr. Mohammad Zainal 12.1 The F distribution We already covered this topic in Ch. 10 QM-220,

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing & z-test Lecture Set 11 We have a coin and are trying to determine if it is biased or unbiased What should we assume? Why? Flip coin n = 100 times E(Heads) = 50 Why? Assume we count 53 Heads... What could

More information

Sampling Distributions

Sampling Distributions Sampling Error As you may remember from the first lecture, samples provide incomplete information about the population In particular, a statistic (e.g., M, s) computed on any particular sample drawn from

More information

Quantitative Analysis and Empirical Methods

Quantitative Analysis and Empirical Methods Hypothesis testing Sciences Po, Paris, CEE / LIEPP Introduction Hypotheses Procedure of hypothesis testing Two-tailed and one-tailed tests Statistical tests with categorical variables A hypothesis A testable

More information

Testing a Claim about the Difference in 2 Population Means Independent Samples. (there is no difference in Population Means µ 1 µ 2 = 0) against

Testing a Claim about the Difference in 2 Population Means Independent Samples. (there is no difference in Population Means µ 1 µ 2 = 0) against Section 9 2A Lecture Testing a Claim about the Difference i Population Means Independent Samples Test H 0 : µ 1 = µ 2 (there is no difference in Population Means µ 1 µ 2 = 0) against H 1 : µ 1 > µ 2 or

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter 14 Revised 8/16 Note: This review is meant to highlight basic concepts from the course. It does not cover all concepts presented by your instructor. Refer back to your notes, unit

More information

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Question 1. Suppose you want to estimate the percentage of

More information

Lab #12: Exam 3 Review Key

Lab #12: Exam 3 Review Key Psychological Statistics Practice Lab#1 Dr. M. Plonsky Page 1 of 7 Lab #1: Exam 3 Review Key 1) a. Probability - Refers to the likelihood that an event will occur. Ranges from 0 to 1. b. Sampling Distribution

More information

Relating Graph to Matlab

Relating Graph to Matlab There are two related course documents on the web Probability and Statistics Review -should be read by people without statistics background and it is helpful as a review for those with prior statistics

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic One-Way ANOVA F-test One factor J>2 independent samples H o :µ 1 µ 2 µ J F 3.Distribution

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS

COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS TA: Sai Chowdary Gullapally scgullap@eng.ucsd.edu Office Hours: Thursday (Mandeville) 3:30PM - 4:30PM (or by appointment) Slides: I am using the amazing slides

More information

Factorial Independent Samples ANOVA

Factorial Independent Samples ANOVA Factorial Independent Samples ANOVA Liljenquist, Zhong and Galinsky (2010) found that people were more charitable when they were in a clean smelling room than in a neutral smelling room. Based on that

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Statistics Introductory Correlation

Statistics Introductory Correlation Statistics Introductory Correlation Session 10 oscardavid.barrerarodriguez@sciencespo.fr April 9, 2018 Outline 1 Statistics are not used only to describe central tendency and variability for a single variable.

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

Two sided, two sample t-tests. a) IQ = 100 b) Average height for men = c) Average number of white blood cells per cubic millimeter is 7,000.

Two sided, two sample t-tests. a) IQ = 100 b) Average height for men = c) Average number of white blood cells per cubic millimeter is 7,000. Two sided, two sample t-tests. I. Brief review: 1) We are interested in how a sample compares to some pre-conceived notion. For example: a) IQ = 100 b) Average height for men = 5 10. c) Average number

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Basic Linear Model. Chapters 4 and 4: Part II. Basic Linear Model

Basic Linear Model. Chapters 4 and 4: Part II. Basic Linear Model Basic Linear Model Chapters 4 and 4: Part II Statistical Properties of Least Square Estimates Y i = α+βx i + ε I Want to chooses estimates for α and β that best fit the data Objective minimize the sum

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

STAT Chapter 9: Two-Sample Problems. Paired Differences (Section 9.3)

STAT Chapter 9: Two-Sample Problems. Paired Differences (Section 9.3) STAT 515 -- Chapter 9: Two-Sample Problems Paired Differences (Section 9.3) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

ONE FACTOR COMPLETELY RANDOMIZED ANOVA

ONE FACTOR COMPLETELY RANDOMIZED ANOVA MALLOY PSYCH 3000 1-ANOVA PAGE 1 ONE FACTOR COMPLETELY RANDOMIZED ANOVA Sampling Distribution of F F is a test statistic [ ][ ][ ][ ] Test Statistic: F = MALLOY PSYCH 3000 1-ANOVA PAGE 2 ONE WAY ANOVA

More information

Rama Nada. -Ensherah Mokheemer. 1 P a g e

Rama Nada. -Ensherah Mokheemer. 1 P a g e - 9 - Rama Nada -Ensherah Mokheemer - 1 P a g e Quick revision: Remember from the last lecture that chi square is an example of nonparametric test, other examples include Kruskal Wallis, Mann Whitney and

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 4 Tests of Hypotheses The Normal Curve Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank Predicting performance Assume the estimated error rate is 5%. How close is this to the true error rate? Depends on the amount of test data Prediction

More information

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01 An Analysis of College Algebra Exam s December, 000 James D Jones Math - Section 0 An Analysis of College Algebra Exam s Introduction Students often complain about a test being too difficult. Are there

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression Recall, back some time ago, we used a descriptive statistic which allowed us to draw the best fit line through a scatter plot. We

More information

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit Amherst College Department of Economics Economics 360 Fall 2014 Exam 1: Solutions 1. (10 points) The following table in reports the summary statistics for high and low temperatures in Key West, FL from

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Confidence Intervals 1

Confidence Intervals 1 Confidence Intervals 1 November 1, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 4.2 Navidi, Chapter 5.0, 5.1, (Self read, 5.2), 5.3, 5.4, 5.6, not 5.7, 5.8 Chapter References 2 Terminology Point

More information

Soc3811 Second Midterm Exam

Soc3811 Second Midterm Exam Soc38 Second Midterm Exam SEMI-OPE OTE: One sheet of paper, signed & turned in with exam booklet Bring our Own Pencil with Eraser and a Hand Calculator! Standardized Scores & Probability If we know the

More information

The independent-means t-test:

The independent-means t-test: The independent-means t-test: Answers the question: is there a "real" difference between the two conditions in my experiment? Or is the difference due to chance? Previous lecture: (a) Dependent-means t-test:

More information

Chapter 22. Comparing Two Proportions 1 /29

Chapter 22. Comparing Two Proportions 1 /29 Chapter 22 Comparing Two Proportions 1 /29 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /29 Objective Students test null and alternate hypothesis about two population proportions. 3 /29 Comparing Two

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last week: Sample, population and sampling

More information

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 STAT 391 - Spring Quarter 2017 - Midterm 1 - April 27, 2017 Name: Student ID Number: Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 Directions. Read directions carefully and show all your

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education Deciphering Math Notation Billy Skorupski Associate Professor, School of Education Agenda General overview of data, variables Greek and Roman characters in math and statistics Parameters vs. Statistics

More information

Difference between means - t-test /25

Difference between means - t-test /25 Difference between means - t-test 1 Discussion Question p492 Ex 9-4 p492 1-3, 6-8, 12 Assume all variances are not equal. Ignore the test for variance. 2 Students will perform hypothesis tests for two

More information

Chapter 5 Confidence Intervals

Chapter 5 Confidence Intervals Chapter 5 Confidence Intervals Confidence Intervals about a Population Mean, σ, Known Abbas Motamedi Tennessee Tech University A point estimate: a single number, calculated from a set of data, that is

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. It is Time for Homework! ( ω `) First homework + data will be posted on the website, under the homework tab. And

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

Acknowledge error Smaller samples, less spread

Acknowledge error Smaller samples, less spread Hypothesis Testing with t Tests Al Arlo Clark-Foos kf Using Samples to Estimate Population Parameters Acknowledge error Smaller samples, less spread s = Σ ( X M N 1 ) 2 The t Statistic Indicates the distance

More information

Chapter 22. Comparing Two Proportions 1 /30

Chapter 22. Comparing Two Proportions 1 /30 Chapter 22 Comparing Two Proportions 1 /30 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /30 3 /30 Objective Students test null and alternate hypothesis about two population proportions. 4 /30 Comparing

More information

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing ECO22Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Chapter 8. Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis

Chapter 8. Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis Chapter 8 Inferences Based on a Two Samples Confidence Intervals and Tests of Hypothesis Copyright 2018, 2014, and 2011 Pearson Education, Inc. Slide - 1 Content 1. Identifying the Target Parameter 2.

More information

Area1 Scaled Score (NAPLEX) .535 ** **.000 N. Sig. (2-tailed)

Area1 Scaled Score (NAPLEX) .535 ** **.000 N. Sig. (2-tailed) Institutional Assessment Report Texas Southern University College of Pharmacy and Health Sciences "An Analysis of 2013 NAPLEX, P4-Comp. Exams and P3 courses The following analysis illustrates relationships

More information

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000 Lecture 14 Analysis of Variance * Correlation and Regression Outline Analysis of Variance (ANOVA) 11-1 Introduction 11-2 Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA)

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) Outline Lecture 14 Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) 11-1 Introduction 11- Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last two weeks: Sample, population and sampling

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 7 Inferences Based on Two Samples: Confidence Intervals & Tests of Hypotheses Content 1. Identifying the Target Parameter 2. Comparing Two Population Means:

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is Stat 501 Solutions and Comments on Exam 1 Spring 005-4 0-4 1. (a) (5 points) Y ~ N, -1-4 34 (b) (5 points) X (X,X ) = (5,8) ~ N ( 11.5, 0.9375 ) 3 1 (c) (10 points, for each part) (i), (ii), and (v) are

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear.

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear. Probability_Homework Answers. Let the sample space consist of the integers through. {, 2, 3,, }. Consider the following events from that Sample Space. Event A: {a number is a multiple of 5 5, 0, 5,, }

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

Name: Exam: In-term Two Page: 1 of 8 Date: 12/07/2018. University of Texas at Austin, Department of Mathematics M358K - Applied Statistics TRUE/FALSE

Name: Exam: In-term Two Page: 1 of 8 Date: 12/07/2018. University of Texas at Austin, Department of Mathematics M358K - Applied Statistics TRUE/FALSE Exam: In-term Two Page: 1 of 8 Date: 12/07/2018 Name: TRUE/FALSE 1.1 TRUE FALSE University of Texas at Austin, Department of Mathematics M358K - Applied Statistics MULTIPLE CHOICE 1.2 TRUE FALSE 1.3 TRUE

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

Psy 420 Final Exam Fall 06 Ainsworth. Key Name

Psy 420 Final Exam Fall 06 Ainsworth. Key Name Psy 40 Final Exam Fall 06 Ainsworth Key Name Psy 40 Final A researcher is studying the effect of Yoga, Meditation, Anti-Anxiety Drugs and taking Psy 40 and the anxiety levels of the participants. Twenty

More information

EC2001 Econometrics 1 Dr. Jose Olmo Room D309

EC2001 Econometrics 1 Dr. Jose Olmo Room D309 EC2001 Econometrics 1 Dr. Jose Olmo Room D309 J.Olmo@City.ac.uk 1 Revision of Statistical Inference 1.1 Sample, observations, population A sample is a number of observations drawn from a population. Population:

More information

Ch. 7. One sample hypothesis tests for µ and σ

Ch. 7. One sample hypothesis tests for µ and σ Ch. 7. One sample hypothesis tests for µ and σ Prof. Tesler Math 18 Winter 2019 Prof. Tesler Ch. 7: One sample hypoth. tests for µ, σ Math 18 / Winter 2019 1 / 23 Introduction Data Consider the SAT math

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information